
Noname manuscript No.
(will be inserted by the editor)

A formal framework for secure and complying services

Davide Basile · Pierpaolo Degano ·
Gian-Luigi Ferrari

the date of receipt and acceptance should be inserted later

Abstract Internet is offering a variety of services, that are assembled to accom-
plish requests made by clients. While serving a request, security of the communi-
cations and of the data exchanged among services is crucial. Since communications
occur along specific channels, it is equally important to guarantee that the interac-
tions between a client and a server never get blocked because either cannot access
a selected channel. We address here both these problems, from a formal point of
view. A static analysis is presented, guaranteeing that a composition of a client
and of possibly nested services respects both security policies for access control,
and compliance between clients and servers.

Keywords formal methods, service contracts, security, compliance, QoS

1 Introduction

The opportunities of exploiting distributed services are becoming an imperative
for all organizations and, at the same time, new programming techniques are trans-
forming the ways distributed software architectures are designed and implemented.
Distributed applications nowadays are built by assembling together computational
facilities and resources offered by (possibly) untrusted providers. E.g. in Service-
Oriented Computing [19], the basic building blocks are independent software com-
ponents called services, equipped with suitable interfaces describing (roughly) the
offered computational facilities; standard communication protocols (e.g. SOAP
over HTTP) take care of the interactions among parties. Another illustrative ex-
ample of effective distributed services exploitation is Cloud computing [3].

Software architectures for distributed services require several operational tools
to be in place and effective. In these computing environments, managing security
issues is rather complex, since security controls are needed to handle access to

This work has been partially supported by the MIUR PRIN project Security Horizons

Davide Basile, Pierpaolo Degano Gian-Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy
E-mail: basile,degano,giangi@di.unipi.it

2 Davide Basile et al.

services and resources, as well as to create suitable and reliable services on de-
mand. E.g. identity management and authorization are vital to set-up and deploy
services on-the-fly. Moreover, when services are made available through third par-
ties is crucial to ensure that clients and services interact correctly, which in turn
implies verifying the correctness of their behavioural obligations. Service Contracts

are the standard mechanisms to describe the external observable behaviour of a
service, as well as the responsibility for security. Service contracts can be used
for guaranteeing that all the services are capable of successfully terminating their
tasks (progress property) without rising any security exceptions.

The management of service contracts is typically tackled by service providers
through the notion of Service-Level Agreement (SLA), which clients must accept
before using the service. SLAs are documents that specify the level(s) of service
being sold in plain language terms. Recently, so called contract-oriented design has
been introduced as a suitable methodology where the interaction between clients
and services are specified and regulated by formal entities, named contracts. Their
formal nature permits to unambiguously represent the obligations, helps develop-
ing mechanical systems for service management, and also supports the automatic
analysis and verification of the contracts themselves. In the literature several pro-
posals addressed and investigated contracts, exploiting a variety of techniques [13,
15,17,16,11,4,1]. Security issues have been recently amalgamated within contract
based design by [9], that develops a calculus where behavioural contracts may be
violated by dishonest participants after they have been agreed upon.

We outline here a formal theory of contracts that supports verification of service

compliance and of security policies enforcing access control over resources. Services
are compliant when their interactive behaviour eventually progresses, i.e. all the
service invocations are guaranteed to be eventually served. Services are secure
when data are exchanged and accessed according to specific rules, called policies.

Our starting point is the language-based methodology supporting static anal-
ysis of security policies developed in [6]. Its main ingredients are: local policies,
call-by-contract invocation, type and effect systems, model checking and secure
orchestration. A program is type-checked and a safe over-approximation of its
behaviour is extracted, recording both the actions that may affect security and
the policies that must be enforced at run-time. Then, the approximation is model
checked against the active security policies, that are formally expressed as safety
policies. If the test is passed, then the program will never raise security exceptions
at run-time. A plan orchestrates the execution of a service-based application, by as-
sociating the sequence of run-time service requests with a corresponding sequence
of selected services. A main result shows how to construct a plan that guarantees
that no executions will abort because of some action attempting to violate secu-
rity. Note that it is not sufficient checking each service in isolation because the
composition of multiple services may introduce tricky security bugs. This method-
ology has been extended in [18] to also deal with quantitative aspects of service
contracts, typically the rates at which the different activities are performed.

