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ABSTRACT
The increasing popularity of Location-Based Social Networks (LBSNs) and the se-
mantic enrichment of mobility data in several contexts in the last few years has led to
the generation of large volumes of trajectory data. In contrast to GPS-based trajec-
tories, LBSN and context-aware trajectories are more complex data, having several
semantic textual dimensions besides space and time, which may reveal interesting
mobility patterns. For instance, people may visit different places or perform differ-
ent activities depending on the weather conditions and their geographical location.
Animals may choose their habitat based on climate and vegetation characteristics.
These new semantically rich data, known as multiple-aspect trajectories, pose new
challenges in trajectory classification, which is the problem that we address in this
paper. Existing methods for trajectory classification cannot deal with the complexity
of heterogeneous data dimensions or the sequential aspect that characterizes move-
ment. In this paper we propose MARC, an approach based on attribute embedding
and Recurrent Neural Networks (RNNs) for classifying multiple-aspect trajecto-
ries, that tackles all trajectory properties: space, time, semantics, and sequence. We
highlight that MARC exhibits good performance especially when trajectories are de-
scribed by several textual/categorical attributes. Experiments performed over four
publicly available datasets considering the Trajectory-User Linking (TUL) prob-
lem show that MARC outperformed all competitors in all datasets, with respect to
accuracy, precision, recall, and F1-score.
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1. Introduction

We are witnessing an explosion of big data generated on the internet and an increasing
popularity of Location-Based Social Networks (LBSNs), such as Foursquare, Twitter,
and Facebook. These networks collect not only information about visited places, feel-
ings, and thoughts of their users, but their real movement as sequences of check-ins or
geotagged posts, that represent the sample points of a trajectory. We strongly believe
that this new type of trajectory data is the challenge of the next-generation data min-
ing methods to be explored by large companies, for obtaining one of the most valuable
information: the daily routine patterns and behaviors of every human being.

Semantically rich movement data are important for analyzing mobility patterns in a
vast range of applications, from Point of Interest (POI) recommendation (Zhou et al.
2016, Feng et al. 2018), profiling taxi trip purposes (Chen et al. 2018), inferring the
effect of external factors as the weather conditions on human mobility (Brum-Bastos
et al. 2018), to discovering animal behaviors and habitats (De Groeve et al. 2016, 2019,
van Toor et al. 2016).

In this work we focus on the trajectory classification problem, which consists of
categorizing a moving object according to its trajectories (Lee et al. 2008). In other
words, given a set of labels and a set of trajectories, we want to build a model for
predicting and assigning such labels to every trajectory in the dataset. Examples of
trajectory classification tasks are transportation mode inference (e.g. car, bus, taxi)
(Dabiri & Heaslip 2018, Etemad et al. 2018), determining a person profile (e.g. worker,
student, retired) (de Alencar et al. 2015), inferring the strength level of a hurricane
(Lee et al. 2008, Buchin et al. 2012, Ferrero et al. 2018), predicting the user/owner of
a trajectory (Gao et al. 2017, Zhou et al. 2018), among others.

Trajectory data are very complex because of the nature of their multiple dimensions.
A raw trajectory, for instance, that is generated from a Global Positioning System
(GPS) device, and that is the simplest type of movement data, is a sequence of spatio-
temporal points in the form of (x, y, t), where x and y represent the spatial position
of the moving object at time instant t. Raw trajectories are more complex than time
series, since they combine both time and space attributes, in which time is more than
the temporal sequence.

Trajectory data extracted from LBSNs or context-aware trajectories of other do-
mains such as in ecology (Dodge et al. 2013, Andrienko et al. 2011), pose new challenges
when compared to raw trajectories. While in raw trajectories a point has basically the
space and time dimensions, in trajectories extracted from LBSNs a spatio-temporal
point is enriched with several levels of heterogeneous semantic dimensions as the text
of the social-media posts, the reviews of a venue, the humor/opinion of the moving
object, etc. This new type of trajectory data is called multiple-aspect trajectory (Fer-
rero et al. 2016, Mello et al. 2019, Petry et al. 2019). Figure 1 shows an example of
the multiple-aspect trajectory of a tourist in Paris. Besides the spatial and tempo-
ral dimensions, the trajectory is enriched with POI information (category, rating, and
price), the means of transportation, the weather conditions, and the social-media posts
of the tourist.

Differently from classical data mining problems, trajectory data cannot be sum-
marized or normalized without loosing information, and require a special treatment
because of the complexity associated to the data. For instance, the spatial dimension is
composed of two attributes, latitude and longitude, and they should be considered as a
whole. Earlier methods for trajectory classification (Lee et al. 2008, Dodge et al. 2009,
Patel 2013) have been developed for raw trajectories, where attributes and features are
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derived from the spatial and temporal dimensions, such as speed, acceleration, trav-
eled distance, etc. In fact, existing works do not propose new classifiers, but propose
different feature extraction and/or trajectory partition methods that better capture
the trajectory discriminant parts.

A recent method, called MOVELETS, was proposed by Ferrero et al. (2018), sup-
porting multiple attributes as space, time, and semantics. MOVELETS supports the
different types of data and the heterogeneous dimensions and it outperformed most
previous works for raw trajectories. Although it is robust for several dimensions, it
only explores patterns of consecutive trajectory points and does not leverage the as-
pects that better describe each class. In other words, the trajectory patterns found
by the method always consider all attributes available. Indeed, it is a time consuming
method because it explores all possible subtrajectories of different size.

The works of Gao et al. (2017), Zhou et al. (2018), and Ferrero et al. (2019) have
been developed for LBSN trajectory data. Differently from all previous works, Gao
et al. (2017) and Zhou et al. (2018) use the idea of word embeddings, and embed POIs
based on the concept of the distributional hypothesis, similarly to the idea proposed
in Mikolov, Chen, Corrado & Dean (2013). An embedding is a numerical vector in an
l-dimensional space Rl, which can be a more meaningful representation of information
for machine learning methods.

