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Abstract

An improved radial particle-in-cell model of an annular Hall effect thruster discharge with seconday-
electron emission from the walls and a radial magnetic field is presented. New algorithms are implemented:
first, to adjust the mean neutral density to a desired mean plasma density; second, to avoid refreshing of
axially accelerated particles; and third, to weigh correctly low density populations (such as secondary elec-
trons). High-energy tails of the velocity distribution functions of primary electrons and secondary electrons
from each wall are largely depleted, leading to temperature anisotropies for each species. Secondary elec-
tron populations are found to be partially recollected partially thermalized into the primary population. A
replenishment ratio of the primary high-energy tail is determined based on the sheath potential fall. Sig-
nificant asymmetries at inner and outer walls are found for the collected currents, the mean impact energy,
the wall and sheath potentials, the two beams of secondary electrons. Radial profiles in the plasma bulk
are asymmetric too, due to a combination of the geometric expansion, the magnetic mirror effect, and the
centrifugal force (emanating from the E × B drift). Temperature anisotropy and non-uniformity, and the
centrifugal force modify the classical Boltzmann-Maxwell relation on electrons along the magnetic lines.

1 Introduction

The Hall effect thruster (HET) [1–3] is a mature technology, already widely and successfully used as both
primary and secondary propulsion system for a variety of space missions. In spite of its success, relevant physical
phenomena of the plasma discharge inside the HET chamber and in its near plume are insufficiently known.
This shortage drags out the development of new designs for new applications (for instance at low or high powers)
and optimization of existing ones. Also, it blocks the development of reliable and predictive simulation tools,
which are considered essential, not only for design purposes, but also for accelerating tests of lifetime and of
operation at different conditions (e.g. high thrust and high specific impulse).

One of the main open problems is the effects of the plasma interaction with the walls of the thruster chamber
on the electron velocity distribution function (VDF) and the subsequent energy losses and plasma recombination
there. Due to the electric potential structure, electrons are a confined population except for the small currents
that flow to the walls or downstream forming the plasma jet. This confinement would facilitate the electron
thermalization, but the low collisionality of the discharge (at plasma densities of 1017-1018m−3) makes that the
VDF tails of electrons collected by the walls are not fully replenished, and hence the VDF is non-Maxwellian. A
second issue, particularly acute for the ceramics used in HET chambers, is the large secondary electron emission
(SEE) caused by impact of ’primary’ electrons from the plasma bulk. This generates counterstreaming flows of
secondary electrons [4–6] making further non-Maxwellian the VDF.

Ahedo and Parra [7] considered a one-dimensional planar (1Dp) stationary fluid model to analyze the plausi-
ble case where the SEE was partially trapped within the plasma bulk (and eventually thermalized) and partially
recollected by the walls; they determined the effects of partial recollection on the potential fall in the sheaths
(and its charge saturation) and on the energy flows to the walls. Later, Ahedo and dePablo [8] extended the
analysis to partial thermalization of both primary and secondary electrons with a 1Dp stationary kinetic model,
describing the non-Maxwellian VDF and the SEE yields with phenomenological parameters; they obtained
analytical expressions for the sheath potential fall and the energy losses to the walls, in terms of the model
parameters.

Sydorenko, Kaganovich, and coworkers [9,10] treated a similar time-dependent 1Dp problem with a Particle-
in-cell(PIC)/Monte-Carlo-Collision(MCC) formulation [11, 12]. Using a fixed background of neutrals, their
steady-state solution confirmed the partial recollection of SEE at the walls and, more importantly, determined
the temperature anisotropy ratio of the VDF, in terms of the axial electric field, collisional frequencies, and SEE
yields; interestingly, the near-wall conductivity effect [13] in the axial electron current was observed too. More
recently, Wang et al. [14] investigated, with a similar 1Dp PIC/MCC model, the asymmetries in the electric
potential profile and sheath potential falls caused by having different SEE yields at each wall (i.e. different
materials).

Taccogna et al. [15–17] considered a 1D-radial (1Dr) PIC/MCC model, much more suitable to simulate a HET
annular chamber and where the asymmetry on the electric potential profile takes place naturally. The emphasis
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of these works is on the development of a strong asymmetry and a saturated stream instability propagating all
along the radial domain, in conditions where a large axial electric field induces an azimuthal electron drift of
the order of the electron thermal speed.

This paper revisits the model and code of Taccogna with two types of goals. The first one is to enrich the
numerical consistency and capabilities of the code and, at the same time, to analyze the intrinsic limitations of
1Dp and 1Dr models. To this respect and even assuming azimuthal symmetry (i.e. ∂/∂θ = 0) the reduction
of an axilsymmetric (r, z) discharge to a given axial section of the chamber implies that strong assumptions
must be made on all terms related to the axial plasma flows and forces. As a consequence, there is a certain
degree on arbitrariness on the 1D results, that cannot be let aside when drawing conclusions. The second goal
of the paper is to investigate further the steady-state solution (without stream instabilities) with the focus
on assessing the temperature anisotropy ratio of the VDF of both primary and secondary electrons, combined
with the asymmetries introduced by the cylindrical geometry (which includes geometrical expansion, centrifugal
forces, and magnetic mirror effects). Finally, the influence of anisotropy and asymmetry in macroscopic laws of
interest is investigated.

The rest of the paper is organized as follows. The main physical aspects of the model are presented in Sec.
2, while Sec. 3 includes the numerical implementation and the validation of the new algorithms. A discussion
of the main physical aspects of the plasma discharge is provided in Sec. 4. Conclusions are drawn on Sec. 5.

