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Abstract

We survey the relevance of the maximum entropy inference process
to the management of uncertainty in Geographic Information Systems.
We show how the former constitutes a theoretically well-founded solu-
tion to problems that arise naturally in GIS facing imperfect informa-
tion. We also put forward how, as a consequence of the encouraging
developments on computational techniques for reasoning under maxi-
mum entropy, the latter must be considered as a most crucial approach
to uncertainty management in various fields of GIS science.

1 Introduction

A relevant problem in approaching GIS (Geographic Information Systems)
consists in giving a reasonably agreed definition of what GIS actually are.
For present purposes it is reasonable to consider GIS as being characterized
by a twofold nature: On the one hand GIS consist of a technology used for
certain purposes. From this perspective, the crucial issues in GIS research
amount to computing problems, both on the hardware and software level.
On the other hand, however, GIS research is increasingly more focussed on
theoretical issues concerning the representation of geographic information.
According to the latter point of view GIS problems include, at the very
least, issues of knowledge representation and reasoning. In this paper we
investigate some of the consequences deriving from approaching GIS from
the latter point of view. In particular, we will be insisting on the fact that its
‘conceptual side’, so to speak, commits GIS research to achieving scientific
goals which happen to be closely related to some of those pursued in Artificial
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Intelligence (AI) research.1 In doing so, we adopt a perspective according to
which GIS are essentially construed as artificial intelligent agents reasoning
about a certain classes of natural environments.

The reason for our focussing on the issues of knowledge representation
and reasoning in relation to GIS is that this perspective provides us with a
promising methodological framework for tackling a critical issue in contem-
porary GIS science: the management of imperfect information. As we’ll be
insisting in what follows, by adopting this perspective we can provide and
then exploit a strong link between GIS science and the logical-mathematical
discipline of uncertain reasoning.

A remark is necessary here in order to avoid possible misunderstandings.
Although the distinction between “the scientific” and “the technological” is
by no means a sharp one –especially in the domain of information systems–
we see plenty of methodological advantages in considering the scientific as-
pects of GIS as a rather separated issue: it is only by clearly stating where we
want to go that we can attempt to tell whether we are following a reasonable
path.

The paper is organized as follows. Section 2 introduces and motivates the
agent-perspective on the main problem. Section 3 analysis the inevitability
of imperfect information in a way that motivates the need for theoretical so-
lutions to the problem. It turns out that our approach is relatively close to
the näıve geography programme. Section 3.3 is devoted to the investigation
of the main commonalities as well as differences between the two perspec-
tives. Section 4 introduces the crucial aspects of what we consider to be an
“intelligent GIS-agent”. Equipped with this conceptual and methodological
framework we move on to discuss the essential aspects of the corresponding
formal setting. We do so by introducing a case study concerning terrestrial
GIS in section 5 and illustrating in section 6.2 the applicability of max-
imum entropy logic programming to a representative class of GIS-queries
extrapolated from the case study. The brief discussion on the implementa-
tion of maximum entropy reasoning of section 7 illustrates how the latter
constitutes a methodologically principled as well as computationally viable
solution to the management of uncertainty in GIS. Section 8 concludes the
paper by pointing to the future directions of research.

2 From a tool-box to a multi-agent system: Putting
GIS into the agents perspective.

We have mentioned above the fact that GIS are characterized by a twofold
nature. In the practice of GIS it seems that this fact has been implicitly

1Notice that the ‘obvious’ connection between GIS and AI research is to be found on the
computational essence of the two areas. As we will see, however, much more fine-grained
similarities are worth investigating.
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assumed over the past two decades, as witnessed by the following definitions.

Duecker 1979 “A geographic information system is a special case of in-
formation systems where the database consists of observations on spa-
tially distributed features, activities or events, which are definable in
space as points, lines, or areas. A geographic information system ma-
nipulates data about these points, lines, and areas to retrieve data for
ad hoc queries and analysis.”

Burrough 1986 [3] “A powerful set of tools for storing and retrieving at
will, transforming and displaying spatial data from the real world for
a particular set of purposes.”

Clarke 1995 [6] “Automated systems for the capture, storage, retrieval,
analysis, and display of spatial data.”

Chrisman 1997 [5] “The organized activity by which people:

measure aspects of geographic phenomena and processes;

represent these measurements, usually in the form of a computer
database, to emphasize spatial themes, entities, and relationships;

operate upon these representations to produce more measurements
and to discover new relationships by integrating disparate sources;

transform these representations to conform to other frameworks of
entities and relationships.

These activities reflect the larger context (institutions and cultures)
in which these people carry out their work. In turn, the GIS may
influence these structures.”

What is the common path followed by these definitions? It is quite clear
that the fil rouge among them all is to be found in the characterization of
GIS goals: devising computing systems capable of collecting, representing,
storing, manipulating and retrieving geographic information. On the basis
of such a tentative definition, we can explore some relevant commonalities
between GIS and AI research.

Put crudely, AI aims at the design of autonomous agents exhibiting in-
telligent behaviour in non-trivial environments2. It is commonly held that
AI has, as we maintain for GIS research, two sorts of goals: in the first
place accounting for such a thing as an “agent behaving intelligently in a
non-trivial environment” and then, building it up. The former encompasses
the “scientific goals” of AI whereas the latter is what gives AI its “engi-
neering” flavour. Without going into the details, noteworthy at this point

2See e.g. [46, 32, 39]

3



is that the crucial issues of the former are essentially related to knowledge
representation and reasoning.3

Among the above mentioned definitions, the sort of parallel we are draw-
ing here is quite easily traced in Duecker’s account where particular empha-
sis is put on the fact that knowledge representation and reasoning in GIS
amount to a particular instantiation of a general AI problem: accounting
for the “intelligent” management of information.

Here is our first methodological step: by regarding the geographic ones
as a special case of (general) information management systems, an entirely
natural link can be constructed between GIS and uncertain reasoning re-
search. We address this problem in section 3.

In order to appreciate how logical theories of reasoning under imperfect
information could be deployed in modelling “intelligent GIS”, however, we
have to make explicit the fact we are thinking of GIS as essentially au-
tonomous agents. Among the above mentioned characterizations of what
GIS actually are, only the one due to Chrisman considers explicitly the (hu-
man) agent acquiring and manipulating information as an essential part of
the geographic information system.4 Our interest, however, goes somehow
beyond Chrisman’s definition, for we think of GIS as being centered around
autonomous artificial agents. For this reason, throughout this paper, we
will be calling such broader systems GIS-agents.

