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Abstract
A data-driven and equation-free approach is proposed and discussed to forecast responses of ships maneuvering in waves,
based on the dynamic mode decomposition (DMD). DMD is a dimensionality-reduction/reduced-order modeling method,
which provides a linear finite-dimensional representation of a possibly nonlinear system dynamics by means of a set of modes
with associated oscillation frequencies and decay/growth rates. This linear representation is entirely derived from available
data and does not require the knowledge of the underlying system equations, which are and remain unknown. Based on
the linear representation, DMD allows for short-term future estimates of the system state, which can be used for real-time
prediction and control. Here, the objective of the DMD is the analysis and forecast of the trajectories/motions/forces of ships
operating in waves, offering a complementary efficient method to equation-based system identification approaches. Results
are presented for the course keeping of a free-running naval destroyer (5415M) in irregular stern-quartering waves and for
the free-running KRISO Container Ship performing a turning circle in regular waves. Results are overall promising and show
how DMD is able to identify the most important modes and forecast the system state with reasonable accuracy upto two wave
encounter periods.

Keywords Dynamic mode decomposition · Maneuvering in waves · Computational fluid dynamics · Experimental fluid
dynamics · Data-driven modeling

1 Introduction

To ensure the safety of structures, payload, and crew in
adverse weather conditions, ships must have good seakeep-
ing, maneuverability, and structural performance. In this
regard, commercial and military ships must meet Interna-
tional Maritime Organization (IMO) Guidelines and NATO
Standardization Agreements (STANAG). The prediction
capability of ship performance in waves, along with the
understanding of the physics involved, is of utmost impor-
tance. Recent NATO Science and Technology Organization
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(STO) Applied Vehicle Technology (AVT) task groups, such
as AVT-280 “Evaluation of Prediction Methods for Ship
Performance in Heavy Weather” (2017–2019) and AVT-
348 “Assessment of Experiments and Prediction Methods
for Naval Ships Maneuvering in Waves” (2021–2023) have
focused on prediction methods for ship seakeeping and
maneuvering in waves, respectively.

Recent computational and experimental fluid dynamics
studies have demonstrated the maturity of computational
tools for the prediction of ship performance in waves, includ-
ing their assessment in extreme sea conditions (van Walree
et al. 2020; Serani et al. 2021). The computational cost asso-
ciated with the analysis is generally very high, especially
if statistical convergence of relevant estimators is sought
after and complex hydro-structural problems are investigated
via high-fidelity solvers (Diez et al. 2020). In this context,
machine learning and reduced-order models can help reduc-
ing the computational cost providing fast estimates, as long
as they are properly trained and/or calibrated. Certainly, a
proper trade-off between the computational cost associated to
model training and the computational benefit of executing the
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desired analysis with machine learning and/or reduced-order
models needs to be assessed and identified on a case-by-
case basis. Generally, models are trained with a relatively
small number of simulations (considering for instance steady
and/or dynamic but prescribed motions and maneuvers at
given conditions). Once trained, reduced-order models may
be used to assess more complex maneuvers, for longer
observation periods, including stochastic conditions and sig-
nificant statistical analyses where appropriate). In addition,
the ability of these models to learn from data makes them
suitable for use in digital twins platforms. Finally, reduced-
order models are generally easier to interpret than machine
learning approaches and could help shedding light on the
physics involved.

