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Abstract

We consider the Dirichlet eigenvalue problem

− div(|∇u|p−2∇u) = λ‖u‖p−q
q |u|q−2u,

where the unknowns u ∈ W 1,p
0 (Ω) (the eigenfunction) and λ > 0 (the

eigenvalue), Ω is an arbitrary domain in RN with finite measure, 1 < p <
∞, 1 < q < p∗, p∗ = Np/(N − p) if 1 < p < N and p∗ =∞ if p ≥ N . We
study several existence and uniqueness results as well as some properties
of the solutions. Moreover, we indicate how to extend to the general case
some proofs known in the classical case p = q.

1 Introduction

Let Ω be a domain (i.e., a connected open set) in RN with finite measure,
1 < p <∞, 1 < q < p∗ where p∗ = Np/(N − p) if p < N and p∗ =∞ if p ≥ N .
It is well-known that the Sobolev space W 1,p

0 (Ω) is compactly embedded in
Lq(Ω) and that

λ1(p, q) := inf
u∈W 1,p

0 (Ω), u 6=0

∫
Ω
|∇u|pdx

(
∫

Ω
|u|qdx)p/q

> 0. (1.1)

It is also well-known that the Rayleigh quotient in (1.1) admits a minimizer
which does not change sign in Ω. The Euler-Lagrange equation associated with
this minimization problem is

−div(|∇u|p−2∇u) = λ‖u‖p−qq |u|q−2u, (1.2)

where ‖u‖q denotes the norm of u in Lq(Ω). Usually in the literature, the
function u is normalized in order to get rid of the apparently redundant factor
‖u‖p−qq . However, we prefer to keep it since it allows to think of this problem
as an eigenvalue problem. Indeed, (1.2) is homogeneous; i.e., if u is a solution
then ku is also a solution for all k ∈ R, as one would expect from an eigenvalue
problem. It turns out that λ1(p, q) is the smallest eigenvalue of (1.2) and we
refer to it as the first eigenvalue.

The case p = q has been largely investigated by many authors and it
has been often considered as a typical eigenvalue problem (cf. e.g., Garćıa
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Azorero and Peral Alonso [1]); for extensive references on this subject we refer
to Lindqvist [17]. For the case p 6= q we refer again to [1], Ôtani [20, 21] and
Drábek, Kufner and Nicolosi [5] who consider an even more general class of
nonhomogeneous eigenvalue problems.

In this paper, we study several results and we indicate how to adapt to the
general case some proofs known in the case p = q.

First of all, we discuss the simplicity of λ1(p, q). We recall that λ1(p, q)
is simple if q ≤ p, as it is proved in Idogawa and Ôtani [11]. If q > p then
λ1(p, q) is not necessarily simple: for example, simplicity does not hold if Ω is a
sufficiently thin annulus, see Kawohl [12] and Nazarov [19]. However, if Ω is a
ball then the simplicity of λ1(p, q) is guaranteed also in the case q > p: here we
briefly describe the argument of Erbe and Tang [7].

By adapting the argument of Kawohl and Lindqvist [13], we prove that if
q ≤ p then the only eigenvalue admitting a non-negative eigenfunction is the
first one.

Moreover, by exploiting our point of view, we also give an alternative proof
of a uniqueness result of Drábek [4, Thm. 1.1] for the equation −∆pu = |u|q−2u,
see Theorem 4.4.

Finally, in the general case 1 < q < p∗, we observe that the point spectrum
σ(p, q) is closed as in the case p = q considered in [17] and we indicate how
to apply the Ljusternik-Schnirelman min-max procedure in order to define a
divergent sequence of eigenvalues λn(p, q), n ∈ N. Note that the existence
of infinitely many solutions to equation (1.2) is also proved in [1] where the
cases q < p and q > p are treated separately; instead, here we adopt a unified
approach.

We point out that in this paper we do not assume that Ω is bounded as
largely done in the literature, but only that its measure is finite.

2 The eigenvalue problem

Let Ω be a domain in RN with finite measure and 1 < p < ∞. By W 1,p(Ω)
we denote the Sobolev space of those functions in Lp(Ω) with first order weak
derivatives in Lp(Ω) endowed with its usual norm. By W 1,p

0 (Ω) we denote the
closure in W 1,p(Ω) of the C∞-functions with compact support in Ω.