2.1 GIS-agents and multi-agent systems

A major achievement of the past two decades in AI research has been the
introduction of the ‘agents metaphor’ in the study of intelligent artificial
systems.5 Among its many consequences one of particular interest to us is
the anchorage of the rather abstract notion of “reasoning” to several types
of environments. In a nutshell, an agent is understood as an embodied entity,
that is to say an entity whose reasoning is about an environment which is
subject to its (and other agents’) actions. Were we able to carefully explain
how this interaction takes place, most of the fundamental questions of AI
would be answered. It goes without saying that we set ourselves a much
more modest aim here: accounting for the relation between GIS-agents and
some aspects of the formalization of reasoning under imperfect information.

The main reason we argue in favour of the necessity of the agents per-
spective is easily explained by noticing that were GIS mere tool-boxes, no

3We are extremely sympathetic with the view proposed in [40] according to which
“the problems of AI are not primarily computing problems (hardware or software), but
problems concerning what it is for a device to reason.”

4Notice however that the other definitions do not appear to be inconsistent with such
an idea.

5Due to obvious space constraints we plainly assume here the agents perspective in AI.
Complete details can be found in [20] and in the more recent [51].
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sensible relevant issue concerning GIS reasoning would even arise, let alone
reasoning under imperfect information.

But there are further methodological reasons for turning our attention
to the relation between GIS and (multi-)agent systems research. We have
stressed in the previous section that the practice of GIS requires a vari-
ety of agents (both human and not) to interact.6 Therefore it is extremely
natural to think of GIS as multi-agent systems in which the various tasks
characterizing the diverse nature of GIS are distributed, say among agents
responsible for acquiring, storing, manipulating relevant information. As a
consequence, approaching theoretical GIS research from the agents perspec-
tive opens up to a variety of computing issues. We limit ourselves to list the
mayor ones:

communication : i.e. the sharing of information among agents;

cooperation : i.e. the joint effort of several agents aimed at achieving
some goal which would go beyond their individual capabilities;

negotiation : i.e. the activity by means of which several agents (who
normally have competing goals) achieve agreement.

Such issues are being extensively studied in the broader domain of multi-
agent systems (see e.g. [51] for a recent reference work). Thus it seems quite
clear that when talking about the role of multi-agent systems in theoretical
GIS research, the ‘direction of fit’ is understood to be from the general
to the particular, that is to say, the general framework developed in the
context of multi-agent systems will have to be adapted to the particular
case of GIS-agent.7 Being this study essentially devoted to the foundational
issues, we postpone further details on this until subsequent stages of the
research underway.

Rather, our focus now is on the desirable abstract properties to be im-
posed on GIS-agents modelling. In this context ‘abstract’ points both to
the fact that such properties are largely independent of the implementing
details and on the fact that they are investigated in the formal framework
of mathematical logic.

Abstraction plays nowadays a critical role in multi-agent system design.
As a consequence, a variety of architectures have been proposed during the
past decade, the best known of which is perhaps the so-called BDI archi-
tecture [41, 20, 50]. The present paper, as part of a broader study, is just

6In the perspective of AI, we clearly aim at delegating as much workload as possible
to artificial agents, putting ourselves in the comfortable position of ‘users’. As discussed
in section 3.3 this is one of the motivations underlying the ‘näıve geography’ approach.

7There are surely different sorts of constraints characterizing the ontology of, say,
marine and terrestrial GIS. The abstract framework that we set out to develop, however,
aims at capturing the problem of uncertainty management in GIS in its full generality.
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oriented along the lines of abstraction. Hence our present aim consists in
a first investigation on the crucial issues concerning imperfect information
representation and management in GIS-agents.

Summing up, the relation between research in (multi)agent systems and
GIS appears to be as natural as it is necessary. We have appreciated how
natural it is simply by recalling the definitions of geographic information sys-
tems which arise from the practice of actually deploying GIS. Thus, it turns
out to be extremely natural to think of a GIS-agents as a distributed sys-
tem. Among distributed/concurrent systems, however, multi-agent systems
provide a compelling framework for the development of GIS. This happens
at two levels: on the computing level, advances in multi-agent systems just
have to be contextualized according to the problems arising in GIS; whereas
on the abstract level, the agents perspective, by anchoring GIS to some envi-
ronment, provides a necessary key for tackling our main concern: imperfect
information management, to which we now turn our attention.

3 Uncertainty and GIS

Like any other agent operating in realistic environments –that is to say
environments complicated enough so as to be seen as portions of the “real
world”– GIS ought to face the inevitability of imperfect information.8 But
why is it the case? This is best explained by briefly recalling what sort of
features characterize realistic agents.

As we have just seen, agents make full sense only in terms of embodied
entities. Then, whether they have a physical (robots) or software (softbot)
nature, agents are necessarily limited entities. This has crucial consequences
that we now briefly consider by looking at the sort of things we expect a
realistic agent like a GIS-agent to do.

First of all, an agent acquires information by means of perceiving its
environment. Then perceived information (or data) is suitably represented
and eventually stored in the system’s memory. Let’s call the set of stored
representations of information, the agent’s knowledge base.9 We take, for
present purposes, agents’ reasoning as a function of their knowledge base
whose output consists of new pieces of information (or equivalently, old ones
made more specific). From this point of view, as it will be exemplified in
section 6.2 below, the modelling of GIS-agents reasoning arises from the
specification of suitable constraints on their inference process.

Agents’ reasoning process might be triggered by a variety of different
circumstances which might span from performing particular actions to an-

8This is even more true in the case of marine GIS; more about this below.
9Within GIS research, the term database is often preferred. Databases, usually, corre-

spond to particularly structured pieces of information. At this stage, however, it seems
more appropriate to deal with a more general notion.
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swering certain queries. Whatever the goal reasoning is to fulfill, we expect
intelligent agents to make the best possible use of the information available
to them, given their essential limitations. As we are about to discuss, it is
just because of such limitations that agents cannot undertake the sort of
reasoning formally captured by classical logic.

Having drawn this rough picture of the GIS as an agent we now tackle
the crucial question: Where does all the uncertainty come from?

As far as realistic agents are concerned, there are essentially two sources
of imperfection which GIS research has to care about and which we call
“agent-independent” and “agent-dependent” respectively. Those sources
are simultaneously active at the perception, representation and reasoning
levels and can purposefully be distinguished. The reason for so doing is
that of distinguishing between technological and scientific problems, that
is to say distinguishing among problems which should be tackled at the
hardware (or software) level and those for which an abstract, theoreti-
cal solution is needed.10 Thus whereas agent-dependent sources of imper-
fection are generally to be tackled technologically, the agent-independent
ones require geographic information systems to satisfy (some of) the ra-
tional/commonsensical11 constraints on agents’ reasoning as studied in the
context of uncertain reasoning research.