The objective of the present work is to present and dis-
cuss a proof-of-concept study on the use of a data-driven and
equation-free approach to the forecasting of ships maneu-
vering in waves, based on the dynamic mode decomposition
(DMD). DMD is a dimensionality-reduction/reduced-order
modeling method, which provides a set of modes with
associated oscillation frequencies and decay/growth rates
(Schmid 2010). For linear systems, these modes/frequencies
correspond to the linear normalmodes/frequencies of the sys-
tem. More generally, DMD modes/frequencies approximate
eigenmodes and eigenvalues of the infinite-dimensional lin-
ear Koopman operator, providing a linear finite-dimensional
representation of the (possibly nonlinear) system dynamics
(Kutz et al. 2016b). This linear representation is entirely
derived from available data and does not require the knowl-
edge of the underlying system equations, which are and
remain unknown. DMD growing success, especially in the
fluid dynamics community (e.g., Rowley et al. 2009; Dogan
et al. 2020), is due to this equation-free and data-driven
nature. The method is capable of providing accurate assess-
ments of the spatio-temporal coherent structures in complex
flows and systems (e.g., Magionesi et al. 2018; Pagliaroli
et al. 2022), also allowing short-term future estimates of the
system state, which can be used for real-time prediction and
control (Kutz et al. 2016a). Furthermore, DMD may serve
as an effective model-order reduction methodology in shape
optimization studies to speedup the simulation-driven opti-
mization process (Tezzele et al. 2018, 2019).

In the present work, the objective of the DMD is the
analysis and forecast of the finite-dimensional set of trajec-
tory/motion/force time histories of ships operating in waves,
offering a complementary efficientmethod to equation-based
system identification approaches, e.g., Araki et al. (2012,
2019). The efficiencyof themethod in this context stems from
the finite dimensionality of the set of relevant state variables
together with the simplicity of operations required to model
the system dynamics (as opposed to more data/resource-
consumingmachine learning approaches). This offers oppor-

tunity for integration into digital twin platforms for the
data-driven modeling and prediction of ships in waves.

Results are presented for the course keeping of a free-
runningnaval destroyer (5415M) in irregular stern-quartering
waves at target Fr = 0.33 and sea state 7, using URANS
(unsteady Reynolds-averaged Navier–Stokes) computations
from Serani et al. (2021). Results are also presented for the
free-running KRISO Container Ship (KCS), using experi-
mental data from the University of Iowa IIHR wave basin,
focusing on starboard turning circle with rudder angle of
35◦, target Froude number Fr = 0.157 in regular waves with
λ/L = 1 (wavelength to ship-length ratio) and H/λ = 1/60
(wave-height to wavelength ratio). The present research is
conducted in collaboration with NATO AVT-348 “Assess-
ment of Experiments andPredictionMethods forNaval Ships
Maneuvering inWaves”, andAVT-351 “Enhanced Computa-
tional Performance and Stability and Control Prediction for
NATO Military Vehicles”.

2 Dynamic mode decomposition

The DMD formulation and nomenclature is taken from Kutz
et al. (2016a). Specifically, consider a dynamical system
described as

dx
dt

= f(x, t;α), (1)

where x(t) ∈ R
n represents the system state at time t , α

contains the parameters of the system, and f(·) represents
its dynamics. The state x is generally large, with n � 1
and can represent, for instance, the discretization of partial
differential equations at a number of discrete spatial points,
or multi-channel/multi-variable time series.

Considering f(x, t;α) as unknown, the DMD works with
an equation-free perspective. Thus, only the system mea-
surements are used to approximate the system dynamics and
forecast the future states. Equation 1 is approximated by the
DMD as a (time) locally linear dynamical system defined as

dx
dt

= Ax (2)

with solution

x(t) =
n∑

k=1

ϕk qk(t) =
n∑

k=1

ϕk bk exp(μk t), (3)

where ϕk and μk are, respectively, the eigenvectors and the
eigenvalues of the matrix A; qk are the time-varying modal
coordinates, and bk are the modal coordinates associated to
the initial condition x0, i.e., b = Φ−1x0. It may be noted
how, clearly, the DMD is based on an equation, namely Eq.
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2. Nevertheless, the latter does not need the knowledge of
nor use by any means the underlying true system equations,
which are and remain unknown. DMD is based on the (time)
locally linear dynamical system approximation of Eq. (2),
which is derived entirely from the available data, as explained
in the following, see Eq. (6). For this reason, DMD may be
rightfully seen as an equation-free and data-driven approach.

Sampling the system every �t , the time-discrete state can
be expressed as xk = x(k�t) with k = 1, . . . ,m, represent-
ing fromnowonknown systemmeasurements.An equivalent
discrete-time representation of the system in Eq. (2) can be
written as

xk+1 = Axk, with A = exp(A�t) (4)

where exp(A�t) = ∑∞
k=0 Ak�tk/k!, by definition.