It is well-known that the Poincaré inequality holds. Namely, for every 1 <
q < p∗ there exists C > 0 depending only on N, p, q such that

‖u‖Lq(Ω) ≤ C|Ω|
1
q−

1
p+ 1

N ‖∇u‖Lp(Ω), (2.1)

for all u ∈ W 1,p
0 (Ω). In particular it follows that λ1(p, q) defined in (1.1) is

positive and satisfies the inequality

λ1(p, q) >
1

Cp|Ω|p(
1
q−

1
p+ 1

N )
. (2.2)

Moreover, since the measure of Ω is finite, the embedding W 1,p
0 (Ω) ⊂ Lq(Ω) is

compact: this combined with the reflexivity of W 1,p
0 (Ω) guarantees the existence
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of a minimizer in (1.1). As we mentioned in the introduction, equation (1.2) is
the Euler-Lagrange equation corresponding to the minimization problem (1.1).
It is then natural to give the following definition where, as usual, equation (1.2)
is interpreted in the weak sense.

Definition 2.1. Let Ω be a domain in RN with finite measure, 1 < p <∞ and
1 < q < p∗. We say that λ > 0 is an eigenvalue of equation (1.2) if there exists
u ∈W 1,p

0 (Ω) \ {0} such that∫
Ω

|∇u|p−2∇u∇ϕdx = λ‖u‖p−qq

∫
Ω

|u|q−2uϕdx, (2.3)

for all ϕ ∈W 1,p
0 (Ω). The eigenfunctions corresponding to λ are the solutions u

to (2.3).

It is clear that all eigenvalues are positive and that λ1(p, q) is the least
eigenvalue. Moreover, the eigenfunctions corresponding to λ1(p, q) are exactly
the minimizers in (1.1). We recall the following known result.

Theorem 2.2. Let Ω be a domain in RN with finite measure, 1 < p <∞ and
1 < q < p∗. Let λ > 0 be an eigenvalue of equation (2.3) and u ∈ W 1,p

0 (Ω) be
a corresponding eigenfunction. Then u is bounded and its first derivatives are
locally Hölder continuous. Moreover, if u ≥ 0 in Ω then u > 0 in Ω.

As done in [17, Lemma 5.2] for the case q = p, the boundedness of u can be
proved by using the method of [15, Lemma 5.1]. The Hölder regularity of the
first order derivatives follows by Tolksdorf [24]. We note that the argument in
[17] allows to give a quantitative bound for u. Namely, by a slight modification
of [17, Lemma 5.2] one can prove that there exists a constant M > 0, depending
only on p, q,N , such that

‖u‖L∞(Ω) ≤Mλ
1
δp ‖u‖L1(Ω), (2.4)

where δ = 1/N if q ≤ p and δ = 1/q−1/p+1/N if q > p. We refer to Franzina [8]
for details. Finally, the fact that a non-negative eigenfunction does not vanish
in Ω can be deduced by the strong maximum principle in Garćıa-Meliàn and
Sabina de Lis [9, Theorem 1].

Corollary 2.3. Let Ω be a domain in RN with finite measure, 1 < p <∞ and
1 < q < p∗. Let u ∈W 1,p

0 (Ω)\{0} be an eigenfunction corresponding to λ1(p, q).
Then either u > 0 or u < 0 in Ω.

Proof. Clearly u is a minimizer in (1.1). Then also |u| is a minimizer, hence a
first eigenfunction. Thus by Theorem 2.2 |u| cannot vanish in Ω.

3 On the simplicity of λ1(p, q)

It is known that if q ≤ p then λ1(p, q) is simple. In fact we have the following
theorem by Idogawa and Ôtani [11, Theorem 4] the proof of which works word
by word also when Ω is not bounded.
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Theorem 3.1. Let Ω be a domain in RN with finite measure and 1 < q ≤ p <
∞. Then λ1(p, q) is simple; i.e., the eigenfunctions corresponding to λ1(p, q)
define a linear space of dimension one.

We refer to Kawohl, Lucia and Prashanth [14] for a recent generalization of
the previous result to some indefinite quasilinear problems. For the case p = q
we refer to Lindqvist [18].

In general, Theorem 3.1 does not hold if q > p; see [12] and [19] where the
case of a sufficiently thin annulus is considered. However, as one may expect,
if Ω is a ball then λ1(p, q) is simple. Basically, this depends on the following
theorem, cf. [12].

Theorem 3.2. Let Ω be a ball in RN centered at zero, 1 < p <∞ and 1 < q <
p∗. Then the eigenfunctions corresponding to λ1(p, q) are radial functions.

Theorem 3.2 allows to pass to spherical coordinates and to reduce our prob-
lem to an ODE as follows. If Ω is a ball centered at zero and u is a radial
function, u(x) = φ(|x|), then

−∆pu = −(p− 1)|φ′(r)|p−2φ′′(r)− N − 1

r
|φ′(r)|p−2φ′(r),

which is well-defined for all r > 0 such that φ is twice differentiable in r. Recall
that by standard regularity theory an eigenfunction u is twice differentiable
on the set {x ∈ Ω : ∇u(x) 6= 0}. By writing (1.2) in spherical coordinates
and multiplying both sides by rN−1 it follows that if u = φ(|x|) is a radial
eigenfunction corresponding to the eigenvalue λ and ‖u‖Lq(Ω) = 1 then

−(rN−1|φ′|p−2φ′)′ = λrN−1|φ|q−2φ. (3.1)

If in addition u is a first eigenfunction then u does not change sign in Ω; thus, by
integrating equation (3.1), one can easily prove that φ′ vanishes only at r = 0.
Hence φ is twice differentiable for all r > 0 and (3.1) is satisfied in the classical
sense for all r > 0.