In Gao et al. (2017) and Zhou et al. (2018) a given POI is embedded based on the
previous POIs and the next POI that the user visited. For instance, suppose a user
has visited the POIs Home, Restaurant, and Office, while another user has visited
the POIs Home, Cafe, and Office. The embeddings of Restaurant and Cafe will be
similar, because they happened in the same context (after Home and before Office).
However, in these works the embeddings are solely based on the POI sequence, so they
neither explore the spatio-temporal dimensions nor the different semantic aspects that
characterize multiple-aspect trajectories. We argue that the more trajectory aspects
(or dimensions) the classifier is able to treat, the more robust is the method, and that
different aspects can contribute to characterizing the behavior of a moving object.
For instance, in Brum-Bastos et al. (2018) the authors explored the weather effects
on human mobility and were able to find different patterns in commuters behavior
depending on the weather conditions.

In this paper we propose an approach for trajectory classification that is simpler
than existing methods, more efficient, and that far outperforms the state of the art in
four datasets. The method is a Recurrent Neural Network (RNN)-based approach for
multiple-aspect trajectory classification via a multi-attribute embedding layer, which
allows encoding the heterogeneous dimensions associated to each trajectory point.
Because of the multiple and heterogeneous textual features that characterize human
movement in social media data, more specifically due to the sparsity and high dimen-
sionality of features, we believe that embeddings are the best technique to capture the
semantic aspects of trajectories and that can deal together with the textual dimensions
and the spatial dimension represented with Geohash (Niemeyer 2008). In summary,
we make the following contributions:

• We introduce a new classification method for trajectory data considering their
multiple and heterogeneous dimensions that characterize current mobility data,
namely Multiple-Aspect tRajectory Classifier (MARC). The MARC architec-
ture exhibits similar or lower network complexity compared to state-of-the-art
methods, while achieving better accuracy;
• We model trajectory points via a multi-attribute embedding layer, specifically
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Figure 1.: The multiple-aspect trajectory of a tourist in Paris.

including an approach for embedding the spatial dimension of trajectories using
Geohash encoding (Niemeyer 2008), given that embeddings were designed for
discrete data;
• We evaluate our method on four real-world LBSN datasets enriched with mul-

tiple semantic aspects. This allows us to show the robustness of our approach
for classifying users based on their semantically rich trajectories. We compare
our method with state-of-the-art approaches to show that MARC outperforms
competitors in all datasets. We also highlight the fact that MARC performs well
when information or trajectory attributes are missing.

The remainder of this paper is organized as follows: Section 2 presents related works
and highlights their differences to our approach; Section 3 describes the proposed
method; Section 4 presents the experimental evaluation; in Section 5 we discuss about
our method and achieved results, placing them into a larger context, and Section 6
concludes the paper and outlines future work.

2. Related Work

Most existing works in trajectory classification are limited to raw spatio-temporal data.
Such works focus on the extraction of features from trajectories, which are then given
as input to traditional classifiers, such as Random Forest, Support Vector Machine, and
Multilayer Perceptron (MLP) classifier. The features are extracted from the spatio-
temporal points as, for instance, the average speed, acceleration, direction, etc, and
are related either to the whole trajectory or to specific trajectory segments.

One of the first works for raw trajectory classification was the method TraClass
(Lee et al. 2008), which is limited to the spatial dimension. Patel (2013) extended
the work of Lee et al. (2008) to support the time dimension. Dodge et al. (2009)
proposed a classification method that partitions trajectories based on deviation and
sinuosity change, extracting attributes such as velocity, acceleration, turning angle,
displacement and deviation change rate. The attributes are extracted from the parti-
tions and the whole trajectory. Zheng et al. (2010) splits trajectories based on velocity
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and acceleration, further extracting statistics as the maximum velocity, maximum ac-
celeration, deviation change, etc. Biljecki et al. (2013) propose a segmentation method
for robust transportation mode classification. Recently, Xiao et al. (2017) extended
the method proposed by Dodge et al. (2009) to extract a larger number of global and
local attributes from trajectories.

Existing methods for raw trajectory classification were developed for dense GPS tra-
jectories (e.g. points are regularly sampled every second), and are limited to numerical
attributes inferred from space and time. In multiple-aspect trajectories extracted from
LBSNs, the points can be more sparse (e.g. points can be sampled in hours or days),
not being characterized by attributes such as speed, acceleration or direction change.

Ferrero et al. (2018) proposed MOVELETS, a method that supports spatial, tem-
poral, and semantic attributes, which outperformed previous works for raw trajectory
classification. Ferrero explores the training set looking for relevant subtrajectories,
which are the trajectory segments that better characterize the movement patterns of
a given class. The presence or absence of the discovered MOVELETS in trajectories
are then given as features to a traditional classifier. Although MOVELETS supports
multiple attributes, it cannot automatically find those which better discriminate each
class. Furthermore, MOVELETS cannot ignore noise in trajectory points, because it
only explores patterns of consecutive trajectory points.

To the best of our knowledge, so far MOVELETS is the only method in the literature
that can deal with multiple-aspect trajectories exploring space, time, semantics, and
sequence. Novel methods were developed for LBSN trajectory classification (Gao et al.
2017, Zhou et al. 2018), but they are limited to a single trajectory attribute.