Arranging all them systemmeasurements in the following
two matrices

X =
⎡

⎣
| | |
x1 x2 . . . xm−1

| | |

⎤

⎦ , X′ =
⎡

⎣
| | |
x2 x3 . . . xm
| | |

⎤

⎦ , (5)

thematrixA in Eq. (4) can be constructed using the following
approximation:

A ≈ X′X†, (6)

where X† is the Moore–Penrose pseudoinverse of X, which
minimize ‖X′ −AX‖F , where ‖ · ‖F is the Frobenius norm.

The state-variable evolution in time can be approximated
by the following modal expansion (as per Eq. 3):

x(t) =
n∑

k=1

φk qk(t) =
n∑

k=1

φk bk exp(ωk t), (7)

where theφk are the eigenvectors of the approximatedmatrix
A, ωk = ln(λk)/�t with λk eigenvalues of the same matrix
(Kutz et al. 2016a).

In general, the DMD can be viewed as a method to
compute the eigenvalues and eigenvectors (modes) of a finite-
dimensional linear model that approximates the infinite-
dimensional linear Koopman operator (Kutz et al. 2016a),
also known as the composition operator. Here, the DMD is
applied to inherently finite-dimensional data, i.e., ship tra-
jectories/motions/forces in waves, similarly to DMD appli-
cations to power grid load data (Dylewsky et al. 2022;Mohan
et al. 2018), financial trading strategies (Mann and Kutz
2016), sales data (Vasconcelos Filho and dos Santos 2019),
and neural recordings (Brunton et al. 2016). Furthermore,
due to the low dimensionality of data in the current context,
Eq. (6) is computed directly, without the need of performing

the singular value decomposition of X and projecting onto
proper orthogonal decomposition modes (Kutz et al. 2016a).

3 Test cases and DMD setup

This section describes the test cases used for demonstration
and the DMD setup. It is worth noting that, although the
DMD is not a machine learning method in the strict sense, its
data-driven nature allows for approaching DMD in a similar
way to machine learning. Here the matrix A is constructed
using observed (past) time histories, which are used as train-
ing set. TheDMD is then used for the short-termprediction of
trajectory/motion/force time histories, which are compared
against true observed (future) data used as test set. As com-
parison metrics, the average normalized mean square error
(NMSE) is used. The mean square of the modal coordinates
〈q2k 〉 is used as a metrics for modal participation.

3.1 Course keeping of the 5415M in irregular waves

The hull form under investigation is theMARINmodel 7967
which is equivalent to 5415M, used as test case for the NATO
AVT-280 “Evaluation of Prediction Methods for Ship Per-
formance in Heavy Weather” (van Walree et al. 2020). The
full-scale ship is assumed L = 142m long (length between
perpendiculars). The model is self-propelled and kept on
course by a proportional-derivative controller actuating the
rudder angle.

Course-keeping computations are based on the URANS
code CFDShip-Iowa V4.5 (Huang et al. 2008). CFD simu-
lations are performed with propeller revolutions per minute
fixed to the self-propulsion point of the model for the nomi-
nal speed, corresponding to Fr = 0.33. The simulations are
conducted in irregular long crested waves (following a JON-
SWAP spectrum), with nominal peak period Tp = 9.2 s and
wave heading of 300◦ (see Fig. 1). The nominal significant
wave height is equal to 7 m, corresponding to sea state 7
(high), according to the World Meteorological Organization
definition. It may be noted that the simulation conditions are
close to a resonance condition for the roll. The six degrees
of freedom rigid body equations of motion are solved to cal-
culate linear and angular motions of the ship. A simplified
body-force model is used for the propeller, which prescribes
axisymmetric body force with axial and tangential compo-
nents. The total number of grid points is about 45M. Further
details can be found in Serani et al. (2021) and van Wal-
ree et al. (2020) where also potential flow computations and
experimental data are presented and discussed.