To prove the simplicity of λ1(p, q) we use the following Lemma. The proof
is more or less standard (further details can be found in Franzina [8]).

Lemma 3.3. Let 1 < p < ∞, 1 < q < p∗ and λ, c > 0. Then the Cauchy
problem

−(rN−1|φ′|p−2φ′)′ = λrN−1|φ|q−2φ, r ∈ (0, R),

φ(0) = c, φ′(0) = 0,
(3.2)

has at most one positive solution φ in C1[0, R] ∩ C2(0, R).

Proof. We consider the operator T of C[0, R] to C[0, R] defined by

T (φ)(r) = c−
∫ r

0

g−1
( λ

tN−1

∫ t

0

sN−1|φ|q−2φds
)
dt, r ∈ [0, R], (3.3)

4



for all φ ∈ C[0, R], where g(t) = |t|p−2t if t 6= 0 and g(0) = 0 and g−1 denotes the
inverse function of g. It’s easily seen that every positive solution to the Cauchy
problem (3.2) is a fixed point of the operator T of class C1[0, R] ∩ C2(0, R).

Now let φ1, φ2 ∈ C1[0, R] ∩ C2(0, R) be two positive solutions to problem
(3.2). One can prove that there exists ε1 > 0 such that

‖T (φ1)− T (φ2)‖C[0,ε] 6 C1(ε)‖φ1 − φ2‖C[0,ε],

for all ε ∈ [0, ε1] where C1(ε) < 1. It follows that φ1 = φ2 in a neighborhood
of zero. Furthermore, let R0 = sup{ε > 0 : φ1 = φ2 on [0, ε]}. Arguing by
contradiction, assume that R0 < R. Then one can prove that there exists
0 < ε2 < R−R0 such that

‖T (φ1)− T (φ2)‖C[R0,R0+ε] 6 C2(ε)‖φ1 − φ2‖C[R0,R0+ε],

for all ε ∈ [0, ε2], where C2(ε) < 1. This implies that φ1 = φ2 in a neighborhood
of R0, a contradiction.

We point out that Lemma 3.3 does not immediately imply that λ1(p, q) is
simple in a ball; if N > 1 further technical work is required and the main step
is the following Lemma for which we refer to Erbe and Tang [7, Lemma 3.1].

Lemma 3.4. Let N > 1, 1 < p < ∞, 1 < q < p∗ and c1, c2 > 0. Let
φ1, φ2 ∈ C1[0, R] ∩ C2(0, R) be two positive solutions to the Cauchy problem
(3.2) with c = c1, c2 respectively. If c1 ≤ c2 then φ1 ≤ φ2.

By using Lemmas 3.3 and 3.4 we can deduce the validity of the following
result.

Theorem 3.5. Let Ω be a ball in RN , 1 < p < ∞ and 1 < q < p∗. Then
λ1(p, q) is simple.

Proof. For the case N = 1 we refer to [21, Theorem I]. Assume now that N > 1
and that Ω is a ball of radius R centered at zero. Let u1, u2 be two nonzero
eigenfunctions corresponding to the first eigenvalue λ1(p, q). We have to prove
that u1 and u2 are proportional. To do so we can directly assume that ‖u1‖q =
‖u2‖q = 1. Moreover, by Corollary 2.3 we can assume without loss of generality
that u1, u2 > 0 on Ω. By Theorem 3.2 u1, u2 are radial functions hence they can
be written as u1 = φ1(|x|), u2 = φ2(|x|) for suitable positive functions φ1, φ2 ∈
C1[0, R] ∩ C2(0, R) satisfying condition φ′1(0) = φ′2(0) = 0 and equation (3.1)
with λ = λ1(p, q). If φ1(0) 6= φ2(0), say φ1(0) < φ2(0), then by Lemma 3.4 φ1 ≤
φ2 in Ω hence ‖u1‖q < ‖u2‖q, since by continuity u1 < u2 in a neighborhood
of zero. A contradiction. Thus φ1(0) = φ2(0), hence by Lemma 3.3 φ1 = φ2 or
equivalently u1 = u2.

4 Further uniqueness results

By Corollary 2.3 the first eigenvalue admits a non-negative eigenfunction. It is
well-known that no other eigenvalues enjoy this property when p = q. This can
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be proved also in the case q ≤ p. The proof of the following theorem exploits an
argument used by Ôtani and Teshima [22] in the case of bounded smooth open
sets combined with an argument of Lindqvist and Kawhol [13] which allows to
deal with rough boundaries.