3.1 Agent dependent vs agent independent limitations

To the purpose of briefly illustrating the contrast we are making here, let’s
take the case of marine GIS. As put forward in [29] two crucial activities
in collecting appropriate information (equivalently: data acquisition) are
sensing and measuring. Both activities inevitably generate imperfection in
the resulting representations independently of the agents’ representational
systems but dependently on the nature of agents and their environment.

Sensing is clearly subject to the actual physical constraints of the par-
ticular agents at hand. Although there will always be a limited number of
objects that the agent can simultaneously perceive from a finite (and prede-
termined) number of distinct perspectives, the number of such objects and
perspectives can clearly be maximized by means of appropriate technological
solutions.12

Nonetheless, as just remarked, it is evident that –even in principle– the
information agents are able to collect cannot be exhaustive if they operate
in realistic environments. This leads to what we will be calling incomplete

10Unlike “abstract”, in the context of our study, “theoretical” will essentially mean
“logical-mathematical”.

11We do not distinguish here between the (slightly different) notions of “rationality”
and “commonsense”.

12A point closely related to the latter has been investigated within the context of näıve
geography to which our approach is compared in section 3.3.
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knowledge-bases. For the present we take the latter to mean that there
is some aspect of the agent’s environment which is not represented in the
agent’s knowledge base. Such an issue cannot be solved by means of im-
proving, say the perceptual processes of the agent itself. Rather, what is
needed, in order for the GIS to make the most of the available information,
is a clear understanding of what sort of constraints that should be imposed
on the agent’s reasoning function so as to allow it to draw commonsensical
conclusions given its incomplete knowledge base.

Having said that, still one might be inclined to think that such imperfect
knowledge-bases might amount to incomplete yet accurate (i.e. crisp) rep-
resentations of the agents’ environment(s). Due to the intrinsic granularity
of measuring however, this does not turn out to be the case.13 In a nut-
shell, the problem of granularity consists in the fact that when measuring
say, in the case of marine GIS through water devices, agents transform es-
sentially continuous entities into essentially discrete representations. This,
in general, affects the representation of spatio-temporal relations, leading to
the phenomenon of vagueness. The implications of incomplete and vague
knowledge bases are described in more details in section 4, whereas in sec-
tion 6.2 we focus on one particularly important case of incomplete knowledge
bases leading to background ignorance.

The imperfection which originates as a byproduct of data acquisition
clearly interferes with the subsequent manipulation of the stored represen-
tations. Therefore the imperfection which is so ‘inherited’ affects the capa-
bility that agents have of drawing conclusions from their knowledge bases,
like e.g. planning some appropriate actions or answering some particular
queries.

We have briefly pointed out above that although they might enable bet-
ter performances on the whole, technological solutions cannot annihilate
such interferences: Due to the presence of agent-independent constraints,
this cannot be the case, even in principle. Therefore, we claim, in order for
GIS-agents to overcome the difficulties in handling such imperfect knowledge
bases, they have to satisfy some commonsense constraints. Acknowledging
the inevitability of imperfect information, our proposal suggests understand-
ing how imperfect information can be managed by means of commonsensical
reasoning.

3.2 The need for theoretical solutions

Consider again the problems related to sensing and measuring. Their neg-
ative effects –i.e. the amount of imperfection generated– can be reduced by
means of suitable hardware/software solutions. For example the range of
data and the amount of details acquired crucially depends on the nature of

13Notice also that in normal circumstances sensing will also lead to inaccurate repre-
sentations due to various forms of noise.
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sensors: the more efficient the sensors, the less the imperfection generated
by them.14

To see why technological improvements cannot guarantee the required
solution to the problem of imperfect information management we need to
focus on the nature of realistic environments. Let’s focus, for the time being,
on marine environments (a proper case study concerning terrestrial GIS is
discussed in section 5). Of particular interest for our purposes is to notice
that any portion of marine environment corresponds to a inhomogeneous and
proactive environment. Marine environments are inhomogeneous to the
extent that the behaviour on the shoreline is considerably different from the
one on open sea, with respect to, say, marine currents. Of a similar nature
is the problem constituted by temperature fronts, that is to say areas where
a significant change of temperature is recorded within tiny distances. Thus
the inhomogeneity of marine environments gives rise to the phenomenon of
context dependent information, that is to say, information pertinent
to a specific marine area may not be adequate for other –even ‘similar’, in
the case of fronts– areas. Of course, the fact that marine information is
essentially layered adds in further variables.15

On the other hand, proactiveness captures the fact that marine envi-
ronments change over time independently of agents’ actions in a way that
agents cannot, in general, predict. Thus, proactiveness is much stronger
than dynamism. Proactiveness clearly makes any knowledge base whatso-
ever imperfect to the extent it puts the agent in a condition that we’ll be
calling background ignorance: at any point in time the agent cannot be
taken to have complete information about its environment. As discussed
later on, the phenomenon of background ignorance is to be found in any
(marine or terrestrial) applications of GIS.

Let us put to work what has been said so far. By means of briefly an-
alyzing the GIS tasks it emerged that there are essentially two possibilities
in order to cope with imperfect information in GIS: either by improving
the mechanisms of data acquisition/representation –and this, we have sug-
gested, would essentially remain within the domain of GIS technology– or
by isolating constraints that would enable commonsensical reasoning in GIS.
The existence of agent-independent sources of imperfection, however, rules
out the former as a satisfactory –in terms of generality– solution to our main
problem. This clearly leaves open to us only the latter option.

14Similar remarks apply to the representation of geographical information. In this con-
text, an early typical example is given by the raster vs.vector debate with respect to models
for continuous surface-data.

15Normally such further variables correspond to : satellite data, marine current data,
bathymetric data and sea floor data. Such an essentially layered structure of data acquisi-
tion on marine GIS, that is to say the fact that information is distributed through space,
very naturally suggests a multi-agent approach to GIS-agents.
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3.3 GIS and common sense: the Näıve Geography approach

Those pointed out above are not the only reasons for imposing commonsense
constraints on GIS-agents overall behaviour. With respect to its main goal
–enabling commonsense reasoning in GIS– the näıve geography approach [10]
is indeed notably close to the perspective we are suggesting in the present
study, though the motivations underlying the näıve geography programme
are somehow different.

Näıve geography is defined as the “the body of knowledge that people
have about the surrounding geographical world” [10]. The main motivation
for the formalization (and hence the implementation) of “näıve geographic
knowledge” consists in allowing non specifically trained people to make the
most of their interaction with geographic information systems. We now
focus on the most important (in our view) commonalities while postponing
further discussion on the differences until the end of this section.