Gao et al. (2017) introduced the Trajectory-User Linking (TUL) problem, a special
case of trajectory classification where the labels are the users, i.e., the person who
generated each trajectory. Gao proposed Bi-TULER, a bidirectional RNN model for
classifying LBSN trajectories. However, Gao analyzes only the POIs visited by the
users, thus having trajectories represented as the sequence of places visited by a user.
Bi-TULER learns continuous vector representations (embeddings) of the POIs, follow-
ing the concept of the distributional hypothesis, similar to word embeddings proposed
by Mikolov, Chen, Corrado & Dean (2013). The embeddings are used to train an RNN
model for classifying trajectories, and, even though it is able to capture more com-
plex patterns of mobility data than previous works, only the POI identifier is used
for training the model. In Section 4 we show that using only one layer of semantics is
insufficient for characterizing human movement. In fact, different levels of semantics
provide a more accurate representation of human mobility.

More recently, Zhou extended Bi-TULER and proposed TULVAE (Zhou et al. 2018)
to address the TUL problem. Similarly to Bi-TULER, POI embeddings are pre-learned
and then fed to the model. Zhou employs a Variational Autoencoder (VAE) architec-
ture to model trajectories and extracts an interpretable representation of POI depen-
dencies present in trajectories. As Bi-TULER, TULVAE is solely based on the POIs
visited by users, thus not supporting the spatial, temporal, and additional semantic
attributes of trajectories. Furthermore, the model shows a relatively complex network
architecture similar to sequence-to-sequence models.

Both Bi-TULER and TULVAE embed POIs similarly to the word embeddings de-
scribed by Mikolov, Chen, Corrado & Dean (2013). Word embeddings alleviate data
sparsity and provide a continuous representation of words (or POIs). However, the
embedding of a POI is based on temporal context, regardless of class label, which
can make POIs less discriminative in classification problems. The proposed method
MARC, differently from Bi-TULER and TULVAE, is based on an end-to-end classifi-
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Figure 2.: Overview of the architecture of MARC.

cation task, instead of pre-learning attribute embeddings similar to word embeddings.
MARC is not exclusive developed for LBSN trajectories, but can be used for any type
of semantically enriched or context-aware trajectory of other domains, as for instance
in ecology (Dodge et al. 2013, Demšar et al. 2015).

3. Multiple-Aspect Trajectory Classification

In this section we introduce MARC: a novel method for multiple-aspect trajectory clas-
sification. Figure 2 illustrates the three components of MARC: (1) trajectory encoding
via a multi-attribute embedding layer; (2) a recurrent component for modelling the
sequential factor present in trajectories; and (3) the classification component, which
uses information from the previous components for assigning labels to trajectories.

MARC is a Recurrent Neural Network (RNN) that takes a trajectory as input and
outputs the corresponding label (class). RNNs are a special class of neural networks
capable of processing sequences of inputs. As they demand higher computational power
than normal feed-forward neural networks, their use in practical applications was only
made possible in recent years. RNNs can be applied to a variety of applications, from
speech recognition (Sak et al. 2014) to trajectory classification. Before going into the
details of our method, we start defining multiple-aspect trajectory in Definition 3.1,
based on the concept introduced by Mello et al. (2019).

Definition 3.1. Multiple-aspect trajectory. A multiple-aspect trajectory is a sequence
of points T = 〈p1, p2, . . . , pn〉, with pi = (x, y, t,A) being the i-th point of the trajectory
at location (x, y) and timestamp t, described by the set A = {a1, a2, . . . , ar} of r
attributes.

A multiple-aspect trajectory is a trajectory enriched with semantic information,
contributing to the characterization of the movement, such as the visited POIs, the goal
of the visit, the possible activity, the weather conditions, the means of transportation,
etc. Multiple-aspect trajectories are variable-length sequences of information, and the
attributes of these trajectories are heterogeneous, have different natures, and distinct
data types. We define trajectory classification in Definition 3.2, which is the problem
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we address in this paper.

Definition 3.2. Trajectory classification. Given a set of labels L and a trajectory set
defined by a set of pairs T = { (T1, label(T1)), (T2, label(T2)), . . . , (T|T |, label(T|T |))},
where each pair contains a trajectory Ti and its class label label(Ti)∈ L, trajectory
classification is the task of learning a prediction function (model) f that maps each
trajectory Ti ∈ T to one of the class labels in L.

As multiple-aspect trajectories may have several textual attributes, it may be harder
for a classifier to measure the attribute similarity because of the high number of
dimensions in the attribute space. Given their heterogeneity and sparsity, we use a
multi-attribute embedding layer in order to encode these multiple attributes, which is
detailed in the following section.

3.1. Trajectory Encoding

The first component of our method is responsible for encoding trajectory attributes.
Since trajectory attributes can have a variety of formats, we use an embedding layer
for uniformly encoding them. Figure 3 illustrates the overall process of encoding a
trajectory point. We consider an example of a single trajectory described by the at-
tributes POI, hour, and spatial location, representing the semantics, temporal, and
spatial dimensions, respectively. We encode the second trajectory point, which is a
visit to a Park at 11am located at the spatial location (40.767667, -73.97334).

The attributes are first one-hot encoded, except for spatial attributes that are en-
coded with Geohash. The one-hot encoding of an attribute a is a d-dimensional vector
of zeros with a 1 in the position corresponding to the value of the attribute, where
d is the number of values that the attribute may take. In our example the dataset
has only 6 different POIs, as shown in the legend of Figure 3, so the one-hot encoded
POI vector has 6 dimensions, and Park corresponds to the 5-th element in the vector.
Similarly, as there are 24 different hours, the encoded hour is a 24-dimensional vector
and the 11-th element corresponds to the hour 11am (hours encoded from 1am to
12pm and 1pm to 12am).
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The spatial dimension of trajectories is usually modeled with two attributes, latitude
and longitude, and these attributes are meaningless if considered separately. Therefore,
we encode them with the Geohash algorithm (Niemeyer 2008), as it is necessary to
merge both latitude and longitude into a single meaningful attribute in order to further
embed them. Figure 4 illustrates the Geohash algorithm. It successively divides the
space into rectangular grid cells, encoding a spatial location (latitude and longitude
coordinates) as a Base32 character string. Two locations with a common Geohash
prefix are spatially close to each other. We further extract the binary representation
of Geohash, and use it as the encoding of the spatial dimension of trajectory points.
Since Base32 is used for building the Geohash encoding, each character is mapped to
a 5-digit binary string (25 = 32). For instance, considering 32 characters from 0 to 9
and A to V, 0 is mapped to 00000, 1 is mapped to 00001, 2 to 00010, and so on up to
V, which is mapped to 11111. The size of the encoded spatial location depends on the
precision chosen for the Geohash algorithm, i.e., how many cells we have in the grid
(see Figure 4).