Here we extend this approach to check security and service compliance at
the same time. Our first contribution is to extend the abstraction of service be-
haviour, called history expressions, with suitable communication facilities to model
the interactive behaviour of services, including possibly nested service sessions in a
multiparty fashion. In particular, we extend history expressions to include commu-
nications along channels, and internal/external choice for combining the notions of

A formal framework for secure and complying services 3

security of resource accesses and progress of interactions. Our second contribution
is sharpening the verification phase. We prove that service compliance is a safety
property: when it holds, all the involved parties are able to successfully complete
their interactions without getting stuck. Reducing service compliance to a safety
property makes it efficiently model-checkable. Finally, we extract from a history
expression all the viable plans for serving a request, i.e. those orchestrations that
successfully drive secure and compliant executions. Adopting a valid plan guaran-
tees that the involved services never go wrong at run-time, in that they are capable
of successfully accomplishing their tasks, raising no security exceptions. Thus, no
run-time monitor is needed, to control the execution of the network of services.

The paper is organised as follows. The next section intuitively presents our for-
mal machineries, the problems we address, and our goals through an illustrative ex-
ample. Compliance, its reduction to a safety property and the technicalities needed
to model-check it are in Section 3. In Section 4, we summarise our results and fu-
ture work. Lack of space prevents us to present in details the technical treatment
that is at the web page: www.di.unipi.it/user/basile/papers/pact2013full.pdf.

2 Motivating Example

To illustrate our approach and help intuition, we consider a simple cloud-based
scenario. We take into account federated cloud services [14] where a broker is re-
sponsible for collecting the clients’ requests and for sending the information to
the multiple cloud providers. The broker has also granted the rights to negoti-
ate the service contracts with the providers on the behalf of the clients: and to
distribute and coordinate clients’ requests across the multiple cloud providers. Fi-
nally, formalising and guaranteeing security of federated cloud services is a major
challenge [12]. When a client submits its service requests to the broker, it also
specifies the constraints on the required quality of service. In our approach, this
negotiation is managed by issuing the policy ϕ(c,p,t). Roughly, policies are regu-
lar properties over the execution progress of service requests (execution histories),
which are specified through the so-called usage automata [7], a sort of parametric
finite state automata. As an example the policy ϕ displayed below will be used in
our running example to determine the possible bad behaviour, discuss later on.

q1start q2 q3

q4 q5q6

αsgn(x),x`c

αsgn(x),x 6`c

αp(y),y≤p

αp(y),y>p

*

αta(z),z≥t

αta(z),z<t
**

The policy parameters are the configuration profile c, the pricing p and the
workload threshold t. Since in the cloud federation each provider comprises mul-
tiple computing services, the information stored in c is used to identify the com-
puting facilities according to the need of the clients. The configuration profile can
also contain information about the required security constraints to model the fact

4 Davide Basile et al.

that cloud architectures have well-defined security policies and enforcement mech-
anisms in place. E.g., the profile could include the requirement to provide a level of
isolation over the virtualization infrastructure. The pricing information is used to
decide how service requests are charged. E.g., pricing can be based on the submis-
sion time, it could be fixed or depending on the availability of certain resources.
The last parameter t specifies the minimum amount of work expected to be done.
E.g., in a data center this value could be the amount of data processing performed
in a given time. The parameters of the service contract are crucial to identify and
supply the actual demand of computing resources on the cloud.

When a cloud provider accepts the service requests, it signs the contracts, i.e.
it supplies the information x about the profile of the available resources issuing
the event αsgn(x). The cloud provider also publishes its pricing and workload in-
formation by issuing the events αp(y), αt(z). If the profile of the available resources
does not match the given client profile (formally expressed by the guard x 6` c)
the policy is violated and the final state q6 is reached. Note that the forbidden
traces belong then to the language accepted by the automaton, as prescribed by
the so called “default-accept” approach. A violation of the policy also occurs if the
pricing of the cloud provider does not fulfill client’s requirements and the provided
workload is lower then t. In this case the policy is violated and the final offending
state q5 is reached. Finally, note that the policy allows to have a pricing different
from the given one whenever a higher workload performance is ensured.

We abstractly and formally specify this scenario in a suitable process calculus,
that deeply differs from standard ones because policies are first class citizens of
the calculus. Consider the following setting with two clients C1, C2, a cloud broker
B and a cloud federation including computational service providers S1, S2, S3, S4.