Spatial and temporal reasoning A cornerstone of the framework we are
suggesting consists in taking GIS to be autonomous agents, that is to
say, spatially and temporally embodied entities. Spatial and temporal
reasoning, on the other hand, are “central to näıve geography”[10].
Notice, however, that we have not directly argued for specific spa-
tio/temporal constraints for commonsensical GIS. Rather we have
limited ourselves to notice that –already at a purely abstract level–
taking GIS as (multi)agent systems is sufficient to bring spatially and
temporally embedded reasoning into the picture. Recall, from sec-
tion 3.2, that without agents’ reasoning being temporal no notion of
proactiveness could make sense, pretty much in the same way no is-
sue of context-dependence can arise in non-spatial reasoning. It must
be stressed that spatio/temporal reasoning enters explicitly into the
picture only by means of appropriate formal constraints.

Realistic environments The fact that GIS-agents are embedded in re-
alistic environments constitutes a key assumption underpinning our
framework. We have seen before how this, combined with their nec-
essary physical limitations, results in agents being able to perceive a
limited number of objects from a limited number of different perspec-
tives. Those are precisely the features that characterize “geographic
space” in the näıve geography approach.

Qualitative reasoning We have paid particular attention to the phenomenon
of background ignorance stressing that it corresponds, by and large,
to the usual epistemic or informational state of the agent. Although
this is a topic for the next sections, it is appropriate to recall here that
a very similar concern is put forward in the näıve geography approach
through the notion of “qualitative reasoning”:
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In qualitative reasoning a situation is characterized by vari-
ables that can only take a small, predetermined number of
values and inference rules that use these values in lieu of
numerical quantities approximating them. Qualitative rea-
soning enables one to deal with partial information, which
is particularly important for spatial applications when only
incomplete data sets are available [10] .

We conclude this section by considering some significant differences be-
tween our approach and the one developed in the context of näıve geography.
In the formalization of geographical commonsense reasoning as proposed by
the latter, geographical space is two-dimensional. In the general context
of GIS (including marine ones) however, this cannot be the case. Indeed
–as we have stressed above– marine space is extremely inhomogeneous re-
quiring a fortiori GIS-agents to make sense of both partial and contextual
information. Related to the original motivations is the second main point of
divergence. By aiming at making easier the deployment of GIS technologies
by non-experts, näıve geography is focussed on human-machine interaction
to an extent that approach is not.

4 Characterizing imperfect information manage-
ment

Unfortunately, acknowledging a tight interaction between GIS and uncertain
reasoning research does not provide the former with a dried and cut account
of what it is to manage imperfect information. To-date, it is by and large
impossible to satisfactorily represent all the interesting features of reasoning
under imperfect information within a unique mathematical framework. This
in not to say, however, that no feature at all can be captured. It is precisely in
this spirit that we focus on rational/commonsensical constraints on agents’
reasoning.

We have seen above that reasoning about (and hence acting upon) geo-
graphic domains already requires the ability to face background ignorance,
context-dependency and vagueness. The purpose of this section is to inves-
tigate the sort of formal constraints that GIS-agents need satisfy if they are
to exhibit commonsense. We propose the following slogan:

Commonsensical GIS-agents must be able to implement
nonmonotonic and fuzzy reasoning.

We now briefly discuss why this has to be the case and then move on to
focussing on the management of background ignorance.
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4.1 Managing background ignorance: nonmonotonic reason-
ing

The discussion of section 3.2 lead us to the conclusion that if we are to model
commonsensical GIS-agents, then we ought to account for the phenomenon
of background ignorance. This must be the case since the proactiveness
of marine environments implies that at no point in time, will the agent’s
knowledge base ever be complete.16

Classical logic is monotonic to the extent that the conclusions that can
be drawn from a given set of premisses have to be valid at any time and
in any place where at least such premisses hold. This means that nothing
the agent might be in a position to learn afterwards can affect the (logi-
cal) status of such conclusions. Put very loosely (and somehow circularly)
monotonic reasoning can never lead to the revision of an agent’s knowledge
base. Straightforwardly, this cannot be a desirable pattern of reasoning for
GIS-agents.17

Therefore it is easily seen that abstract models of GIS with commonsense
cannot be provided by means of monotonic logical systems. Different ways
of getting rid of this undesirable form of reasoning have given rise to different
formal approaches to nonmonotonic reasoning.

The first formal account of a type of nonmonotonic reasoning was given
in Reiter’s [42] where the so-called “close world assumption” is introduced.18

According to it, the agent is allowed to draw conclusions as if it had complete
knowledge of the world with the proviso that the agent must withdraw those
very conclusions in the case it acquires new information contradicting it.
This idea culminated in the formalization of Default Logic [43].

Since the first steps a tremendous number of logical systems rejecting
(unconstrained) monotonicity has arisen (see [2] for a recent comprehen-
sive survey and [7] for a computationally-oriented account of the main ‘sur-
vivors’). Therefore we cannot properly speak of a single nonmonotonic logic,
but we should consider it as a family of logics. The approach based on con-
sequence relations, pursued by [13, 27, 24] makes rather transparent the
reciprocal relations between such distinct systems, hence qualifying it as
a suitable framework for investigating commonsensical constraints on GIS-
agents.19

16Similarly, we have seen that the essentially layered nature of marine information,
together with the particular phenomenon of temperature fronts, imply the context-
dependency of agents’ knowledge bases.

17Immunity to new information is only compatible with omniscient agents or absolutely
stable environments, neither of which is compatible with the underlying notion of GIS-
agents.

18It is perhaps more than a curious historical accident the fact that after Aristotle, the
interest in qualitative nonmonotonic forms of reasoning was revived by issues in the theory
of databases.

19Recent mathematical developments, like [11, 22, 18], show the inevitability of non-
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Nonmonotonicity is also required for dealing with property-inheritance
in inhomogeneous environments. As discussed above, context-depending in-
formation, as the result of say, temperature fronts, is likely to make the
inheritance of some properties undesirable. The problem of blocking unde-
sirable inheritance has been extensively treated in the early literature on
nonmonotonic reasoning (see, e.g.[14]).

4.2 Managing vagueness: fuzzy reasoning

Space and time are obviously critical issues to be accounted for when mod-
elling GIS-agents’ reasoning. One of the difficulties they generate in mod-
elling geographic reasoning is that they correspond to non-discrete entities.

Representing information about non-discrete (or equivalently, continu-
ous) entities typically gives rise to vague statements. One example which
has been studied in the GIS perspective is the nearness relation [52, 9]. It
clearly follows that GIS-agents with commonsense must be able to deal with
relations such as the nearness one. This is even more compelling if we agree
with the programme of näıve geography, and we seek for an easier non-
expert- human/GIS interaction.