The encoded attributes are multiplied by their respective embedding matrices
(WPOI , WHour, and WSpace in Figure 3) to extract their corresponding embedded rep-
resentations. In neural networks, embedding layers map attributes to an embedding
space, so that they may be fed to the subsequent layers of the network. Embeddings
are numerical vector representations that can be interpreted as points in a continuous
l-dimensional space Rl, created according to a model (e.g. vector space models for
modeling textual data). Attributes are usually embedded in order to reduce the di-
mensionality of the underlying space, so that the similarity of attributes can be better
measured; or simply to map discrete attributes into equivalent but meaningful rep-
resentations for machine learning algorithms. For instance, let us consider the POIs
Park, Restaurant, and Cafe. A naive way of measuring the similarity of POIs could
be comparing their names with a string similarity function such as the Edit Distance
(ED) (Wagner & Fischer 1974). In that case, Cafe and Park would have a higher simi-
larity than Cafe and Restaurant, which is not realistic considering the semantics of the
POIs. Hence, embedding methods are used to create similarity-based representations
for textual attributes. As the number of attributes can grow fast in multiple-aspect
trajectories, it may be unfeasible and hard to define similarity measures for every
attribute, as proposed in Ferrero et al. (2018) and Furtado et al. (2016), for instance.

Mikolov, Chen, Corrado & Dean (2013) proposed a neural network model to embed
words based on the context they appear in the text (words that come before and after
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a given word). The word embeddings are extracted from the weights of the neural
network after performing the task proposed in their paper. Afterwards, the embeddings
are used in other natural language processing tasks, such as text translation. Similarly,
two previous works for trajectory classification (Gao et al. 2017, Zhou et al. 2018)
proposed to embed POIs based on the same concept. However, while they use only
the visited POIs in the classification task, in our method we not only embed POIs but
all trajectory attributes, which we describe later. Moreover, even though embedding
matrices can be initialized with pretrained embeddings, they can also be randomly
initialized and trained altogether with the other components of the neural network
classification model. We formally define the embedding of a single attribute as follows.

Definition 3.3. Attribute embedding. Given a trajectory T = 〈p1, p2, . . . , pn〉 and a
set A = {a1, a2, . . . , ar} of attributes describing pi, the embedding of attribute ak is
given by e(ak) = encoding(ak)Wak

, where Wak
is the embedding matrix of attribute

ak.

Wak
is a matrix with |ak| × l dimensions, where |ak| is the number of values that

attribute ak may take. For instance, in the example in Figure 3 we have 6 different types
of POIs and decided to embed them in the space R3, so WPOI has 6× 3 dimensions.
As we mentioned previously, we use one-hot enconding as the encoding() of nominal
and numeric attributes, so that embeddings are properly selected from the embedding
matrix. In other words, given an ordering of the values of ak (i.e. a fixed mapping of
POIs to a position in the encoding vector), the encoding(ak) is built in a way that
when multiplied by Wak

, the i-th row of Wak
is the embedded representation of the

i-th value of ak.
In order to encode trajectory points with multiple attributes, we apply an aggre-

gation function to the embedded point attributes. Attributes must be aggregated so
that trajectory points can be fed to the recurrent component of the network. We may
combine attributes similarly to how words are aggregated in Le & Mikolov (2014),
via element-wise average or concatenation. In Figure 3, we aggregate the embedded
attributes by averaging each dimension individually. This implies that if we aggregate
attributes by sum or average, all embeddings must have the same size. If we opt for
concatenation, then the embedded attributes may have different sizes, and the size
of the final encoded trajectory point will be the sum of the embedding sizes. In Sec-
tion 4 we present different results considering the sum, average, and concatenation of
attributes.

3.2. Recurrent Component

To properly assess trajectory data, we use an RNN with Long Short-Term Memory
(LSTM) units (Hochreiter & Schmidhuber 1997), which is the state of the art for
sequence processing in neural networks. RNNs are able to represent more complex
patterns than shallow networks, and can deal with variable-length sequences of infor-
mation.

After encoding trajectory points, trajectories are fed to the recurrent module. LSTM
cells capture patterns in sequences over variable-length time intervals, regulating how
much information is remembered via their input, output, and forget gates. Compared
to MOVELETS (Ferrero et al. 2018), for instance, this can be an advantage for model-
ing trajectory patterns. MOVELETS only captures sequential patterns of consecutive
trajectory points, while, LSTM cells may learn patterns that include the very first
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points and the last points of a trajectory. This means that LSTM units can model the
relationships between different trajectory points and their attributes, even if they are
far away.

3.3. Trajectory Classification

The last component of our method uses the information provided by the recurrent
component for inferring the trajectory label. The output of the recurrent module is fed
into a fully-connected layer and subsequently a softmax function is applied. The goal
of the last fully-connected layer is to map the learned knowledge to the corresponding
label. Then, a softmax function is applied to emphasize the differences between labels,
further outputting the probability distribution for all possible data labels. As for some
classification problems the number of labels can be particularly high, such as the TUL
problem introduced by Gao et al. (2017), negative sampling (Mikolov, Sutskever, Chen,
Corrado & Dean 2013) can be employed to alleviate the cost of softmax computation.