2 The 1D radial model

The model attempts to analyze the plasma radial structure at a given axial location within the acceleration
region of a HET chamber, taking into consideration the weak plasma collisionality and the SEE emission from
the walls due to impacts of energetic primary electrons. Figure 1 sketches the annular HET chamber with r1
and r2 as inner and outer radius, respectively; A = π(r22 − r21) is the area of the section and, when convenient,
magnitudes are expressed per unit of axial length.

The 1Dr model considers electrons e, (singly-charged) ions i, and neutrals n. Neutrals are modeled just as a
spatially-uniform population with a time-dependent density nn(t) and a constant temperature Tn. Electrons and
ions are modelled as two populations of macroparticles with densities and temperatures, nj and Tj (j = i, e),
evolving with (r, t). Let be n̄e(t) the radially-averaged electron density and take it as representative of the
instantaneous plasma density.

We are interested in simulating a quasi-stationary discharge with a certain mean plasma density, that is
n̄e(t) ≈ n̄e(0) ≡ ne0. In a 1D model, this requires to take some decisions on the behavior of the particle sources
and sinks. In a cylindrical geometry, the conservation equations for ions and electrons reduce to

∂nj
∂t

+
1

r

∂

∂r
(rnjurj) = Sioniz + Saxial,j , j = i, e, (1)

where: njurj is the species radial flux; Sioniz is the source term due to ionization, proportional to nn(t); and
Saxial,j is the source term due to the net axial contribution for species j. In a 2D (r, z) model one would
have Saxial,j = ∂(njuzj)/∂z, but, here Saxial,j is as arbitrary as the HET axial section we are attempting to
simulate. In quasi steady-state, the integral of the continuity equation over the plasma volume (expressed in
electric current units) yields

Iwall,j ≈ Iioniz + Iaxial,j , j = i, e, (2)

with Iwall,j the species current lost into the wall, Iioniz the (equivalent) current created through volumetric
ionization (the same for electrons and singly-charged ions and proportional to nn), and Iaxial,j the current
injected (or extracted) through the axial flow. While Iwall,j(t) is obtained directly from the dynamic plasma
response, both Iioniz and Iaxial,j depend on the particular model formulation.

If nn(t) is known, then plasma variables determine completely Iioniz(t), and to simulate a stationary discharge
requires Iaxial,j ≈ Iwall,j−Iioniz. This implies a continuous injection (or extraction) of plasma from the domain,
requiring to define properties on the injected macroparticles or selection criteria for the extracted ones. We
can distinguish between axially-controlled and ionization-controlled discharges depending on whether Iaxial,j is
much larger or much smaller than Iioniz, respectively. In an axially-controlled discharge, the plasma response is
largely set by these conditions ’external’ to the radial dynamics. Previous works seem to use nn(t) = nn0 and
thus would operate in a mixed regime.

The present work implements a model for fully ionization-controlled discharge with Saxial,i = Saxial,e = 0
and nn(t) being adjusted in order that

Iioniz(t) ≈ Iwall,j(t), (3)

at any time (with some tolerance). It will be shown that adjusting nn(t) is simple and it assures that a stationary
discharge is achieved. Besides, it corresponds reasonably to the physical situation in the channel acceleration
region, where ionization and wall recombination were found to compensate each other [6].
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A 1Dr model needs also to prescribe the axial electric field Ez. This field accelerates over time the (nearly-
unmagnetized) ions, which is an undesirable secular effect on the simulation. Previous works have dealt with
this issue by resetting or refreshing occasionally the ion population. Here, it is chosen to just ignore the effect
of Ez on the ions, which can be interpreted as a continuous axial refreshing of ions. Therefore, macro-ions are
inserted initially or created later with a mean axial velocity uzi, and they are advanced only with the radial
electric field (and the magnetic field). Thus Ez affects electrons only, primarily by forcing with the magnetic
field the electron E×B azimuthal drift. In fact, a key validation of the model will be to check that there is not
a secular increase of the macroscopic axial velocities of ions and electrons.

While Ez is taken constant and known, the radial electric field, Er = −dφ/dr, with φ(r, t) the electric
potential, satisfies the Poisson equation

ε0
r

∂

∂r

(
r
∂φ

∂r

)
= ρel(r, t), (4)

with ρel the net electric charge of the plasma. The two boundary conditions required to integrate this equation
are set, for instance, at the outer wall, r = r2,

φ2 = 0 ε0Er2 = −σ2(t) (5)

where the first condition just sets a reference for the potential, ε0 is the vacuum permittivity, and σ2 is the
surface charge at the outer dielectric wall, to be defined in detail below. A similar relation on Er at r = r1 is
derived below in Eq.(9).

The magnetic field is assumed radial and, in order to be divergent-free, it satisfies

Br(r) = Br1
r1
r
, (6)

with Br1 known. Since Br2/Br1 = r1/r2 = 0.7, a noticeable mirror effect on electrons could be possible.
Turning now to plasma-wall interaction, ions and electron reaching the radial walls are collected (formally);

ion recombination is not considered explicitly since neutrals are modeled through nn(t). SEE produced by the
impacting electrons will follow the probabilistic model of Ref. 18. In this model, the total SEE yield accounts
for three different types of secondary electrons: backscattered ones (elastically reflected by the wall), re-diffused
ones (non-elastically reflected by the wall) and the so called true secondary electrons (those extracted from the
surface layers of the material). More details on the implementation of the SEE model is given in [16]. For the
present purpose of understanding better the radial discharge and electron distribution function, backscattered
and rediffused electrons are being switched off, so that SEE is limited to true secondary (TS) electrons. In
the energy range of interest, the true-secondary-only electron emission yield (i.e true-secondary-to-primary flux
ratio) reduces to

δTS(E) ' E/Ec (7)

with E the impact electron energy, and Ec the crossover energy (Ec = 51.1eV in simulations here). After
emission from the wall, true secondary electrons take first a preferential radial motion due to their rapid
acceleration by the large Er (∼ 500V/cm) within the Debye sheath. Then, they become magnetized, acquiring
the azimuthal drift and the gyromotion. Dispersion velocity of this population is due to occasional collisions.