In order to better appreciate the requirement of “fuzziness” for common-
sensical GIS we need to recall that the main consequence of vagueness is the
impossibility of defining truth values without generating paradoxes like for
example, the most famous Sorites one. Put the other way round, the only
way for determining the truth value of a vague statement (i.e. a statement
involving a vague predicate or relation) is that of allowing (possibly infinitely
many) degrees of truth in place of the standard binary values. Back in the
20’s Lukasiewicz provided the first suggestions for devising logical systems
capable of making sense of degrees of truth, or equivalently, many-valued
logics.20

The topic of many-valued logics had a tremendous revival in the mid-
Sixties essentially due to Zadeh’s introduction of the notion of fuzzy set,
in his seminal [54]21. Zadeh’s work has given rise to a fairly big number
of formal approaches for modelling fuzziness the most well-studied among
them being the domain of possibility measures (see, e.g. [8] for a survey).

monotonic reasoning in the characterization of rational reasoning under imperfect infor-
mation.

20Notice that, pretty much for the same reasons given above for nonmonotonic logics,
we speak of a family of many-valued logics, rather than a single many-valued logic. This
essentially depends on the fact that there are slightly distinct ways in which the notion of
degree of truth can be captured. See [1] for a discussion on that.

21The enthusiasm of the early days contributed to the rather rhapsodic development
of the subject. See [17] for a brief yet compelling conceptual review, and [16, 1] for
the advanced mathematical details with respect to the formalization of reasoning under
vagueness.
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4.3 Qualitative vs. quantitative approaches

When it comes to formal theories of reasoning under imperfect informa-
tion, the debate arises about which side of the great divide better serves
the purposes of the theory. We now briefly deal with the issue by address-
ing the following question: What sort of conceptual difference mirrors the
distinction between qualitative and quantitative methods?

We first distinguish between problems which are essentially quantitative
and those which are not. It is clear that if we are dealing with an essentially
quantitative problem, no debate can reasonably arise: only quantitative so-
lutions can be adequate. A case in point is given by many-valued semantics.
It is clearly quantitative to the extent its intended goal –as remarked just
above– is that of capturing the notion of “degrees of truth”, which is clearly
a genuinely quantitative issue.

A case in which the problem is not necessarily quantitative is that of char-
acterizing agents’ belief-formation, that is to say –in our present context–
characterizing the kind of flexible and sensible reasoning we expect from
commonsensical GIS-agents. The point is better illustrated by means of an
example.

Let us consider Pearl’s at al. ε−semantics. In a nutshell, ε-semantics
uses infinitesimal probabilities to give meaning to default rules.22 In other
words, defaults like “θ typically implies φ” are taken to hold just if the
probability of the corresponding conditional (“φ given θ”) is infinitesimally
close to 1. Now, despite using numbers23, ε−semantics clearly captures a
qualitative aspect of reasoning under imperfect information. This follows
from the fact that the expressive power of ε−semantics does not go beyond
what the agent takes to be “extremely probable”. Put in other words, if we
interpret ε−semantics as giving a formal meaning to agents’ beliefs, then
no degrees of belief can be captured by ε−semantics. This clearly contrasts
with the case of standard Bayesian probability accounts, where there are
infinitely (actually uncountably) many values a belief function can range
over.24

Thus, from this point of view, there is a purely extensional difference
between nonmonotonic reasoning and classical probabilistic reasoning and
it lies in the expressive power of their characterization of belief. Again,
this is easily seen by considering the fact that nonmonotonic reasoning can
be given a probabilistic semantics provided that no degrees of probability
values are allowed. This is nothing but an easy example showing how, in
general, qualitative reasoning can be considered to be a very special case of

22See [37] for an introductory discussion of ε-semantics in the context of Default Logic.
23A particularly unfruitful aspect of the debate consists in taking the distinction quali-

tative vs. quantitative to be mirrored by the symbolic vs. numeric one.
24See [33] for the mathematical details on the Bayesian approach and [19] for the related

epistemological issues.
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the quantitative one.
Another remark on the expressive power of formal models is appropri-

ate. In standard Bayesian models of reasoning under imperfect information,
probability values are taken to be pointed. In other words the value of a
probability (belief) function is an exact –precise– numeric value in the in-
terval [0, 1]. Giving such a numerical value, however, would not be possible
for realistic agents in a number of cases of interest. Those are the cases
in which indeed information is imprecise.25 This requirement of precision
has being relaxed in the imprecise probability model fully described in [48]
(but see also the more manageable [49]).26 The generalization to imprecise
probabilities allows the agent to manage –obviously enough– imprecise in-
formation; something neither fuzzy nor standard probabilistic quantitative
models can do.

5 Methodology in action: Maximum entropy rea-
soning for GIS

Let’s now put to work the methodological precepts discussed so far. In order
to illustrate some crucial features related to the management of uncertainty
in GIS, we’ll be drawing on a case-study on animal behaviour concerning
the Hystrix Cristata (crested porcupine) in the Natural Park of Maremma,
Tuscany [4].

The latter provides a particularly representative example, especially with
respect to the various aspects of imperfect information that feature in such
a scenario. It goes without saying, however, that our main goal here is
that of discerning, among the uncertainty-related phenomena of this case
study, those general patterns of “uncertainty” that GIS in general will almost
inevitably have to face.27

Our goal for the remainder of this paper is to show how maximum entropy
reasoning qualifies as a methodologically sound and computationally viable
solution for the management of background ignorance. The other crucial
ingredient of imperfect information management in GIS –fuzzy reasoning–
will be addressed in subsequent work.

25The difference between imprecision and vagueness might be recalled intuitively by
pointing out that whereas the former is an attribute of degrees of belief, the latter is an
attribute of degrees of truth.

26Within the REV!GIS project, the imprecise probability model is discussed in relation
with GIS in the Deliverable N. R211 covering 1 June 2000–15 May 2002.

27As hinted above, marine GIS pose, as far as uncertainty management is concerned,
more complicated and hence even more interesting theoretical problems. This, however,
must be a topic for subsequent investigations.
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5.1 Thorny queries

So let’s briefly recall the scenario from the case study (precise details can
be found in [4]). Animals are studied from collected data about them.
Data collection is performed by means of a radio tracking techniques, where
animals are provided with a radio collar and their localization is fixed at a
given time interval by means of a technique called bearing, where radio signal
emitted from fixed stations match the signal coming from the radio collar.
Each localization is called a fix and is of the form fix(Id, X,Y, T), where Id
is the identifier of the tracked animal, X,Y are the spatial coordinates and
T is the time of the bearing.