3.4. Training and Optimization

For training the proposed model, our goal is to minimize the categorical cross entropy
loss, as given by the following equation

− 1

|Ttrain|
∑

T∈Ttrain

∑
L∈L

1T∈L · log p[T ∈ L] (1)

where Ttrain is the set of trajectories for training the model and L is the set of labels
according to which trajectories are classified. In other words, we want to maximize the
probability of our model to correctly predict the label of each trajectory T .

To avoid overfitting our model to the training data, which is a problem inherent
to deep neural networks such as RNNs, we use dropout (Srivastava et al. 2014) and
regularization techniques. Dropout layers are applied throughout the model, so units
are randomly dropped during the training process. In addition, the weights and biases
of the LSTM units are regularized using L1 regularization.

As in the works of Gao et al. (2017) and Zhou et al. (2018), the embedding lay-
ers of the input attributes could be initialized by training embeddings in a separate
model, similar to learning word embeddings (Mikolov, Chen, Corrado & Dean 2013).
Hence, attribute values that appear in similar contexts in trajectories will have similar
embeddings. Although this method is good for capturing attributes similarity, these
embeddings may substantially spoil the performance of a classifier, making it harder
to discriminate between different classes (labels).

In the following section we present an experimental evaluation, showing the robust-
ness of our method in relation to state-of-the-art approaches.

4. Experimental Evaluation

We evaluate our approach over four real-world trajectory datasets extracted from the
Foursquare, Brightkite, and Gowalla LBSNs. These datasets have been widely used in
several works on both trajectory classification (Gao et al. 2017, Zhou et al. 2018) and
next POI prediction (Zhao et al. 2017, Feng et al. 2018).
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We compare our work to the state-of-the-art methods that can handle trajectories
that have other dimensions than space and time. These works are Bi-TULER (Gao
et al. 2017) and TULVAE (Zhou et al. 2018), developed for LBSN trajectories, and
MOVELETS (Ferrero et al. 2018), that outperformed previous methods developed for
raw trajectories. We evaluate existing works using a similar approach to the Trajectory-
User Linking (TUL) problem described in Gao et al. (2017), in which the classification
task is to predict the corresponding user who generated a given trajectory. MARC was
implemented in Python using the Keras1 framework. For reproducibility purposes, we
made the source code of MARC available on GitHub2.

In the next few sections, we describe the datasets, the metrics used to evaluate the
results, the experimental setup, and the achieved results.

4.1. Datasets

We run the experiments over four datasets extracted from the Foursquare, Brightkite,
and Gowalla LBSNs: (i) a dataset of Foursquare check-ins in New York, USA, col-
lected between April 2012 and February 2013 (Yang et al. 2015); (ii) a dataset of
Foursquare check-ins in several cities around the world, collected between April 2012
and September 2013 (Yang et al. 2016); (iii) a dataset of user check-ins around the
world on Brightkite, collected between April 2008 and October 2010 (Cho et al. 2011);
and (iv) a dataset of user check-ins around the world on the Gowalla LBSN, collected
between February 2009 and October 2010 (Cho et al. 2011).

Tables 1 and 2 describe the attributes of trajectory points in each dataset. In order
to show that our approach can handle many dimensions and that additional infor-
mation contributes to the classification of trajectories, we enrich the original dataset
with more information. For the Foursquare datasets, we enriched check-in data with
venue information (e.g. price tier and rating) collected from the Foursquare API3. In
addition, weather information was collected from the Weather Wunderground API4

and added to each check-in in the Foursquare NYC dataset. We enrich trajectories
with information that may affect the movement behavior of a moving object. As we
mentioned in Section 1, an example of such influence has been shown in Brum-Bastos
et al. (2018), where different commuter patterns were observed according to different
weather conditions. Lastly, the attribute User ID is the label of each trajectory in the
datasets.

In order to ensure variability and consistency in the evaluation, we applied a few
transformations to the datasets. For the Foursquare datasets we removed noisy check-
ins belonging to broad categories, such as roads and neighborhoods, because each venue
has a unique geographic location. We also removed duplicated check-ins considering
a 10-minute threshold. For all datasets, we created weekly trajectories from each user
check-in, and we selected only trajectories with at least 10 check-ins, as well as users
who have at least 10 weekly trajectories. For the Gowalla and Brightkite datasets
we randomly selected 300 users. Table 3 shows the statistics of the curated datasets.
As may be observed, the evaluated datasets are heterogeneous, with different sizes,
number of classes, and trajectories.

1https://keras.io/
2https://github.com/bigdata-ufsc/petry-2020-marc
3https://developer.foursquare.com/
4https://www.wunderground.com/weather/api/
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Table 1.: Attributes description of Foursquare NYC and Foursquare Global.

Attribute Type Range/example N.

POI Nominal {15703, 21580, . . . } {13,848; 131,155}
Space Composite {(38.7423, -90.3658), . . . } -
Category Nominal {Arts & Entertainment, College & University, . . . } 10
Price tier Numeric {−999, 1, 2, 3, 4} 5
Rating Numeric {−999} ∪ [4.0, 10.0] 62
Hour Numeric [0, 23] 24
Weekday Nominal {Monday, Tuesday, . . . , Sunday} 7
Weather1 Nominal {Clear, Clouds, Rain, . . . } 6
User ID Nominal {1, 2, 3, . . . } {193; 498}

1 Available only for the Foursquare NYC dataset.

Table 2.: Attributes description of Brightkite and Gowalla.