The surface charges at each of the two material walls are created by accumulation over time of the net radial
electric current to the wall

σl(t) = −
∫
dtjl(t) · 1l, l = 1, 2, (8)

where jl is the electric current density and 1l is the wall normal pointing towards the plasma. Integration of
the Poisson equation across each of the wall surfaces yields

ε0Er2 = −σ2(t), ε0Er1 = σ1(t). (9)

The first condition was already imposed as boundary condition in Eq. (5). Consistency requires that the second
one is not an independent condition, that is be satisfied automatically. This is indeed the case since the radial
integration of the electric charge conservation and Poisson equations yield

ε0[rEr]
r2
r1 = −

∫
[rjr]

r2
r1dt. (10)

The collisional processes included in the code are the following. First, there are electron-neutral collisions
including elastic scattering, excitation and single ionization, following the models of Refs. 19–21 and using for
neutrals, nn(t) and Tn. Second, electron-ion, electron-electron and ion-ion Coulomb collisions, according to the
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models of Refs. 22–25. Ion-neutral collisions are found to be negligible for typical HET parameters. Secondary
(i.e. wall born) electrons are transferred to the main primary population (i.e. they ’thermalize’) when they
undergo a collision with neutrals or a large angle (higher than 90 degrees) Coulomb collision. Notice that, in a
kinetic or particle formulation, this distinction between ’secondary’ and ’primary’ populations is just convenient
for the analysis of the plasma response. On the contrary, that distinction acquires full sense in multi-fluid
electron models.

3 Numerical implementation and validation

The main model input parameters and resulting plasma magnitudes are listed on Table 1. The simulation
is carried out per unit of axial length, that is the simulation volume is equal to the axial section area A. A
uniform radial mesh of Nr + 1 points from r1 to r2 is chosen, with a cell size ∆r smaller than the plasma Debye
length λD. Electron and ion macro-particles have the same constant weight W throughout the simulation,
chosen so that the initial number of both electron and ion macro-particles is Np0 ≈ 105, corresponding to about
70 macro-particles per cell. It has been checked that using the double number of particles per cell reduces only
the PIC fluctuations, without changing the averaged trends.

Xenon is assumed as propellant. Plasma macroscopic properties such as particle densities and fluxes are
computed at the mesh nodes through an area weighting algorithm [26]. The nodal weighting volumes are
corrected according to Ref. 27. Higher moments of the distribution function such as the temperature are
obtained for each simulated species through a new extended volumetric weighting (EVW) approach presented
in Sec. 3.2. Additionally, surface weighting schemes [28, 29] are used for updating the particle fluxes to the
walls.

In order to obtain the electric potential at the mesh nodes, second order finite difference schemes are used for
discretizing Poisson equation along the cylindrical radial coordinate r. The Thomas tridiagonal algorithm [30]
is applied as direct solving technique. The electrons trajectories are propagated along time using both radial
and axial components of the electric field, and the radial magnetic field. In contrast, only the radial electric
field is used to update the ions’ velocity and position. The Boris-Buneman leapfrog algorithm [26] is applied
to move all macro-particles one time step forward considering the corresponding electric and magnetic fields
interpolated to the macroparticles position. The time step is chosen so that ∆t < 0.3ω−1pe , where ωpe is the
plasma frequency. This condition ensures an accurate integration of the electron gyromotion since ωpe > ωce,
with ωce the electron gyrofrequency (see Table 1).

After advancing all macro-particles every time step, a MCC module is called to perform electron-neutral
collisions including elastic scattering, excitation, and single ionization. As aforementioned, the neutral gas is
simulated as a spatially uniform background with constant temperature Tn and density nn(t). The constant
time step method of Refs. [19, 20] for selecting the type of collision is implemented using the cross sections
from Ref. 31. The probability distribution function for the progeny electrons generated by ionization is taken
from [21]. A mean axial velocity uzi is added to any new-born ion. Regarding the emission of true-secondary
electrons, a zero-drift semi-Maxwellian distribution with temperature TeW = 2eV is assumed.

In general, new simulations are initiated assuming uniform Maxwellian populations of electrons and ions of
the same density and a radially constant potential. In the first timesteps, this implies large electron currents
to the walls. These build surface charges there, that create the Debye sheaths confining electrons. The surface
charges stabilize when the net electric currents to the walls becomes zero, Eq. (8).

3.1 The discharge control algorithm

An algorithm for an ionization-controlled discharge with no axial contributions of plasma is presented here.
In principle, there would be two methods to proceed, both plotted in Fig. 2(a). The first one, used in previous
works and represented by the dashed lines, fixes the neutral density, i.e. nn(t) = nn0 and let n̄e(t) to evolve
until s final state is reached after a few microseconds (a time related to the transit time of ions). The second
method, represented by the solid lines of Fig. 2(a) and Fig. 2(b) fixes the mean plasma density in the domain,
n̄e(t) ' n̄e0, and adjusts nn(t) in order to satisfy Eq. (3).

In the first method the final plasma density is unknown and it can be very different from the initial one. For
instance, the case nn(t) = 4 ·1018m−3 starts with n̄e ≈ 8 ·1016m−3 and ends, after 25 µs, with n̄e ≈ 6 ·1015m−3,
This implies that starting with 80 macro-electrons per cell, we end with only 6 macro-electrons per cell, and
thus much worse weighted magnitudes. The advantage of the novel second method is that the number of macro-
particles does not change practically along the simulation and thus can be optimized. Besides, it seems more
preferable to fix from the beginning the mean plasma density we are targeting to, than the neutral density.