C1 = open1,ϕ({c1},45,100)
Req(Ack.Pay +NoAv)close1,ϕ({c1},45,100)

C2 = open2,ϕ({c2},40,70)
Req(Ack.Pay +NoAv)close2,ϕ({c2},40,70)

B = Req.open3,∅IdC.(AgOk + UnA)close3,∅(Ack.Pay ⊕NoAv)

S1 = αsgn(1).αp(45).αt(80).IdC(AgOk ⊕ UnA) S1 6∈ c1, c2

S2 = αsgn(2).αp(70).αt(100).IdC(AgOk ⊕ UnA⊕Del)

S3 = αsgn(3).αp(90).αt(100).IdC(AgOk ⊕ UnA) S3 6∈ c2

S4 = αsgn(4).αp(50).αt(90).IdC(AgOk ⊕ UnA)

The two clients only differ in the way they instantiate their policies. A client
opens a session and sends his request to the broker, who must respect the policy
ϕ. Sending the request is modelled by the action Req, while receiving it is done
through Req, the complementary action (for brevity and simplicity we omit data).
The client is then willing to receive the confirmation of the policy agreement
and to settle the payment (Ack.Pay). The client is also ready to receive a negative
message in the case where no resourses are available (NoAv). When either message
is received, the session with the broker is closed. As discussed above, the broker
receives the service request Req and then opens a session with the service providers.
Here for simplicity we only model the interactions with the providers and not
the actual deployment of the service. The broker sends the client Id and all the
related data by issuing the event IdC, and then waits for either the agreement
or for the negative messages with (AgOk + UnA). Then the session is closed, and

A formal framework for secure and complying services 5

the response message is forwarded to the client. The cloud providers perform the
events of signing and publishing the pricing and the workload; and they then
interact with the broker. Here we assume a fixed pricing strategy and a basic
description for the workload. Note that all services, except for S2, have the internal

choice AgOk⊕UnA. This abstractly represents that the cloud providers can decide
on their own which message to send depending on their state of affairs. Being
purely non-deterministic, in our computational model the internal choice behaves
differently than the external choice, e.g. AgOk+UnA, that is instead driven by the
message received. Since the broker B is ready to receive each sent message, we say
that the mentioned providers are compliant with B. Instead, the provider S2 is not

compliant with B. Indeed, the broker can also send the message Del (meaning that
there will be available services later) but the broker cannot handle it, and therefore
the interaction gets stuck. As far as security is concerned, assuming that S1 does
not match the configuration profile c1, then it turns out that the providers S1 and
S4 violate the policy settled by C1, since S1 has not the required profile and S4 does
not respect the required workload. Finally, note also that the services S1, S3 do
not satisfy the configuration parameters of C2. Consider the following fragment of

computation, i.e. a sequence of configurations χ and of transitions χ
γ→ χ′, where

γ records either an event relevant to security or progress, or a communication
made of two complementary actions (disregard for a while the indexes π, R of the
arrows). A configuration is made of tuples η, ` : S, put in parallel (through ‖),
where η is a sequence of events, and ` is the location of the service/client S.

ε, `c1 : C1‖ε, `c2 : C2

op1,ϕ1→π,R

Lϕ1 , [`c1 : Req.(Ack. . . .)close1,ϕ1 , `br : Br]‖ε, `c2 : C2
τ→π,R

Lϕ1 , [`c1 : (Ack. . . .)close1,ϕ1 , `br : open3,∅IdC . . .]‖ε, `c2 : C2

op3,∅→ π,R

P︷ ︸︸ ︷
Lϕ1 , [`c1 . . . , [`br : IdC . . . , `s3 : αsgn(3) . . .]] ‖ε, `c2 : C2

op2,ϕ2→ π,R

P‖

Q︷ ︸︸ ︷
Lϕ2 , [`c2 : Req . . . close2,ϕ2 , `br : Br]

αsgn(3)→ π,R

αp(90)→ π,R

αta(100)→ π,R

η︷ ︸︸ ︷
Lϕ1αsgn(3)αp(90)αta(100), [`c1 : . . . , [`br : IdC . . . , `s3 : Idc . . .]]‖Q τ→π,R

τ→π,R

η, [`c1 : . . . , [`br : close3,∅ . . . , `s3 : ε]]‖Q
cl3,∅→ π,R

η, [`c1 : (Ack.Pay +NoAv)close1,ϕ1 , `br : (Ack.Pay ⊕NoAv)]‖Q τ→π,R

η, [`c1 : close1,ϕ1 , `br : ε]‖Q
cl1,ϕ1→ π,R ηMϕ1 , `c1 : ε‖Lϕ2 , [`c2 : Req, . . . , `br : B]

τ→π,R . . .