The state variables used for DMD are the ship six degrees
of freedom (surge, sway, heave, roll, pitch, yaw; shipmotions
in the carriage coordinate system, projected onto the ship
axes) plus the rudder angle. In addition, first and second time
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derivatives of all variables are included in the data set, com-
puted by a fourth-order finite difference scheme (therefore
n = 21). The use of derivatives enables a better description
of the system dynamics and defines a higher dimensional
space potentially more amenable to an accurate linear repre-
sentation of the nonlinear system dynamics. All variables are
standardized, i.e., translated and scaled to have zeromean and
unit variance. ThematrixA is built using about five encounter
waves (corresponding to 1766 time steps). The prediction and
test sets span the same length. Finally, the prediction is built
using all modes/frequencies, leaving reduced-order studies
to future research.

3.2 Turning circle of the KCS in regular waves

The second test case is the starboard turning circle of the free-
running KCS in regular waves with constant rudder angle of
35◦. Data are taken from experiments conducted at the IIHR
wave basin, which is shown in Fig. 1 and whose character-
istics are given in Sanada et al. (2021). The model length is
L = 2.7mand the nominal speed corresponds to Fr = 0.157.
The propeller RPM are fixed and provide the nominal speed
in calmwater. The regular wave parameters are λ/L = 1 and
H/λ = 1/60.

The state variables used for DMD are the x , y, and z
coordinates (Earth-coordinate system) of a reference point
placed amidships, pitch and roll motions, turning rate, u, v,
and w component of the ship velocity (projected onto the
ship axes), rudder angle, propeller thrust, and torque. As in
the previous test case, first and second time derivatives are
included in the data set (n = 36) and all variables are stan-
dardized. The matrix A is built using about four encounter

waves (corresponding to 132 time steps), while the predic-
tion and test sets span the same length. Predictions are built
using all modes/frequencies.

4 Results

The following subsections describe the DMD results for
the test cases, discussing the DMD analysis of the sys-
tem dynamics (including complex modal frequencies, modal
participation, and most energetic modes) and the future pre-
diction of the system state.

4.1 5415M course keeping in irregular waves

Figure 2 presents the DMD results for the system dynam-
ics. Specifically, the left figure shows the complex modal
frequencies provided by DMD. For the sake of clarity of rep-
resentation, only a subset with themost energetic frequencies
is depicted. For the same subset, the center figure shows the
modal participation as a function of the frequency imagi-
nary part. Finally, the right figure presents the magnitude of
components for the two most energetic couples of complex-
conjugate modes, where for the sake of clarity and simplicity
derivatives are not shown. It may be noted how the dynamic
is dominated by one couple only (see Fig. 2 center, namely
represented by the modes k = 6, 7). This couple presents a
frequency close to the roll resonance frequency (see, e.g., van
Walree et al. 2020) and mainly involves roll, pitch, yaw, rud-
der, and to a lesser extent heave (see blue line in Fig. 2, right).
The second couple is significantly less energetic and has a
smaller frequency (slower dynamics). It mainly involves pla-

Fig. 1 CFD snapshot of the
5415M test case (left) and a
photograph of the IIHR wave
basin with the KCS model
(right)

Fig. 2 DMD complex modal frequencies, modal participation, and two most energetic modes (from left to right, respectively) for the 5415M test
case
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nar motion variables, i.e., surge, sway, yaw, and to a lesser
extent rudder (see black line in Fig. 2, right). It is worth not-
ing that here frequencies and eigenvectors are ordered by the
absolute value of the complex frequency imaginary part, in
ascending order. Alternatively, frequencies and eigenvectors
may be ordered by their modal participation or energy, in
descending order, which is a natural choice if model-order
reduction is sought after. This is not needed here as a full-
order expansion is used.

The short-term prediction of the system dynamics by
DMD is shown in Fig. 3. The observed (past) time histo-
ries are depicted in black, the predicted (future) time histories
are in blue, while the true observed (future) time histories are
presented with a dashed black line. All variables are shown
in their standardized form and time values are normalized
with the average encounter period. The NMSE of the pre-
diction is shown at the bottom in red. Roll, pitch, and rudder
present the most accurate prediction, whereas sway is found

the most difficult variables to forecast. On average, variables
are reasonably predicted upto two encounter periods. After,
the prediction becomes less accurate especially for sway and
yaw.