Attribute Type Range/example N.

POI Nominal {19959, 74884, . . . } {4,913; 24,374}
Space Composite {(38.7423, -90.3658), . . . } -
Hour Numeric [0, 23] 24
Weekday Nominal {Monday, Tuesday, . . . , Sunday} 7
User ID Nominal {142, 143, . . . } 300

4.2. Metrics

For each dataset we report Accuracy at K (ACC@K), Macro Precision (Macro-P),
Macro Recall (Macro-R), and Macro F1 score (Macro-F1), which are commonly used
metrics in classification and information retrieval (Manning et al. 2008).

ACC@K shows how well each technique correctly estimates the probability of the
correct trajectory labels among the K most probable labels. We compute ACC@K as

ACC@K =
1

|Ttest|
∑

T∈Ttest

1T∈LK(T ) (2)

where Ttest is the set of trajectories in the test split and LK(T ) is the set of K labels
with the highest probabilities predicted for trajectory T . Macro-P and Macro-R are
the mean precision and recall among all classes, respectively, computed as follows

Macro-P =
1

|L|
∑
L∈L

TPL

TPL + FPL
(3)

Macro-R =
1

|L|
∑
L∈L

TPL

TPL + FNL
(4)

where TPL, FPL, and FNL are the number of true positives, false positives, and false
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Table 3.: Summary of the datasets (averages reported in the format AVG ± SD).

Dataset
# of

points
# of

trajectories
# of

labels
Avg.

traj. length
Avg. # of

traj. per class/label

ß Brightkite 130, 494 7, 911 300 16.50± 7.07 26.37 ± 16.37
Foursquare Global 663, 020 20, 911 498 31.71± 22.05 41.99 ± 13.04
Foursquare NYC 66, 962 3, 079 193 21.75± 14.46 15.95 ± 6.33
Gowalla 98, 158 5, 329 300 18.42± 8.05 17.76 ± 8.20

negatives for class L, respectively. While Macro-P shows the ability of the classifier
not to give false positives for each class, Macro-R exhibits its ability to retrieve all
relevant trajectories of each class. Macro-F1 is the harmonic mean of Macro-P and
Macro-R, averaged across all classes, computed as

Macro-F1 =
2 ·Macro-P ·Macro-R

Macro-P + Macro-R
(5)

4.3. Experimental Setup

On all the datasets we run the experiments performing a stratified holdout evaluation,
with 2/3 of the data for training and 1/3 for validation. In order to show the robustness
of our work, we run an additional experiment on a modified version of the Foursquare
datasets in which the POI identifier is generalized to POI category and the spatial
dimension is removed. This is motivated by the fact that human movement exhibits
high spatio-temporal regularity, so users tend to visit a few POIs regularly (Gonzalez
et al. 2008). Therefore, the POIs visited by a user, as well as the spatial dimension, are
highly discriminative information, and, because of privacy concerns (Seidl et al. 2016),
in some situations the exact locations visited by users may not be publicly available.
Hence, we consider this further experiment to be representative of a realistic scenario,
which is harder than the one typically faced in previous literature.

We use 100-dimensional embeddings and 100 LSTM units for MARC and we run
three variants of our model: MARC-S, MARC-A, and MARC-C, which use sum, aver-
age, and concatenation for attribute aggregation, respectively. We also run a variant
of our method, named MARC (Geohash), with only the space dimension, so that we
can validate the use of the Geohash representation in the model.

For Bi-TULER and TULVAE we use the same settings reported in the respective
papers. We embed POIs into 250-dimensional vectors and use 300 units for the classifier
RNNs. We use 512 units for the encoder-decoder RNN and 100 units for the latent
variable z in TULVAE. For MOVELETS, we experimented several attributes and their
combinations and report the best results, achieved by using only the POI identifiers.
For the experiment where the POI identifier is removed we consider all trajectory
attributes. Additionally, as we run MOVELETS for multiple-aspect trajectories, we
use binary distance for nominal features and euclidean distance for numeric, temporal,
and spatial dimensions. We evaluated MOVELETS with a single-layer MLP classifier
with 100 units, Decision Trees and Random Forest, and only the best results (achieved
with MLP) are reported. For all networks we use a dropout rate of 0.5, batch size of
64, and we minimize the categorical cross entropy loss using the Adam optimizer with
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Table 4.: Classification results on stratified holdout evaluation, considering all attributes available in the datasets.

Dataset Metric
Bi-TULER

(Gao et al. 2017)
MOVELETS

(Ferrero et al. 2018)
TULVAE

(Zhou et al. 2018)
MARC-S MARC-A MARC-C

MARC
(Geohash)

Foursquare
NYC

ACC@1 48.20 97.66 54.33 97.57 98.05 98.64 93.77
ACC@5 67.38 98.93 73.81 98.93 98.93 99.03 97.86
Macro-P 43.48 96.85 48.66 97.94 97.77 98.34 94.33
Macro-R 41.88 96.67 47.32 96.94 97.50 98.24 92.56
Macro-F1 40.56 96.45 46.54 97.11 97.37 98.20 92.75

Foursquare
Global

ACC@1 80.58 76.661 80.67 98.78 98.65 99.07 96.67
ACC@5 90.23 80.381 90.48 99.33 99.20 99.31 98.87
Macro-P 81.69 75.881 81.01 98.78 98.64 99.07 96.67
Macro-R 77.57 68.131 77.60 98.63 98.53 98.98 96.24
Macro-F1 78.31 70.271 78.07 98.64 98.52 98.97 96.28

Brightkite

ACC@1 90.64 90.55 88.41 96.35 96.01 96.85 94.92
ACC@5 95.55 93.79 92.15 98.62 98.62 98.99 97.61
Macro-P 88.98 93.53 85.00 95.97 95.85 96.76 93.90
Macro-R 88.23 87.92 83.86 95.43 95.00 96.21 93.19
Macro-F1 87.92 89.41 83.63 95.15 94.86 96.17 93.04