The second method is here implemented with the following ionization-controlled discharge (ICD) algorithm
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Type Description Symbol Units Value

Populations
settings

Number of elementary particles per macro-particle W - 3 · 109

Initial average plasma density ne0 1017m−3 0.8
Initial number of ions and electrons* Np0 - 106814
Initial electron temperature Te0 eV 10
Initial ion temperature Ti0 eV 1
Ion axial mean velocity uzi0 km/s 10
Initial background neutral density nn0 1017 m−3 40
Neutral temperature Tn0 K 700

E, B fields
Electric field axial component Ez V/cm 100
Magnetic field radial component at inner radius Br1 G 150

Simulation
parameters

Inner radius r1 cm 3.5
Outer radius r2 cm 5.0
Number of nodes Nr - 1500
Grid spacing* ∆r µm 10
Time step ∆t ps 5

Physical
parameters

Debye length* λD µm 83.1
Electron Larmor radius* rl µm 802.0
Inverse of plasma frequency* 1/ωpe ps 62.7
Inverse of electron cyclotron frequency* 1/ωce ps 379.1

Table 1: Main input parameters including initial population settings, externally applied fields and grid definition.
The magnitudes marked with an asterisk (*) are not input parameters of the model, but are derived from the other
parameters instead. The variables named as physical parameters are estimated from the other input values given
at initial conditions.

on neutrals. First, a tolerance is fixed for the variations of average plasma density,

εc1 = |n̄e(t)/n̄e0 − 1| (11)

(εc1 = 10−3 in the simulations here). Then, every PIC-MCC time step, both n̄e(t) and its rate of change are
computed, the last one defined as

∆n̄(k)e =
1

kc

[
n(k)e − n(k−1)e + (kc − 1)∆n̄(k−1)e

]
(12)

where (k− 1) and (k) are two subsequent instants of PIC-time and kc is a fixed number of time steps (kc = 100
in the figures here).

The neutral density for instant (k+1) is modified only if |n̄e(t)/n̄e0−1| is outside the above tolerance range,
and

|∆n̄(k)e | > εc2 (13)

with εc2 fixed (10−2 in the figures here). The reason to include a condition on the time-extended rate of change,
∆n̄e is to filter the fast oscillations and numerical noise inherent to the PIC calculations. The updated neutral
density is defined as

n(k+1)
n = n(k)n

n̄e0

n̄
(k)
e

. (14)

Figure 2(b) shows that the stationary discharge with n̄e ' 8 · 1016m−3 requires nn ≈ 6.85 · 1018m−3.
The ICD algorithm is not applied until the surface charges σj are practically stabilized after the formation

of the Debye sheaths. Figures 2(c) and 2(d) show the evolution of the surface charges and the potential at
the central point M , i.e. rM = 42.5mm. Figure 2(d) also plots the evolution for non-ICD, with nn(t) = nn0.
Observe that it takes about 1µs (∼ 2 · 105 PIC timesteps) to establish the Debye sheaths.

Figures 2(e) and 2(f) detail the time evolution of partial currents for an ICD and a non-ICD case, respectively.
The net electric current to the two walls is there split in three populations: ions impacting the two walls (Iwi),
electrons going to and impacting the walls (Iwet), and (true-secondary) electrons emitted from the walls (Iwef ).
The ICD case satisfies very well the steady-state and dielectric conditions,

Iioniz = Iwi = Iwe, Iwe ≡ Iwet − Iwef , (15)

thus validating the ICD algorithm. On the contrary, the non-ICD, satisfies well the dielectric condition but,
there is a deficit in ionization. As a consequence, the mean plasma density decreases [see Fig. 2(a)] and (with
the ion transit delay) the currents to the walls too, until the discharge seems to extinguish.
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3.2 The extended volumetric weighting algorithm

The PIC formulation operates with a constant macro-particle weight W for all the simulated species, which
simplifies the treatment of collisional processes and saves computer memory. However, it also implies that, for
each species, the number of macroparticles per cell is proportional to its density. The simulation parameters are
optimized to reproduce well the response of the main species, ions and primary electrons, with similar densities
(except inside the sheaths). But secondary electrons from the walls turn out to have a density 1-2 orders of
magnitudes lower. Thus, if there are 50-100 particles per cell for ions and primary electrons, there will be only
1-10 for secondary electrons. This leads to temporal oscillations on their density and, more importantly, to
wrong estimates of their macroscopic velocity and temperature, as it will be shown below.

This issue can be solved by extending in time the conventional volumetric weighting of particles. The
extended volumetric weighting algorithm (EVW) proposed here takes into consideration data from the last Nk
timesteps. The particle density of species j in a given node satisfies

nj =
W

Nk∆V

∑
k

∑
p

sp, (16)

where ∆V is the weighting volume associated to the node, sp is the linear weighting function assigning a
weight to each macroparticle depending on its relative position and distance to the node, the sum in p is for
all macroparticles with sp 6= 0, and the sum in k is for the timesteps. Similarly, the particle flux vector at the
same node and time is given by

gj =
W

Nk∆V

∑
k

∑
p

vpsp, (17)

with vp the particle velocity. Then, the resultant fluid velocity is uj = gj/nj .
In the same way, the diagonal components of the pressure tensor at the same node and instant are computed

as

plj =
meW

Nk∆V

∑
k

∑
p

(vlp − ulj)2sp, l = r, θ, z, (18)

and the resultant temperatures are Tlj = plj/nj .
Of course,the EVW is filtering oscillations of frequencies (Nk∆t)−1 but this is not an issue when studying

the steady-state discharge. For instance, in the simulations shown in this paper, values of Nk = 104 − 105

are taken, which correspond to 0.05-0.5µs, so even simulations of up to hundreds of kHz can be reproduced
correctly.