4.2 KCS turning circle in regular waves

Figure 4 presents the results of the DMD of the system
dynamics. Again, the left figure shows the complex modal
frequencies provided by DMD. As in the previous case
and for the sake of clarity of representation, only a sub-
set with the most energetic frequencies is depicted. For
the same subset, the center figure shows the modal par-
ticipation as a function of the frequency (imaginary part),
while the right figure presents the two most energetic cou-
ples of complex-conjugatemodes (magnitude of components
shown; derivatives not shown). It may be noted how the
dynamic is dominated by one mode with zero frequency

Fig. 3 DMD prediction and
average error for the 5415M test
case (standardized variables)

Fig. 4 DMD complex modal frequencies, modal participation, and two most energetic modes (from left to right, respectively) for the KCS test
case. Note that here L/U is used as a non dimensionalizing factor for the eigenvalues
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Fig. 5 DMD prediction and
average error for KCS test case
(standardized variables)

(see Fig. 4 center; the real part, not shown, is also zero),
setting an offset for the data. The first most energetic cou-
ple of complex-conjugate modes (k = 2, 3) correspond to a
quite slow dynamics and mainly involves trajectory and pla-
nar motion variables, i.e., x , y, v and to a lesser extent z, rate
of turn, and u. The second couple presents a larger frequency
(faster dynamics, due to the waves). It mainly involves z,
roll, pitch, rate of turn, u, v, w, thrust, and torque. It may be
noted how the rudder does not participate in these dynam-
ics, which may appear unexpected: in this demonstration,
the rudder is kept fixed at 35◦. Certainly, the ship dynam-
ics depends on the rudder angle, but here the rudder is fixed
(see the rudder time history in Fig. 5) and therefore no rud-
der dynamics is observed. The same considerations made for
frequencies/eigenvectors order of the 5415M apply here.

Figure 5 shows the results of the DMD in producing
the short-term prediction of the system dynamics, where
the observed (past) time histories are depicted in black, the
predicted (future) time histories in blue, the true observed
(future) time histories are presented with a dashed black line.
All variables are standardized and time values are normal-
ized with the average encounter period. The NMSE of the
prediction is shown at the bottom in red. The trajectory (x
and y) is very well predicted, also due to its slow dynamics.
Pitch, u, thrust, and torque presents a faster dynamics (due to
the waves) and are also reasonably predicted. Roll, turning
rate, and v are found the most difficult variables to forecast.
Also in this case, variables are reasonably predicted upto two
encounter periods. After, the prediction becomes overall less
accurate.
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5 Conclusions and future work

A proof-of-concept study on the use of a data-driven and
equation-free approach to forecast responses of shipsmaneu-
vering in waves was presented and discussed, based on the
dynamicmodedecompositionof ship trajectory/motion/force
timehistories. TheDMDprovides a data-driven andequation-
free approach to the linear representation of the system
dynamics, allowing for (a) extracting knowledge on the sys-
tem dynamics and (b) forecasting the system state in the near
future. Results were shown for course keeping data of the
self-propelled 5415M in irregular waves and turning-circle
data of the self-propelled KCS in regular waves. Time histo-
ries were provided by CFD and EFD for 5415M and KCS,
respectively.

Results are overall promising. The analysis is very effi-
cient and suitable for real-time predictions. The DMDmodel
is able to extract the most important modes and forecast
with reasonable accuracy the system state upto two wave
encounter periods. After this time horizon, the prediction
is no longer accurate and the methodology needs improve-
ments. The system nonlinearity plays certainly an important
role in the DMD capability of predicting longer time hori-
zons. Moreover, the overall analysis setup (such as the
number of observed input waves and the number of time
derivatives included in the data matrix) is also deemed
to affect the DMD forecasting capabilities, thus requiring
deeper investigations.