Gowalla

ACC@1 66.15 91.44 67.94 92.36 93.46 94.33 88.31
ACC@5 78.36 94.04 78.76 96.01 97.16 97.57 95.31
Macro-P 67.44 93.24 69.19 92.72 94.11 94.77 88.93
Macro-R 63.21 89.27 64.80 91.25 92.63 93.28 86.90
Macro-F1 63.26 90.25 64.91 91.13 92.43 93.28 86.81

1 We could not run MOVELETS without filtering the set of discovered MOVELETS, because too many are generated.

a learning rate of 10−3.
In the following sections we present the experimental results. In Section 4.4 we show

the classification results on the original datasets, and in Section 4.5 we present the
results on the modified version of the Foursquare datasets.

4.4. Classification Results

Table 4 shows the classification results for the proposed method and compared to ex-
isting techniques over the four datasets. For each metric, the best result is highlighted
in bold and the second best result is underlined. The results show that MARC system-
atically outperforms existing methods on all datasets. MOVELETS is the second best
method on Foursquare NYC, Brightkite (tied with Bi-TULER), and Gowalla, which
used only the POI identifiers to classify trajectories. Such results show that, indeed,
the POIs visited by users are highly discriminative data for trajectory classification.
Moreover, the high space complexity of MOVELETS is shown by the fact that we
were not able to run MOVELETS without filtering the set of discovered patterns on
Foursquare Global, the largest dataset evaluated.

Bi-TULER and TULVAE perform poorly on Foursquare NYC (accuracies of 48.20
and 54.33, respectively), but significantly better on Foursquare Global (accuracies
of 80.58 and 80.67, respectively), Brightkite (accuracies of 90.64 and 88.41, respec-
tively), and Gowalla (accuracies of 66.15 and 67.94, respectively). Considering the
three variations of our method, we observe that aggregating attributes via concate-
nation (MARC-C) yielded the best results for the majority of the metrics. However,
summing (MARC-S) and averaging (MARC-A) attributes also gave great results, on
average no more than 1% above or below concatenation scores. As stated in Sec-
tion 3, MARC-C uses embedded representations and weight matrices r times larger
than MARC-S and MARC-A (considering the same embedding dimension for all at-
tributes). Considering only the spatial dimension (MARC (Geohash)), we observe that
MARC was able to achieve competitive results with the compared approaches.
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Figure 5.: Classification accuracy (ACC@1) over training time (Epoch) of compared
approaches, considering the datasets with all attributes.

Figure 5 shows the convergence of ACC@1 for all methods on all datasets. All vari-
ants of MARC show fast convergence in comparison to existing deep learning methods,
Bi-TULER and TULVAE. Both Bi-TULER and TULVAE pre-learn embeddings for
POIs in an unsupervised manner, which we claim to be one of the underlying factors
for their worse performance. MOVELETS exhibits fast convergence as well, but it is
important to highlight that it uses a shallow neural network and there is an extensive
feature extraction process before the classification task is performed.

4.5. Classification Results for Generalized POIs and Without the Spatial
Dimension

Table 5 presents the results for the experiment where the POI identifier was generalized
to POI category and the spatial dimension removed. We highlight that this experiment
shows a more difficult yet realistic scenario, motivated by privacy concerns about the
users information. Similarly to the previous experiment, for each metric the best result
is highlighted in bold and the second best result is underlined. We observe that for all
methods the accuracy decreased significantly in comparison to the previous experiment
in which the detailed information of the POI identifier and the spatial dimension was
considered. However, among all approaches, MARC still keeps a significantly higher
accuracy when compared to state of the art.

Figure 6 shows the convergence of ACC@1 for all methods in this new scenario.
MARC achieves accuracies lower than the ones of Bi-TULER and TULVAE for the
first few epochs, because while they use pre-trained embeddings, we train an end-
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Table 5.: Classification results on stratified holdout evaluation, considering the datasets
without the POI identifiers.

Dataset Metric
Bi-TULER

(Gao et al. 2017)
MOVELETS

(Ferrero et al. 2018)
TULVAE

(Zhou et al. 2018)
MARC-S MARC-A MARC-C

Foursquare
NYC

ACC@1 33.50 41.58 32.81 74.10 70.59 74.87
ACC@5 60.76 67.96 61.15 88.32 87.83 88.12
Macro-P 29.58 38.76 29.55 73.16 70.83 75.19
Macro-R 29.70 36.93 29.52 71.28 67.34 72.23
Macro-F1 28.29 35.11 28.14 70.21 66.59 71.22

Foursquare
Global

ACC@1 34.70 51.88 34.40 81.97 81.47 81.55
ACC@5 60.46 73.74 62.01 92.73 92.74 92.28
Macro-P 34.22 54.64 33.64 82.47 82.55 82.20
Macro-R 33.43 49.96 32.96 80.53 80.16 80.34
Macro-F1 32.41 49.19 31.58 80.63 80.40 80.46
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Figure 6.: Classification accuracy (ACC@1) over training time (Epoch) of compared
approaches, considering the datasets without the POI identifiers.

to-end task. Afterwards, our models continue to learn whereas both Bi-TULER and
TULVAE converge to an accuracy of about 33%. MOVELETS also exhibits much
slower convergence compared to the previous experiment, which suggests that the
discovered patterns are not as discriminating as they were before. In summary, the
results of the experiments show that MARC is more robust than existing approaches,
and good classification accuracies can be achieved after only a few epochs of training.