Figure 3 plots the azimuthal velocity and the mean temperature of the three electron species considered
hereafter: primary electrons p, and secondary electrons emitted by the inner s1 and outer s2 walls (remind that
secondary electrons become primary electrons after a large angle collision). In order to show the need and the
good performance of the EVW algorithm, these two macroscopic variables are plotted in two ways. The plotted
EVW variables correspond to

ue =

∑
k

∑
p vpsp∑

k

∑
p sp

, Te =
me

3

∑
k

∑
p |vp − ue|2sp∑
k

∑
p sp

. (19)

The conventional volumetric weighting variables (averaged over Nk timesteps, to make fairer the comparison)
correspond to

u′e =
1

Nk

∑
k

∑
p vpsp∑
p sp

, T ′e =
me

3Nk

∑
k

∑
p |vp − u′e|2sp∑

p sp
. (20)

The vertical dashed lines in Fig. 3 represent approximately the edges of the Debye sheaths, here located at
0.5mm from the wall and where the radial ion Mach number is approximately 1 [see Fig. 5(c) below]. The
definition of ’sheath edges’ in the present one-scale model is just meant for discussion purposes, since plasma
response is known to change sharply when entering the thin Debye sheaths.

In Fig. 3(a) we observe that applying the EVW, the azimuthal velocities of the three electron populations
satisfy the E × B drift. This result is particularly important to validate the simulation of the dynamics of
secondary electrons: these are born with a very small azimuthal velocity but, after crossing the sheath, they
must acquire the gyromotion and the E × B drift in a distance of about a gyrodiameter, i.e. about 1.6 mm.
It is this physical argument that suggests that the conventional weighting yields incorrect (lower) values of uθe
for secondary electrons. The reason would be that instantaneous values used in Eq. (20) are weighted over
a too small number of macroparticles. The conventional weighting behaves well on uθe for primary electrons
since enough number of macroparticles per cell are used at any timestep. For primary electrons, only within
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the sheaths we observe some discrepancy between the two weightings, due precisely to the decreasing density
(and thus number of macroparticles per cell) there.

The differences between the extended and the conventional weightings are more pronounced when computing
temperatures, since these variables measure velocity dispersions, so the double summation on particles-per-cell
(one for uj an done for Tj doubles the source of errors. In Fig. 3(b), the conventional weighting works fine for
the primary electron temperature but it again underestimates much the temperatures of secondary electrons.
Observe that it is practically zero for s1 electrons (a zero temperature is the natural value when there is only
one particle per cell).

4 Analysis of electron distribution function and dynamics

The analysis here is focused on the stationary response for an ionization-controlled discharge defined in Table
1. Table 2 compiles relevant data of the discharge that will be commented along this section together with Figs.
4 to 6.

Type and units Description Symbol Value

Electric
potentials

(V)

At the mid radius M φM 17.47
At the inner sheath edge Q1 φQ1

13.70
At the outer sheath edge Q2 φQ2

12.74
At the inner wall W1 φW1

2.27
At the outer wall W2 φW2

0.0

Collision
frequencies

(MHz)

e-n elastic collision νelen 3.680
e-n excitation collision νexen 0.209
e-n excitation collision νionen 0.168
e-i Coulomb collision νCoulei 0.076
e-e Coulomb collision νCoulee 0.017
i-i Coulomb collision νCoulii 0.119

Thermalization
and wall
collection
fractions

(%)

s1 thermalization - 63.2
s1 collection at the inner wall - 7.5
s1 collection at the outer wall - 29.3
s2 thermalization - 60.1
s2 collection at the inner wall - 28.7
s2 collection at the outer wall - 11.2

Current
densities
(A/m2)

p to the inner wall |jp,1−| 12.80
s1 to the inner wall |js1,1−| 0.17
s1 from the inner wall |js1,1+| 2.36
s2 to the inner wall |js2,1−| 2.96
p to the outer wall |jp,2+| 23.97
s1 to the outer wall |js1,2+| 0.48
s2 to the outer wall |js2,2+| 0.81
s2 from the outer wall |js2,2−| 7.23

Mean impact
energies per
elementary

particle
(eV)

e ≡ p+ s1 + s2 at the inner wall Ewe,1 8.10
p at the inner wall Ewp,1 8.50
s1 at the inner wall Ews1,1 4.06
s2 at the inner wall Ews2,1 6.59
e ≡ p+ s1 + s2 at the outer wall Ee,2 15.75
p at the outer wall Ewp,2 16.16
s1 at the outer wall Ews1,2 6.24
s2 at the outer wall Ews2,2 9.34

Electron energy
balance source
and sink terms

(W)

Electric field work Pelec 337.67
SEE energy gain Pwall,f 5.56
Wall losses Pwall,t 153.40
Inelastic collisions losses Pinel 194.30

Table 2: Main parameters characterizing the steady-state discharge. Values averaged over the last micro-second of
simulation have been used.
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Figure 4(a) plots the radial profile of the self-adjusted electric potential. Again vertical dashed lines corre-
spond to the sheaths edges. Points W1, W2, Q1, Q2, and M correspond to walls, sheath edges, and channel mid
radius, respectively. The maximum potential is located just a bit inwards of point M and is only 0.03V higher.
The asymmetry of the potential profile due to the different cylindrical effects is evident at sheath edges and
walls. The potential difference between the two sheath edges is ∆φQ1Q2

= 0.96V and between the two walls is
∆φW1W2

= 2.27V. This last one is a bit higher than the typical emission energy of secondary electrons in our
simulations, TeW = 2eV. Thus, ∆φW1W2 > 0 facilitates that electrons emitted from the wall W2 be recollected
at the wall W1. However, there are two magnetic effects that change the perpendicular energy of an electron
and therefore their radial energy and radial turning points (i.e. those with vr = 0).