Above, the starting configuration has the two clients, one at location `c1, the other
at `c2. Both performed no actions, so their execution history is empty (ε). The first
step opens (op1) session 1 between C1 and B and registers in the history that the
whole session, in particular B, is subject to the policy ϕ, duly instantiated (call
it ϕ1 = ϕ({c1},45,100)). Step 2 shows that the request of the client C1 has been
accepted by the broker, via a communication. Now a nested session is opened
between B and S3, step 3, and no policy is imposed over the called service S3.
Concurrently, C2 can perform its service request in step 4, that registers policy
ϕ2 = ϕ({c2},40,70) as active. Note that the broker can replicate its code at will.

6 Davide Basile et al.

The two parallel sessions can evolve concurrently. For simplicity, we proceed with
service S3, that signs, shows the pricing and its workload threshold (all displayed
in the same line). The broker is ready to send the client’s data to S3, and to receive
back an answer, say “no services are available” (S3 is now ε, because it has no
further activities to do). Session 3 is then closed through cl3 in step 10; the bro-
ker resumes its conversation with the client C1, and forwards the non-availability
message in step 11. The next steps close the session numbered 1 and the security
framing implementing and enforcing the policy ϕ1. The last transition continues
the session involving the second client. The index R of the arrows shows that the
transitions depend on the service providers constituting the cloud federation.

The index π is plan. i.e. a vector of functions mapping requests to services. The
plan π1 for the first client maps the request 1, originated by open1 of the client, to
`br, and the request 3 from open3 of the broker, to `s3. We call π1 valid, because
it drives a computation where both the security constraints and compliance of
clients/services are guaranteed.

Suppose now that the plan π2 for the second client maps request 2 to `br
and request 3 (from the second instance of the broker) to `s2. Since S2 does not
comply with B, at run-time a communication involving the action Del cannot
occur because the broker has no action Del. Our assumption that the service can
decide what to send on its own is violated. For this reason, we say that this plan
is not valid. Finally, consider a plan that maps request 3 to `s3, that this time is
compliant with the broker. However S3 does not satisfy the configuration profile
settled by C2, and so a policy violation occurs; also this plan is not valid.

3 Model Checking Validity and Service Compliance

In our approach, a service S is identified by its interface, i.e. a type τ that makes
some of the service functionality available across a network. Also each interface
is annotated by the history expression H that over-approximates the possible run-
time behaviour of S. We do not detail here the type and effect system used to
associate this information with a service. A theorem guarantees that H is safe:
when a service with interface τ and annotation H is run, it will generate one of
the execution histories denoted by H. Hereafter we will often identify the service
with its abstract behaviour H. The syntax of History Expressions follows.

H ::= ε | h | µh.H | (
∑
i∈I

ai.Hi) | (
⊕
i∈I

ai.Hi) | α | H ·H | openr,ϕH, closer,ϕ | ϕLHM

Intuitively, ε does nothing (thus ε ·H ≡ H ≡ H ·ε). Recursion is µh.H, restricted to
be tail-recursive and guarded by communication actions ā or a. Events α can occur,
if they do not violate any active policy; they represent accesses to resources (see [8]
for richer actions). The expression H1 ·H2 is sequential composition. An expression
sends/receives on a channel messages, indexed by a set I. To stress that the non-
deterministic choice of the output ai is up to the sender only (internal choice),
we use ⊕, while the external choice only involves inputs ai and is denoted by Σ.
Security framing ϕLHM enforces the policy ϕ while H is running, (sometimes we
equivalently write Lϕ·H·Mϕ for ϕLHM). A policy is a (sort of) finite state automaton
that accepts those strings of access events that violate it, in the default-accept
paradigm. Entering a security framing corresponds to calling a monitor checking

A formal framework for secure and complying services 7

that all the histories, i.e. the sequence of events previously fired, must respect
the policy, in the style of history-dependent approaches to security [2]. A service is
engaged in a session with another through openr,ϕHcloser,ϕ, where r is a unique
identifier and ϕ is the policy to be enforced while the responding service is active.
The operational semantics of is given by the transition system inductively defined
by the following rules (we omit the standard rules for H1 ·H2 and µh.H):

α
α
� ε (Act)

⊕
i∈I ai.Hi

ai
� Hi (I-Choice)

∑
i∈I ai.Hi

ai
� Hi (E-Choice)

ϕLHM
Lϕ
� H· Mϕ (P-Open) openr,ϕ.H.closer,ϕ

openr,ϕ

� H.closer,ϕ (S-Open)

A network N is composed of the parallel composition of clients H, each hosted at
a location ` ∈ Loc, and of sessions S involving a client and a service. Services are
published in a global trusted repository R = {`j : Hj | j ∈ J}, and they are always
available for joining sessions. The syntax of networks follows, with that of plans
π, i.e. vectors of functions π′i assigning a service ` to each request r, written r[`].