For these reasons, future research directions include
systematic studies of observed data size, time step, and
time-derivative order along with the most effective choice
of the variable set and possibly coordinate systems, includ-
ing whenever appropriate dimensional analysis (Dogan et al.
2020).Ongoingwork is focusing on the statistical assessment
of DMD performance using multiple time series, study-
ing the effects of the number of input/output waves, time
steps, derivatives, along with the use of time-shifted copies
of the available data, i.e. using the Hankel matrix (Vas-
concelos Filho and dos Santos 2019) of the time histories.
The assessment is performed considering several perfor-
mance metrics, such as the normalized root mean squared
error, the Pearson correlation coefficient, the average angle
measure (Hess et al. 2006), and the normalized averagemini-
mum/maximum absolute error (Diez et al. 2022). Parametric
analysis of the DMD forecasting capabilities conditional to
operating and environmental conditions is also of interest and
will be assessed within the activity of the NATO AVT-348.

Methodological advancements that are expected to pro-
vide benefits include DMDwith control (Proctor et al. 2016),
DMD with time delay embedding (Kamb et al. 2020), and
multi-resolution DMD (Kutz et al. 2016b). Finally, the com-
bination of DMD with artificial neural network approaches
(D’Agostino et al. 2021) is expected to overcome some of the

limitations of the DMD (i.e., its linearity) providing more
flexible architectures (Diez et al. 2022) to address highly-
nonlinear system dynamics.
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Rowley CW,Mezić I, Bagheri S, Schlatter P, Henningson D et al (2009)
Spectral analysis of nonlinear flows. J FluidMech 641(1):115–127

Sanada Y, Simonsen C, Otzen J, Sadat-Hosseini H, Toda Y, Stern F
(2021)Numerical ship hydrodynamics, lecture notes in applied and
computational mechanics. In: Experimental Data for KCS added
resistance and ONRT free running course keeping/speed loss in
head and oblique waves, vol 94. Springer, Cham, pp 61–137

Schmid PJ (2010) Dynamic mode decomposition of numerical and
experimental data. J Fluid Mech 656:5–28

Serani A, Diez M, van Walree F, Stern F (2021) URANS analysis of a
free-running destroyer sailing in irregular stern-quartering waves
at sea state 7. Ocean Eng 237:109600

Tezzele M, Demo N, Gadalla M, Mola A, Rozza G (2018) Model order
reduction bymeans of active subspaces and dynamicmode decom-
position for parametric hull shape design hydrodynamics. In: 19th
international conference on ships and maritime research, NAV
2018, Trieste, Italy, June 20–22. arXiv preprint arXiv:1803.07377

Tezzele M, Demo N, Rozza G (2019) Shape optimization through
proper orthogonal decomposition with interpolation and dynamic
mode decomposition enhanced by active subspaces. In: 8th
conference on computational methods in marine engineering,
MARINE 2019, Gothenburg, Sweden, May 13–15. arXiv preprint
arXiv:1905.05483

Vasconcelos Filho E, dos Santos PL (2019) A dynamic mode decom-
position approach with Hankel blocks to forecast multi-channel
temporal series. IEEE Control Syst Lett 3(3):739–744

van Walree F, Serani A, Diez M, Stern F (2020) Prediction of heavy
weather seakeeping of a destroyer hull form by means of time
domain panel and CFD codes. In: Proceedings of the 33rd sympo-
sium on naval hydrodynamics, Osaka, Japan

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ACCESS.2022.3161438
https://doi.org/10.1109/ACCESS.2022.3161438
http://arxiv.org/abs/1803.07377
http://arxiv.org/abs/1905.05483

	Time-series forecasting of ships maneuvering in waves via dynamic mode decomposition
	Abstract
	1 Introduction
	2 Dynamic mode decomposition
	3 Test cases and DMD setup
	3.1 Course keeping of the 5415M in irregular waves
	3.2 Turning circle of the KCS in regular waves

	4 Results
	4.1 5415M course keeping in irregular waves
	4.2 KCS turning circle in regular waves

	5 Conclusions and future work
	Acknowledgements
	References