What behavioural ecologists expect to gain from the analysis of tracked
animals is essentially an accurate account of certain observed behaviours of
the porcupine in relation to its environment. As an example of such kind
of analysis, the study of the behaviour of the animal with respect to its den
play a crucial role in the overall understanding of the porcupine character-
istics. Typically, scientists will be interested in understanding what (if any)
are the preferences individuals have concerning the location of the den. Or
determine how much time is being spent in the den by the animal. Other
questions concerning the mating system can benefit from the knowledge of
individuals that share the same den. The census of the den can be done
by scientists by a technique called homing-in, that is to say they build a
database of the dens after their physical location has been ascertained (this
is possible since individuals are equipped with appropriate radio-collars).
Homing-in technique provides a localization of den almost free of errors (just
the minimal error caused by instruments or possible human mistakes) but it
is a very expensive procedure in terms of human effort. Therefore it cannot
be done more often than bi-monthly. Since animals typically change theirs
dens over time, there are some kind of gaps where the location of the den of
animals is unknown. It can easily be seen that, by the above discussion on
the various sources of imperfection in geographical information, many of the
relevant parameters will not have –in principle– crisp or otherwise “perfect”
geo-referencing. Moreover, and this is the crucial element in this example,
GIS designed for this sort of tasks need to be capable of handling what is
called background ignorance. Considering the problem of dens localization,
every inference relating certain particular individuals with their own dens
is necessarily being performed under ignorance of the possible changes that
might have taken place since the last physical measurement. The inevitabil-
ity of this type of imperfection in any reasonably complicated environment
justifies the terminology background ignorance. On a more general level,
this is perhaps the most fundamental issue in the uncertainty management
for GIS. Every “dynamic system” (whatever the actual realization, be it a
society of porcupines in their environment or a fragment of coastal terri-
tory) in fact, put agents reasoning about the system itself in a condition of
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background ignorance. GIS seen as agents, hence, must be capable of in-
ferring as much information as possible from the available (geo-referenced)
observation taking into account the fact that they are referred to a dynamic
system. This facet of imperfect information, which can be seen as a special
case of incompleteness, clearly adds to the ones relating to the granularity
and possible inconsistency of the geo-referenced data discussed above. Let
us take a short step back and point out that the formalization of geographic
uncertain reasoning requires us to distinguish between two levels which, by
and large, correspond to the familiar ones of “object-” and “meta-” level.
On the object-level, geographic information must be formalized by means
of a language capable of representing the spatio-temporal attributes of the
observed data. The product of this formalization leads to what is usually
called geo-referenced data. On the meta-level geo-referenced data is used to
yield geographical reasoning. The intrinsic imperfection of geo-referenced
information discussed above, however, requires the formal reasoning at the
meta-level to be constrained by adequate principles of reasoning under un-
certainty, and in particular under background ignorance. Since it is by far
less understood, the main focus of this paper is on formalization of the meta-
level. We are now in a position to see how the phenomenon of background
ignorance comes into the foreground in the porcupine case study and related
GIS. One non-trivial problem that behavioural ecologists ask GIS science to
help solving consists in the localization of the dens. The authors of [4]
translate this into the following

Query Given a number of known dens positions (collected by
homing-in) and animal fixes, infer the position of the dens in
periods of time when no information is available.

If we abstract from the nature of the parameters occurring in a successful
dens localization, we can see that the above query embeds a very general
pattern of what is normally called “inductive inference”.28 Put crudely,
inductive inference relies on the data possessed by the agent in order to
draw principled conclusions about as yet unobserved phenomena. And this
pattern of reasoning is where the agent perspective on GIS introduced above
becomes essential. In such a framework we can in fact understand the above
query as the following

Main Query Given that the GIS-agent possesses information
of a number of dens positions and the animal fixes, determine
the probability that the dens d1, . . . , dn will be in the locations
δi, . . . , δn

29 in periods when no information is available.
28Notice that by no means we are opposing “deduction” to “induction”, here.
29Here, clearly each δi stands for the ordered pair 〈xi, yi〉 on a bi-dimensional of space.
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Notice that the probabilistic nature of the query is extremely natural
both as a direct representation of the intrinsic uncertainty of the GIS-agent
answer and in relation to the general information provided by domain ex-
perts. Solving queries of this sort in fact, among other things, involves
deploying domain experts specific knowledge (in this case concerning the
porcupine’s “den behaviour”) to construct a reliable hypothesis that can
accommodate the possible changes occurring within the dynamic system.
But domain specific knowledge cannot be taken to be “perfect” or otherwise
“certain” knowledge. Rather it is best represented in probabilistic form. So,
for example, the conjecture that

“the main activity of porcupines during the time spent outside the day is
feeding” [4]

can be informatively represented by

ω(feeding | outside−den) = 0.8, (1)

where ω is a probability function (the precise details of the representation
are discussed below). Within this framework it is reasonable to require
that an adequate solution to our query should provide “the most accurate”
probability evaluation consistent both with the information possessed by
the GIS-agent and with the domain expert general hypotheses. The crux of
this requirement is clearly to characterize formally what we mean by “the
most accurate” evaluation. A natural way of doing so consists in requiring
that the construction of the probability assignment (i.e. the solution to the
probabilistic query) should, while satisfying the consistency requirements,
introduce as few arbitrary information as possible, that is to say informa-
tion that goes beyond the collected data and the domain-expert evaluations.
From a mathematical (information-theoretical) point of view this require-
ment amounts to maximizing the entropy of the solution. The remaining
part of this work is aimed at introducing and discussing the relevance of
maximum entropy inference with respect to the management of background
inference as well as the computational and implementational aspects of the
resulting inferential system.

6 Maximum entropy inference

We start by recalling briefly some of the main motivations30 underlying
maximum entropy inference, with particular reference to our underlying
problem.

30There is an extremely rich literature on maximum entropy in uncertain reasoning.
An accessible introduction for the non-specialist is [34] whereas for more presentations
[33, 36, 22]. The latter works provide also extensive references to the relevant literature.
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We have already remarked that a feature of imperfection in geo-referenced
information that we should constantly expect, is related to the periodicity of
relevant measurements. Although this feature arises essentially from prag-
matic concerns like, e.g. the cost of obtaining and recording relevant data,
it must be stressed that there is virtually no way around this source of
imperfection of information, no matter how efficient our measurement and
recording methods are. For this reason we have suggested the terminology
“background ignorance”.

The most peculiar feature of background ignorance consists simply in
the fact that independently of the accuracy of our previous information, the
available data cannot be taken to be either complete or certain. Hence,
statements which are conditional on such data cannot be expected to hold
with no exception. Maximum entropy inference not only allows us to de-
fine meaningful notions of logical consequence for dealing with background
ignorance; it also admits of extremely robust methodological justifications
which are tied-up by principles of rational reasoning.

The latter is clearly a fundamental requirement in a framework in which
GIS as taken as “reasoners”, that is to say, agents. We have seen, in fact, that
talk about the management of uncertainty implies considering Geographic
Information Systems as agents which, among others, have the capability of
manipulating geo-referenced and then of solving queries solely on the basis
of such information.31 Construing GISs in this way allows us to discuss
them from an abstract, logical perspective. So we consider a GIS as an
agent which, as far as its reasoning capabilities are concerned, is formally
characterized by means of an appropriate inference process. The particular
instance of inference process, discussed below in section 6.4, is given by
probabilistic logic programs under maximum entropy.