Neglecting collisions, the kinetic energy of an electron of total energy E satisfies

E = me
v2r + v2⊥

2
− eφ. (21)

In the small gyromotion limit, the phase-averaged perpendicular energy, mev
2
⊥/2 is the sum of the one due to

the gyromotion (which is proportional to the conserved magnetic moment µ) and the one due to the azimuthal
E ×B drift. Thus, here the radial kinetic energy satisfies

me
v2r
2
' E + eφ− µB −Wd = E + eφ(r)− µB1

r1
r
−Wd1

r2

r21
, (22)

where Wd = meE
2
z/2B

2
r is the gyrocenter azimuthal energy, and the right-most side makes explicit the variation

of B and Wd with r; in our simulations Wd1 = 1.27eV and Wd2 = 2.58eV at inner and outer walls, respectively.
Therefore, the radial energy of an electron moving inwards is decreased by the magnetic mirror and is increased
by the change on the E × B drift. For the plotted simulation, the change on Wd is mild, but non negligible,
compared to the change of φ in the plasma bulk. Below it will be seen that this azimuthal energy remains as
part of the electron macroscopic energy/momentum balance.

Figures 4(b)-(d) show the distribution functions fr(vr) (once integrated over vθ and vz) of primary and
secondary electrons, p, s1 and s2, at points M , Q1 and Q2. Observe first that, in the plasma bulk, between Q1

and Q2, the densities of secondary electrons are much lower than the density of primary electrons, so np is going
to determine almost exclusively the electric potential profile. In each subfigure (b)-(d), the solid vertical lines
separate approximately (and in the absence of collisions) the central region of confined electrons from the left
and right regions or electrons to be collected by the inner and outer wall, respectively. These lines correspond
to the radial turning points from Eq. (22) for electrons with an average value of the gyroenergy < µB >= 9.2
eV.

Table 2 shows that Coulomb collisions are negligible compared to collisions with neutrals, but even the elastic
electron-neutral frequency, ∼ 3.7 MHz, is low compared with the transit frequency, ∼ 62MHz. This explains
that the VDFs at point M , Fig. 4(b), present a large depletion of the high-energy tails that are wall-collectable.
Figures 4(c) and 4(d) show similar depletions of the VDF tails at points Q1 and Q2. In plot 4(c) the peak
on the s1-VDF (blue line) corresponds to the electrons just emitted from W1, which have acquired an electric
potential energy e∆φW1Q1

= 11.43eV when crossing the sheath. An equivalent explanation applies to the peak
of the s2-VDF (red line) in plot 4(d), with an energy e∆φW2Q2 = 12.74eV.

Beyond these peaks, the shape of the VDFs for secondary electrons at different locations is the consequence
of their possible destinies. The most energetic ones are recollected after a single or double radial journey.
The rest of them bounce radially, until collisions make them preferentially to ’thermalize’ into the primary
population. The SEE yield and the amounts of wall-recollection and thermalization determine the density and
other macroscopic properties of secondary electrons. Table 2 provides detailed data on these processes: 60%
and 63% of s1 and s2 electrons, respectively, are thermalized into p electrons due to electron-neutral or large
angle Coulomb collisions, while the remaining fractions are re-collected at the walls.

Table 2 also provides the currents of the different electron species to and from the walls. Most of the current
to the walls comes from the p-population, which has a much larger density, as illustrated in Figure 5(a). The
most prominent result is that large asymmetries are found between walls in, first, the current exchanged at each
of them, with a ratio of |je,2+|/|je,1−| ' 1.59, and, second, the average true-secondary yields, defined as

< δTS,1 >=
|js1,1+|
|je,1−|

≈ 0.15, < δTS,2 >=
|js2,2−|
|je,2+|

≈ 0.29. (23)

for each wall. Here and in Table 2: subscripts 1 and 2 refer to each wall, and + and - to the direction of the
radial velocity at the wall. Since the two wall materials are the same, the difference in the effective SEE yields
must be due to a difference in the mean impacting energy per particle, Ew. This can be obtained dividing a
net energy flux to a wall by the corresponding particle flux. Table 2 shows, indeed, that Ewp,1 = 8.5eV and
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Ewp,2 = 15.7eV. In fact, these values are not far from twice the electron temperature, the value obtained for
fluxes of a Maxwellian distribution.

Figure 5 plots steady-state spatial profiles for main macroscopic magnitudes. The discussion here will be
focused on the plasma bulk, since behaviors of plasma magnitudes inside the steepened sheaths (such as the
behavior of Te) are generally not detailed in the conventional two scale sheath analysis. Figure 5(a) plots the
density profiles of the different electron populations, confirming the much lower densities of secondary electrons.
In addition, a large asymmetry between s1 and s2 densities is observed. The lower s1-density is partially caused
by the lower SEE yield from W1.