N ::= N‖N | S S ::= ` : H | [S, S]
The operational semantics of networks follows (Φ stores the active policies).

For lack of space we omit that for syncronization (on complementary actions) and
that driving the network to proceed when a component does.

H
openr,ϕ

� H ′ r[`j] ∈ π {`j : Hj} ⊆ R |= ηLϕ

η, `i : H
openr,ϕ−→π,R ηLϕ, [`i : H ′, `j : Hj]

(Open)

H
closer,ϕ
� H ′

η, [`i : H, `j : H ′′j]
closer,ϕ−→π,R ηη′, `i : H ′

η′ = Φ(H ′′j)Mϕ (Close)

H
γ
� H ′ |= ηγ

η, `i : H
γ−→π,R ηγ, `i : H ′

(Access)
η, S

λ−→π,R η′, S′ |= η′

η, [S, S′′]
λ−→π,R η′, [S′, S′′]

(Session)

The first property of our verification methodology concerns secure executions.
Formally this is done by checking validity of histories. The idea is to suitably as-
semble the history expression H associated to a network of services, and recording
in a plan for H which service to invoke for each request, so obtaining the pair
Ĥ, π. Note that Ĥ may be non-valid, even if the composing selected services are
valid, each in isolation. Indeed, the impact on the execution history of selecting a
service Hr for a request r is not confined to the execution of Hr, but it spans over
the whole execution, because the active security policies are to be enforced on the
whole execution history, as our approach is history-dependent. The validity of the
composed service Ĥ depends thus on the global orchestration, i.e. on the plan π.

In order to ascertain the validity of history expressions we resort to model
checking. Because of the possible nesting of security framings, validity of history
expressions is a non-regular property, so standard model checking techniques can
not be directly applied. In [6], a semantic-preserving transformation is presented,
that removes the context-free aspects due to policy nesting: it suffices recording the
opening of policies, and removing those already opened and their corresponding
closures, in a stack-like fashion. In this way, (standard) model checking is efficiently
feasible through specially-tailored finite state automata. A generalisation of this
technique has been applied here to the extended definition of history expressions.

8 Davide Basile et al.

We now introduce the notion of service compliance. Given the service request
openr,ϕH1closer,ϕ and the service H2, we say that H1 and H2 are compliant if for
every possible internal action of a party, the other can perform the corresponding
co-action. Note that compliance does not require the service to terminate, because
the client can terminate whenever all its operations have been completed.

We now outline our model-checking technique for verifying service compliance.
The key idea is to reduce compliance to a safety property. First we manipulate
the syntactic structure of a history expression to identify and pick up all the
requests, i.e. the subterms openr,ϕH1closer,ϕ. Then, to check compliance of a
request r against a service H2, we compute the projection of H1 and H2 on their
communication actions. This projection removes from H1 and H2 all the resource
access events α and policy opening and closing Lϕ, Mϕ, as well as all the inner service
requests, i.e. the subterms openr′,ϕ′ . . . closer′,ϕ occurring inside H1 and H2.

Formally, the projection function of an history expression is much alike a be-
havioural contract as defined in [16]; so we call contracts these projected history
expressions and we write them H !. More precisely, the projection function produces
a subset of those contracts, since in our history expressions the internal choice is
always guarded by output actions and the external choice is always guarded by
input actions. Finally, we only have guarded tail recursion. Because of the last re-
striction, it turns out that the transition system of H ! is finite state; in other words
there only is a finite number of expressions that are reachable from H ! through the
transitions defined by the operational semantics of history expressions in isolation.

We introduce now the notion of product automaton of two contracts. The prod-
uct automaton models the behaviour of contracts composition where final states
represent stuck configurations: these states are reached whenever the two contracts
are not compliant. Let H ′1 and H ′2 be history expressions. The product automaton
of H1 = (H ′1)! and H2 = (H ′2)! is H1 ⊗H2 = 〈S1 × S2, {τ}, δ, 〈H1, H2〉, F 〉, where

– S1 and S2 are the states of H1 and H2, with 〈H1, H2〉 the initial state
– {τ} is the alphabet, representing pairs of complementary action 〈a, co(a)〉
– the transition function δ is:

δ = {(〈H1, H2〉, τ, 〈H ′1, H ′2〉)|H1
a
� H ′1 ∧H2

co(a)
� H ′2 ∧ 〈H1, H2〉 6∈ F}

– the final states are F = {〈H1, H2〉|H1 6= ε ∧ (¬(∃a.(H1
a
� H ′1 ∨ H2

a
� H ′2)) ∨

¬((∀H1
a
� H ′1, ∃H2

a
� H ′2) ∧ (∀H2

a
� H ′2,∃H1

a
� H ′1)))}.