6.1 Knowledge representation

Knowledge32 is represented probabilistically in the framework under discus-
sion. More precisely we consider agents’ knowledge to be represented by
means of a finite set of (linear) constraints on agents’ subjective degrees of
probability. It is important to stress the subjective component to the extent
that we are discussing here of GIS as agents whose task consists in the ma-
nipulation of geo-referenced data. Knowledge being encoded by subjective
degrees of probability means just that agents’ answers are expected to be
based only the information available to the agent itself, with the explicit

31In doing so we implicitly separate the problem of modelling reasoning from the problem
of acquiring information. Although the latter is of fundamental importance in GIS science,
it goes beyond the scope of this work.

32Since our main focus is on GIS-agents we presume no distinction here between knowl-
edge, information, data, the preference of one expression over the others being justified
only on the grounds of intuitive understanding.
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assumption that is all the knowledge possessed by the agent.33

In order to see how this could be captured and hence applied for the
solution of our Main Query, we need a bit of formal setting-up which we
take from [33].

6.2 The ME inference process

Let SL be the set of sentences (denoted by θ, φ, etc.) of a finite propositional
language L = {p1, . . . , pn} and let G be our GIS-agent. Then we let KG, or
simply K (if we are interested in just one GIS-agent) denote the probabilistic
knowledge possessed by G at a fixed point in time. We can conveniently
think of K as a finite set of conditional constraints of the form:

ω(θ | φ) = x, (2)

where ω is a probability function34 on SL, and x ∈ [0, 1]. Note that uncon-
ditional constraints are obtained by taking the conditioning sentence (φ) to
be any tautology. Moreover we assume, mainly for the sake of simplicity,
that ω(φ) > 0.

An Inference Process on L then, is defined as a function N such that,
for K a consistent finite set of linear constraints of the form ω(θj | φj) = xi,
with xi ∈ [0, 1], N(K) is a probability function ω on SL satisfying K.

We can see how the definition of an inference process translates formally
the consistency requirements pointed put above for the solution of the Main
Query. It should be noted that, from the representational point of view,
there is no qualitative difference between the data possessed by the agent and
the domain-specific knowledge supplied by the expert (in the porcupine case
the behavioural ecologist), but only the quantitative difference that arises
from the (subjective) degrees of belief. This is why it makes perfect sense to
consider both sources of knowledge as defining the constraints against which
the consistency of the solution should be checked.

Given a finite consistent set of constraints K however, there will be many
(indeed infinitely-many) formally consistent ways of extending the informa-
tion possessed by a GIS-agent to the query at hand. What is needed then, is
a principled way of discarding those solutions that though logically consis-
tent, would nonetheless turn out to be “non-optimal”. This is obtained by

33In the mathematical literature this entirely straightforward –yet sometimes
overlooked– principle is so fundamental that it has been given a name of its own: the
Watts Assumption [33].

34Recall that a function ω : SL → [0, 1] is a probability function if ω(θ) ≥ 0 ∀θ ∈ SL
and the following are satisfied:

If |= θ then ω(θ) = 1 (P1)

If 6|= (θ ∧ φ) then ω(θ ∨ φ) = ω(θ) + ω(φ). (P2)
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identifying the solution to our query with the Maximum Entropy Inference
Process which, for K as above, is that unique probability function N (ME)(K)
consistent with K and for which the Shannon-entropy

−
J∑

i=1

xi log xi (3)

is maximal.35

Shannon-entropy [47] is a measure of the “uncertainty of information”
so that it maximization leads to an inference process that introduces as
few arbitrary information as possible, where arbitrary loosely means “de-
parting from what is given in K”.36 We can now see how the maximum
entropy inference process captures formally the two intuitive constraints on
the solution of our Main Query above.

There are many logical-mathematical realizations of maximum entropy
inference processes. A particularly interesting one being, as far as our Main
Query is concerned, the framework of probabilistic logic programming un-
der maximum entropy recently investigated by G. Kern-Discerner and T.
Lukasiewicz [23]. Although we are only interested here in laying down the
main conceptual issues concerning the relevance of the maximum entropy in-
ference process to the management of imperfect information in GIS science,
we will say something about the consequence relations defined by such a
logic programming-based approach below. In light of the logic programming-
based formulation of the maximum entropy inference process, we will some-
times refer to the finite set of consistent linear constraints K as a consistent
probabilistic logic program.37

Before doing so, however, let’s focus on the key properties satisfied by
N (ME)(K).

6.3 Properties of ME inference processes

The crucial result in this area is that N (ME)(K) is the only inference process
which satisfies (along with the consistency requirements introduced above)
a number of rationality principles on the determination of subjective degrees
of probability.38 We discuss here two of them which happen to be directly
related to our main problem, namely Irrelevance and Obstinacy.

35Notice that we identifying here the probabilistic constraints i ∈ J with their values.
See, e.g., chapter 2 of [33] for precise details on the representation of probability functions.
Notice also that by the usual convention, log 0 = 0.

36We refer the interested reader to [33, 21] for the mathematical analysis of Shannon’s
measure of uncertainty

37Precise details can be found in [26] and [23].
38See chapter 7 of [33] and [34] for the case in which K is a finite set of linear constraints.

[36] extends the discussion to the case of non-linear constraints.
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The intuitive idea underlying the former can be described by saying that
each query determines a “range of relevance” in such a way that information
outside this range should not take part to the solution of the query itself.
Suppose, for instance, that the GIS-agent is facing a query concerning the
localization of one particular den. It would be irrational for the agent to
build the solution to such a query on top of its information regarding say
the proportion of male researchers in the Italian Research Council. In other
words, a solution based on the latter would be considered to be fallacious
(i.e. unjustified) on the grounds of its irrelevance. Moreover, if we allowed
GIS-agents to work out solutions to queries irrespectively of the relevance
of the constraints being used, the computational task of solving the query
will almost inevitably suffer an unmotivated increase in complexity.

Characterizing what (ir)relevance is in all its subtleties corresponds, to a
large extent, to resolving one of the hardest problems in the formalization of
intelligent behaviour.39 The maximum entropy inference processes however,
satisfies a very natural formalization of relevance for finite sets of consistent
linear constraints. It is formulated as follows:

If K1 and K2 are finite consistent sets of linear constraints in L,
θ ∈ SL but no propositional variable appearing in θ or in K1

appears also in K2, then

N(K1 + K2)(θ) = N(K1)(θ).