Figure 5(b) plots the macroscopic radial velocity ur for the three electron populations. Primary electrons
behave as usual with inward and outward fluxes from around the channel mid-line M . The velocity increase
inside the sheaths is just the consequence of the decreasing density there. Indeed, the same behavior is observed
in the radial velocity of ions, Fig. 5(c), where Mri = uri/

√
Te/mi is the radial Mach number. Observe that the

sheath edges were placed at the ion sonic points.
Back into Fig. 5(b), s1-electrons present a net outwards radial velocity, indicating that their outwards flow

is slightly larger than the inwards one, due to a larger recollection at W2. The opposite situation happens to
s2-electrons. Notice that these radial velocities are just small drifts in the VDFs of the three populations: for
instance, the energy corresponding to ur = 105m/s is ∼0.03 eV. The similar negative slope of dur/dr for s1 and
s2 electrons is likely due to the net macroscopic effect of the magnetic mirror and the E ×B contributions.

Figure 5(d) plots the macroscopic axial velocities uz of the three electron populations. These velocities are
practically zero except for the oscillations shown in SEE electrons which correspond to the net axial residual of
their gyromotion, also known as near wall conductivity [13]. Although not shown here, ions present an average
macroscopic velocity approximately equal to that assigned individually to their macroparticles when created.
Very importantly, the simulations confirm that there are not secular effects on the axial flow of all populations
and therefore no need of performing particle refreshing, as in the previous version of the code. (Nonetheless,
collisional effects in much longer simulations should yield a non-zero electron axial velocity of the order of uθe
divided by the Hall parameter.)

Figure 3(b) showed the mean temperatures of the three electron species. Now, Figs. 5(e) and 5(f), plot their
radial (i.e. B-parallel) and perpendicular temperatures, unveiling a significant anisotropy. For the three popu-
lations, it is found Tθ ≈ Tz ≈ T⊥ and the anisotropy is the combined consequence of the electron magnetization
and depletion at walls. Interestingly and due to their very different dynamics, Tr/T⊥ is lower than 1 for primary
electrons and larger than 1 for secondary electrons. For instance, at point M one has Trp,M/T⊥p,M ' 0.64,
Trs1,M/T⊥s1,M ' 4.35, and Trs2,M/T⊥s2,M ' 2.08. The temperature behavior of primary electrons is a direct
consequence of the partial depletion of the radial VDF tail. The trend Tr/T⊥ > 1 for secondary electrons would
be due to their preferential radial bouncing, further enhanced by the fact that when they collide strongly they
are moved to the primary population.

Because of the very low density of secondary electrons, the radial potential profile of Fig. 5(a), is shaped
almost exclusively by the p-population. Indeed, the macroscopic radial equilibrium for p electrons, taking into
account magnetic mirror effects (i.e. temperature anisotropy) and the radial centrifugal force (coming from the
E ×B drift) reads

e
dφ

dr
− Trp

d lnnp
dr

− dTrp
dr

+
T⊥p − Trp

r
+
meu

2
θp

r
= Fr,col, (24)

where: d lnB/dr = −1/r was applied in the last-but-one term of the left side, and Fr,col groups all collisional
effects. The dominant terms in this balance are of order ∼ TrpM/e(r2 − r1) ≈ 300V/m. Figure 6 plots the
collisional contribution, showing that it is negligible, as expected (the large oscillations of the curve are due
mainly to inaccuracies related to computing spatial derivatives from noisy PIC profiles). Neglecting collisions,
the integration of the above equation yields

(eφ− eφM )− TrpM ln
np
npM

= (Trp − TrpM ) +

∫ r

rM

dr

[
(Trp − TrpM )

d lnnp
dr

− T⊥p − Trp
r

−
meu

2
θp

r

]
. (25)

Here, the left side groups the terms of the Boltzmann-Maxwell relation, and the right-side groups all terms (non-
uniform radial temperature, temperature anisotropy, and centrifugal force) affecting their fulfillment. Figure
6(b) shows, first, that the whole radial equilibrium of Eqs. (24) and (25) is excellently satisfied, and, second, the
simplification of Eq. (25)to just the Boltzmann relation yields error of up to a 30%. In the present simulation,
the three terms affecting that relation are of the same order.

The potential fall in a sheath is closely related to the electron currents to and from the walls. In particular,
the lower is the primary electron current because of its VDF tail depletion, the lower is the required potential fall
to fulfill the zero electric current condition. Ahedo and dePablo 8 analyzed this problem analytically assuming a
functional form of the p-VDF which fits well with the present results. They modelled the partial depletion with
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a replenishment (thermalization) parameter σt (not to be mistaken this symbol with a surface charge), which,
in the end, measured the ratio between the actual potential fall and the one corresponding to a non-depleted
Maxwellian population. For instance, for the inner wall W1 it would be

σt,1 =
|jpW1

|
jther,1

with jther,1 = enpQ1
exp

(
−eφW1Q1

TpQ1

)√
TpQ1

2πme
, (26)

and a similar definition for the outer wall. In our simulation, the p-tail replenishment ratios are rather small,
σt,1 ' 0.04 and σt,2 ' 0.05, which seems reasonable with the weak electron collisionality. If instead of the total
temperature Tp, the radial temperature Trp were used in the definition of jther, it would still be σt,1 ' 0.15 and
σt,2 ' 0.19.

A final point to comment is that, in the present ionization-controlled model with no axial (i.e. external)
injection of particles along the simulation, the mean steady-state electron temperature is totally intrinsic to the
model and its parameters. Indeed, simulations started with different values of Te0 between 1 and 20 eV lead to
the same final temperatures shown here. This final temperature comes out from the energy balance

Psinks = Psources, Psinks ' Pinel + Pwall,t, Psources ' Pelec + Pwall,f , (27)

where: Pinel the losses due to inelastic processes (ionization and excitation), Pwall,t the losses due to electron
collection at the walls, Pwall,f the gains due to electron emission at the walls, and Pelec the energy transmitted
to electrons by the electric field. The values are in Table 2: Pwall,f is negligible and Pinel and Pwall,t are of
the same order. In the opposite case of an axially-controlled radial discharge, i.e. with Saxial,j � Sioniz in Eq.
(1), the mean Te would be dependent mainly of the temperature of the macro-electrons continuously injected
through Saxial,j . Therefore, while the temperature anisotropy of the primary population and the temperatures
of the secondary populations are relevant results of a 1Dr model, the mean value of Te is partially arbitrary.
Indeed, in a Hall thruster discharge, Te is determined basically by the axial dynamics, through the discharge
voltage and related the Joule heating (plus the effects of ionization and wall cooling).