Intuitively, H1 and H2 are compliant if and only if the language of the product
automaton A is empty. This basically corresponds to the model-checking technique
of invariant properties (a subset of the safety properties) [5].

4 Verifying Services Secure and Unfailing

We have all the means to statically verify whether a network of services will evolve
with neither security nor compliance violations. Given a federation of services R
and a vector of clients, the verification is as follows: (i) compute through a type and
effect system the history expressions over approximating the dynamic behaviours
of services and clients; (ii) pick up one service at a time and generate a valid plan
πH for it; and (iii) for each request openr,ϕH1closer,ϕ in the composed service
check H1 compliant with H2, with πH(r) ∈ R. If all these steps succeed, switch

A formal framework for secure and complying services 9

off any run-time monitor, and live happily: nothing bad will happen. This result
relies on suitable extensions of the methodology proposed in [6], and on a careful
definition of service sessions, possibly nested, and of compliance. Since compliance
is a safety property, mechanical verification via standard model-checking is feasible.

Our main result stating the soundness of our verification technique follows:

Theorem 1 Secure and Compliant Services = Model Checking Validity & Compliance

We established a novel connection between the worlds of service contracts
and of security. We plan to extend our approach for modeling more carefully the
availability of services, that now can unboundedly replicate themselves. We also
wish to extend our verification methodology to include quantitative information
in the security policies, along the lines of [18]. We would like also to modify the
model checker and related tools of [10] so to completely mechanise our proposal.

References

1. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty con-
tracts: Agreeing and implementing interorganizational processes. Comput. J. 53(1), 90–
106 (2010)

2. Abadi, M., Fournet, C.: Access control based on execution history. In: Network and
Distributed System Security Symposium, NDSS 2003. The Internet Society (2003)

3. Armbrust, M., et al: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)
4. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational societies.

ACM Trans. Comput. Log. 10(1) (2009)
5. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
6. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. Jour-

nal of Computer Security 17(5), 799–837 (2009)
7. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies To

appear in Math. Stuct. Comp. Sci., abridged version in TGC 2008, vol 5474 LNCS (2009)
8. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource usage

analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)
9. Bartoletti, M., Tuosto, E., Zunino, R.: On the realizability of contracts in dishonest sys-

tems. In: M. Sirjani (ed.) COORDINATION, LNCS, vol. 7274, pp. 245–260. Springer
(2012)

10. Bartoletti, M., Zunino, R.: LocUsT: a tool for checking usage policies. Tech. Rep. TR-08-
07, Dip. Informatica, Univ. Pisa (2008)

11. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS, pp. 332–341.
IEEE Computer Society (2010)

12. Bernsmed, K., Jaatun, M.G., Meland, P.H., Undheim, A.: Security SLAs for federated
cloud services. In: ARES, pp. 202–209. IEEE (2011)

13. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for dis-
tributed multiparty interactions. In: CONCUR 2010 - Concurrency Theory, 21th Interna-
tional Conference, Lecture Notes in Computer Science, vol. 6269, pp. 162–176. Springer
(2010)

14. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerg-
ing it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Comp. Syst. 25(6) (2009)

15. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts for
web services. In: M. Bravetti, M. Núñez, G. Zavattaro (eds.) WS-FM, LNCS, vol. 4184,
pp. 148–162. Springer (2006)

16. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM
Trans. Program. Lang. Syst. 31(5) (2009)

17. Castagna, G., Padovani, L.: Contracts for mobile processes. In: M. Bravetti, G. Zavattaro
(eds.) CONCUR, LNCS, vol. 5710, pp. 211–228. Springer (2009)

18. Degano, P., Ferrari, G.L., Mezzetti, G.: On quantitative security policies. In: V. Malyshkin
(ed.) PaCT, LNCS, vol. 6873, pp. 23–39. Springer (2011)

19. Papazouglou, M., Georgakopoulos, D.: Special issue on service oriented computing. Com-
munications of the ACM 46(10) (2003)