Data acquisition is, under many respects, an expensive business. An
important consequence of this, as we have recalled above, is the fact that
the actual physical dens localization cannot be performed more frequently
than once every two months. This is clearly to be generalized to the whole
domain of GIS. It is therefore of the greatest importance that the process
of revising probability assignments should be constrained in such a way
as to preserve as much information as possible, that is to say by avoiding
unnecessary revisions. This is the idea underlying the principle of Obstinacy
which is captured formally as follows:

If K1 and K2 are finite consistent sets of linear constraints in L,
N(K1) satisfies K2, then

N(K1 + K2) = N(K1).

Obstinacy is a particular case of constrained monotonicity, that is to say
is a principle that constraints the enlargement of the set of premises from
which a conclusion has been previously drawn. So, for example, suppose that
for a particular den, the GIS-agent provides a solution to the Main Query.

39The issue is clearly most debated in logic-based AI. See, for instance [15, 38, 30].
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Such a solution will have the form of a probability assignment (consistent
with K) to the (relevant) sentence of SL. Now, if we expand K with a new
constraint that is already satisfied by the solution to our Main Query, then
the solution for the enlarged set of constraints should not be a revision of
the one previously obtained.

The intuition captured by Obstinacy is clearly deeply related with non-
monotonic reasoning. Indeed, as shown by [23], all the key properties of
non-monotonic consequence relations are satisfied in their framework for
probabilistic logic programming under maximum entropy.40

6.4 ME logic programming

The powerful combination of ME reasoning with logic programming results
in a theoretically very well-behaved framework for reasoning under (various
forms of) uncertainty and in particular for reasoning under background ig-
norance. Probabilistic logic programs under maximum entropy then, bridge
between the theoretical results concerning maximum entropy inference pro-
cesses and the corresponding computational logic (the full formal details can
be found in [26, 23]).

We just stress here that section 5 of [23] discusses in depth the relation
between probabilistic logic programming under maximum entropy and the
normative properties of nonmonotonic consequence relations. It is shown
that, among other properties the former satisfy the rules/conditions for the
theory of Rational Consequence Relations which (possibly in its restriction
to the theory of Preferential Consequence Relations) is regarded as capturing
the “core aspects” of nonmonotonic reasoning (see, e.g. [24, 25, 22]).41

Notice that in framework investigated by Kern-Isberner and Lukasiewicz,
probabilistic logic programs are (finite) collections of clauses of the form

ω(θ | φ) = [l, u],

where l, u ∈ [0, 1] stand for the lower and upper bounds of the probability
assignment. A practically important consequence of this for GIS science
is that domain experts are allowed to provide interval-valued rather than
pointed-valued probability assessments.

7 Implementing maximum entropy inference

Despite the numerous arguments in favour of reasoning under maximum
entropy, there is still a theoretical issue that might discourage AI practi-

40For another aspect of the connection between non-monotonic reasoning and maximum
entropy see [18].

41It is worth recalling that the theory of Rational Consequence Relations is both formally
and conceptually closely related to the standard AGM paradigm for belief revision. See
[45] for an extensive discussion on this.
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tioners.42 Unsurprisingly, this is computational complexity. As proven in
chapter 10 of [33], in fact, the following problems are in general infeasible:

i. Checking the satisfiability of a set of linear constraints K;

ii. Given a satisfiable set of constraints K and θ ∈ SL computing an
approximation for ω(θ) consistent with K.

Recent developments on the computational techniques for maximum en-
tropy reasoning, however, provide good evidence for the claim that –in many
practical circumstances– ME reasoning is indeed feasible.

The expert system shell SPIRIT43, for instance, provides an efficient
computational engine for the solution of such problems. The key factor
on which SPIRIT relies in order to optimize the complexity of ME rea-
soning is the construction of a dependency-graph for the problem at hand.
Roughly,44 this involves firstly, introducing a (distinct) vertex for each (dis-
tinct) propositional variable occurring in the probabilistic logic program
under consideration and secondly, connecting any two vertices such that the
corresponding propositional variables appear in the same constraint in K.
The dependency-graph is then used to the effect that the actual probability
evaluation is performed on it rather than on the set of all possible atoms.45

Once the constraints have been met, the maximum entropy distribution is
immediately propagated to the queries, providing the required solution.46

8 Conclusions and future research

This paper suggests a new framework for GIS research. The key method-
ological precept consists in viewing GIS as agents who possess their own
knowledge (independently of how information is acquired) and are expected
(say by humans or other agents) to make the most out of it. This is the only
scenario in which talk of uncertainty in GIS can make full sense.

Managing imperfect information, we have suggested, requires a robust
methodological framework. We propose here coupling GIS research with
some prominent logical-mathematical theories of reasoning under uncer-
tainty. In our framework this is the key part of a divide et impera plan: We
have distinguished between agent-dependent and agent-independent sources
of imperfect information and then illustrated how the latter can only be
accounted for by a logical-mathematical framework. The vastity of the do-
main of imperfect information, however, requires us to refine our framework

42See [35] for a survey of the common criticisms raised against maximum entropy rea-
soning.

43Available at http://www.fernuni-hagen.de/BWLOR/spirithome.html
44See [31] and the references therein for precise details.
45If the constraints are all logically independent, then the probability evaluation must

be performed on all the 2n possible atoms, where n is the cardinality of L.
46See [31, 44] for precise details on SPIRIT.
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further. To this effect we propose distinguishing between the phenomena of
background ignorance and granularity of information.

After setting-up the conceptual framework we’ve tackled the problem
of constructing a logical-mathematical bridge between the methodological
requirements on GIS-agents and a computational realization of them. We
have argued for the appropriateness of maximum entropy logic program-
ming to provides such a link. Maximum entropy inference processes lie at
the heart of uncertain reasoning. Computational logic connects it very nat-
urally with Belief Revision. It is deeply connected with the formalization of
Common-sense by means of methodological normative principles for belief
formation and more generally “inductive inference”. This clearly has a bear-
ing on the näıve geography programme (especially with respect to providing
“commonsensical interaction” with GISs). Inconsistency handling is another
important feature that is addressed by means of the computational treat-
ment of maximum entropy reasoning, as provided by the shell SPIRIT. A
traditionally hard problem for information systems and databases in general,
in fact, is given by the spectre of inconsistency. Under classical reasoning
even a single inconsistency is enough to cause the trivialization of the en-
tire information possessed. Potential inconsistency can be measured by the
maxent computational shell SPIRIT.

This study is part of a much larger project. Although maximum entropy
logic programming can be extended to handle probability intervals, its rela-
tions with many-valued and fuzzy reasoning is still very much terra icognita.
47 Further research is then to be focussed on the formal investigation of the
adaptation of maximum entropy logic programming to geo-referenced data
and in particular on its relation with logic programming paradigms like Mu-
TACLP [28].
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