5 Conclusions

The annular model and related PIC/MCC code of given axial section of the acceleration region of a HET was
built on a previous one by Taccogna. The main numerical improvements and conclusions are the following. First,
in an ionization-controlled discharge we cannot fix both the mean neutral density and the mean plasma density.
Second, to fix the plasma density and to adjust in time the background neutral density is a preferable method in
terms of optimizing the PIC implementation. Third, secular growth of ion axial energy and subsequent refreshing
of macro-ions is avoided. And fourth, a time-extended volumetric weighting algorithm is implemented, which
improves very substantially the weighting of macroscopic magnitudes of minor species (here the true-secondary
electrons), while not affecting the major species (here the primary electrons and the ions).

On the physical side the main contributions are the following. First, because of the weak collisionality
(dominated by elastic electron-neutral collisions), the primary VDF presents an important depletion of high-
radial-energy tails, leading to a radial-to-perpendicular temperature anisotropy ratio of about 2/3. Second,
true-secondary electrons are partially thermalized into primary electrons and partially recollected by the walls,
in a proportion about 60%-40%. Their resulting density is very low and thus has no effect in shaping the
electric potential profile. Besides, they keep a small radial drift velocity and a temperature anisotropy with a
radial-to-perpendicular temperature ratio larger than one. Third, there is a significant asymmetry in the plasma
structure, with differences of a factor about 2 in the electron currents to and from the walls and in the mean
wall-impact energies. Fourth, the electric potential profile in the quasineutral plasma bulk is determined from
a radial equilibrium which goes beyond the usual Maxwell-Boltzmann relation on primary electrons (secondary
electrons) and incorporates effects of (i) non-uniformities of the radial temperature, (ii) magnetic mirror, and
(iii) the centrifugal force. The magnetic mirror effect is indeed a combination of temperature anisotropy and
cylindrical divergence. The presence and relevance of the centrifugal force is worth to stand out since it is
generally disregarded in macroscopic models by invoking the zero electron-inertia limit. Fifth, the replenishment
ratio of the high radial-energy tail of primary electrons has been estimated in a few percent and this parameter
can also be very useful in macroscopic two-scale models to model the sheath potential fall.

Further work will have to carry out a parametric investigation on the trends identified here, in an attempt
to derive of scaling laws among them. These laws provide relevant insight on the discharge behavior and can
be implemented in macroscopic models of electrons, such as the one used in 2D hybrid HET codes. Particular
interest will have to increase the axial electric field in order to reach electron azimuthal velocities above the
thermal velocity and analyze the reported transition from a stationary solution to an instability saturated
one. In a different direction of research, the plasma response to a non-purely radial magnetic field should have
important consequences on the electron VDFs.
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Figure 2: Time evolution of: (a) the average electron density in the simulation domain for non-ICD (dashed) and
ICD (solid) cases; (b) the background neutral density in the ICD case of previous plot; (c) surface charge densities
at the inner (black solid) and outer (black dashed) walls in the ICD case; and (d) the electric potential at the central
point M in the ICD (black solid) and non-ICD cases (red dashed). Time evolution of the different electron sources
and sinks on the current continuity balance of Eq. (15) for the (e) ICD and (f) non-ICD cases. All plots represent
time-averaged magnitudes over Nk = 104 timesteps.
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Figure 3: Steady-state radial profiles of (a) azimuthal fluid velocities and (b) mean temperatures of the different
electron populations. Curves without (with, resp.) a prime correspond to extended (standard, resp.) volumetric
weighting. Plot (a) also depicts the E × B velocity drift for comparison. Steady-state values have been averaged
over the last Nk = 2 · 105 timesteps. In both plots the vertical dashed lines represent the approximate inner and
outer sheath edges.
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Figure 4: (a) Time-averaged (over last micro-second of simulation time) radial profile of the electric potential. Points
M , Q1, Q2, W1, W2 correspond to channel midradius, sheath edges, and walls. (b)-(d) Radial velocity distribution
function at nodes M , Q1, and Q2. Black, blue and red lines with square, up and down triangles correspond to the
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time.

15



3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

1013

1014

1015

1016

1017
(a) ne(r) (m

−3)

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
(b) ure (10

5 m/s)

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

−4

−3

−2

−1

0

1

2

3
(c) Mri (-)

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

−1.0

−0.5

0.0

0.5

1.0
(d) uze (10

5 m/s)

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

0

2

4

6

8

10

12
(e) Tre (eV)

3.50 3.75 4.00 4.25 4.50 4.75 5.00
r (cm)

0

2

4

6

8

10

12
(f) T⊥e (eV)

Figure 5: Steady-state radial profiles of macroscopic magnitudes for the different electron species and ions: (a)
electron particle density, (b) electron radial velocity, (c) ion radial velocity, (d) electron axial velocity, (e) radial
electron temperature, and (f) perpendicular electron temperature. Black, blue and red lines with square, up and
down triangles correspond to p, s1 and s2 electron populations, respectively. Dashed vertical lines mark approximate
sheath edges. Curves are computed using the EVW scheme with the last Nk = 2 · 105 timesteps.
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