5. Discussion

In Section 4, we showed that the proposed classification method, MARC, outper-
forms existing approaches in all datasets. Due to the lack of multiple-aspect trajectory
datasets from other domains, our evaluation was constrained to the TUL problem with
LBSN data, as this problem has been consistently addressed by previous works in the
literature (Gao et al. 2017, Zhou et al. 2018, Petry et al. 2019).

In the first experiment (Section 4.4), Bi-TULER and TULVAE performed poorly
on the Foursquare NYC dataset, but significantly better on the other ones. We con-
jecture that these results are related to (1) the larger size of these datasets and (2) the
geographic distribution of check-ins. Check-ins in the Foursquare Global, Brightkite,
and Gowalla datasets are distributed around the globe, so the data is inherently more
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discriminative than in the Foursquare NYC dataset. Moreover, although MARC-C
was the best performing variant of our method on all datasets, for applications with
memory/storage constraints MARC-S and MARC-A are the best alternatives, since
the sum and average of attributes results in fewer parameters (weights) in the neu-
ral network. Additionaly, the high scores achieved by MARC (Geohash) show that
the Geohash representation can successfully preserve the discriminative power of the
spatial dimension in neural networks.

In the second experiment (Section 4.4), we presented results considering a harder
and more realistic scenario in which very sensitive information of the datasets is not
available (visited POIs and spatial locations). Instead of relying on the specific loca-
tions and POIs visited by users, MARC leveraged user preference information (rating
and price tier of the visited POIs) and daily habits in order to discriminate between
different users. In this scenario, the accuracy of the other methods decreased sub-
stantially in comparison with the previous experiment, while MARC was still able
to perform classification with a high accuracy. We explain the poor performance of
previous works with two major aspects of this experiment. First, as we observed in
the previous experiment, the specific POI identifiers play a big role in discriminating
user trajectories. Bi-TULER and TULVAE consider only the POI attribute, which was
replaced by the POI category for this experiment. Since they do not consider multiple
trajectory attributes, their performance decreased substantially, achieving 33.50 and
32.81 accuracy on Foursquare NYC, and 34.70 and 34.40 on Foursquare Global, respec-
tively. Second, classifiers must be able to leverage between the remaining attributes in
order to correctly classify user based on their trajectories.

Although the MOVELETS technique supports multiple attributes, it always consid-
ers all attributes when looking for trajectory patterns, therefore the less discriminant
dimensions will then add noise to the pattern, as MOVELETS is not able to find
the best dimensions for classification problems. MOVELETS achieved 41.58 and 51.88
accuracies on Foursquare NYC and Global, respectively, and performed better than
Bi-TULER and TULVAE for all evaluated metrics on both datasets. The method
should perform better by using only the spatial dimension as it is a more discriminant
feature. However, by embedding multiple attributes and modelling complex sequential
patterns with MARC, we were able to achieve much higher accuracy and F1 scores
than existing approaches (between 70% and 92%).

MARC is generic enough to deal with different trajectory classification problems,
such as transportation mode inference, predicting the profile of a person, etc, as high-
lighted in Section 1. However, we expect our method to perform better in problems
with more textual/categorical attributes. This is because attributes are one-hot en-
coded (i.e. discretized), thus the precision of numerical attributes may be affected as
different values of the attribute may have the same one-hot encoding. In that case,
methods that explicitly define distance functions for numerical attributes (e.g. Ferrero
et al. (2018)) will most likely perform better than MARC. For example, the proposed
approach would probably perform well at predicting the profile of a person based
on qualitative attributes of the person, but would be not as good at predicting the
transportation mode of trajectory based on speed and direction information.

From a high-level point of view, the results show that MARC can be a useful tool
for other important tasks that affect our daily lives. Regarding social aspects, corre-
lating trajectories with their users allows for a better understanding of the movement
patterns of users, as well as identifying user profiles for making more personalized
recommendations. From a security point of view, identifying the user of a given tra-
jectory may be helpful, for instance, in identifying criminals or terrorists (Gao et al.
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2017). Even though in LBSNs the users may be already known, the classification model
may assist in the detection of hacked user profiles by identifying abnormal behavior
(through the analysis of the misclassifications made by the model).

6. Conclusions

In this paper we presented a new method, named MARC, for classifying multiple-
aspect trajectories. Our method focuses on the different spatial, temporal, and se-
mantic attributes that characterize multiple-aspect trajectories, and a multi-attribute
embedding layer is used to encode these heterogeneous dimensions. We leave to the
neural network the task of learning abstract features and sequential patterns that are
present in trajectory data. We designed an architecture with similar or lower network
complexity compared to existing works, yet it achieved significantly higher levels of
accuracy than other state-of-the-art approaches.

As future work, we will investigate the use of attention mechanisms for modelling
trajectory patterns, as it has shown to be a good approach for trajectory POI pre-
diction (Feng et al. 2018). Furthermore, we want to consider supervised approaches
for embedding attributes or trajectories, such as the use of the distance-based his-
togram loss (Ustinova & Lempitsky 2016) and prototypical networks (Snell et al.
2017), because we believe that trajectory attributes lose their discriminative power
when embedded through an unsupervised manner as in previous works.

Data and codes availability statement

The source code and data that support the findings of this study are partially available
in Figshare at https://doi.org/10.6084/m9.figshare.10269725. These data were
derived from the following resources available in the public domain:

• Brightkite dataset at https://snap.stanford.edu/data/loc-Brightkite.

html

• Gowalla dataset at https://snap.stanford.edu/data/loc-gowalla.html
• Foursquare datasets at https://sites.google.com/site/yangdingqi/home/

foursquare-dataset

The final processed data from Foursquare cannot be made publicly available in
order to comply with the Foursquare API Platform and Data Use Policy. Foursquare
venue data are available at https://developer.foursquare.com/places with the
permission of Foursquare.
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