Theorem 4.1. Let Ω be a domain in RN with finite measure and 1 < q ≤ p. If
λ is an eigenvalue of (1.2) admitting a positive eigenfunction then λ = λ1(p, q).

Proof. We argue by contradiction and assume that λ1(p, q) < λ. Let u1 ∈
W 1,p

0 (Ω) \ {0} be a positive eigenfunction corresponding to λ1 = λ1(p, q) and u
be a positive eigenfunction corresponding to λ. We directly assume that u1 ≤ u
in Ω, otherwise one can use the approximation argument of [13] (which works
also in the case of unbounded domains). Since q ≤ p it follows that for all
nonnegative test functions ϕ,∫

Ω

|∇u1|p−2∇u1 · ∇ϕdx = λ‖(λ1/λ)
1
p−1u1‖p−qq

∫
Ω

(
(λ1/λ)

1
p−1 u1

)q−1

ϕdx

≤ λ‖ηu‖p−qq

∫
Ω

(ηu)
q−1

ϕdx

=

∫
Ω

|∇ηu|p−2∇ηu · ∇ϕdx,

(4.1)

where η = (λ1/λ)
1
p−1 . By choosing ϕ = max{u1 − ηu, 0} in (4.1) and using the

argument in the proof of [22, Lemma 3] (see also [13]) we deduce that u1 ≤ ηu
and by iteration u1 ≤ ηnu for all n ∈ N. Since 0 < η < 1, by passing to the
limit as n→∞ we obtain u1 = 0, a contradiction.

By Theorem 4.1 we deduce the validity of the following corollary which is
well-known in the case of bounded smooth domains (cf. e.g. Huang [10]).

Corollary 4.2. Let Ω be a domain in RN with finite measure and 1 < q < p.
The equation

−∆pv = |v|q−2v (4.2)

has a unique positive solution in W 1,p
0 (Ω) \ {0}.

Proof. Existence follows immediately by observing that if u is a nonzero eigen-
function of (1.2) then

v =
u

λ
1
p−q ‖u‖q

is a solution to (4.2), hence the first eigenfunction provides a positive solution
to (4.2). We now prove uniqueness. Observe that if v 6= 0 is a solution to (4.2)
then v is an eigenfunction corresponding to the eigenvalue

λ =
1

‖v‖p−qq

. (4.3)
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Accordingly, by Theorem 4.1 two positive solutions v1, v2 of (4.2) would be
eigenfunctions corresponding to λ1(p, q). Thus such solutions would be propor-
tional by Theorem 3.1. Since p 6= q proportionality implies coincidence and
then v1 = v2.

We recall that the solutions to (4.2) are exactly the critical points of the
functional

J(v) :=
1

p

∫
Ω

|∇v|pdx− 1

q

∫
Ω

|v|qdx,

defined for all v ∈ W 1,p
0 (Ω). The functional J can be used to give a condition

equivalent to the simplicity of λ1(p, q). In fact, we have the following

Lemma 4.3. Let Ω be a domain in RN with finite measure, 1 < p < ∞ and
1 < q < p∗ with q 6= p. Let Spq be the set of all nontrivial solutions to (4.2).
If w ∈ Spq is a point of minimum for the restriction of J to Spq then w is
an eigenfunction corresponding to λ1(p, q). In particular, λ1(p, q) is simple if
and only if the restriction of J to Spq has a unique (up to the sign) point of
minimum.

Proof. Note that if v ∈ Spq then
∫

Ω
|∇v|pdx =

∫
Ω
|v|qdx. Thus

J(v) =
(1

p
− 1

q

)∫
Ω

|v|qdx,

for all v ∈ Spq. Moreover, v ∈ Spq if and only if v is an eigenfunction of equation
(1.2) corresponding to an eigenvalue λ satisfying (4.3). It follows that a function
w ∈ Spq minimizes the restriction J|Spq of J to Spq if and only if w minimizes
the functional defined on Spq by (4.3). In particular, if w ∈ Spq minimizes
J|Spq and λ1(p, q) is simple then w = ku, k ∈ R where u is the eigenfunction
corresponding to λ1(p, q) uniquely determined by the conditions u > 0 in Ω and

‖u‖q = 1; moreover, since ku satisfies equation (4.2) then k = ±λ1(p, q)
1
q−p ,

hence w is uniquely determined up to the sign. To conclude the proof it suffices
to observe that if v is an eigenfunction corresponding to λ1(p, q) and satisfies
(4.3) with λ = λ1(p, q) then v minimizes J|Spq .

By Lemma 4.3 and Theorem 3.1 we deduce the following result of Drábek [4,
Thm. 1.1] for the case 1 < q < p.

Theorem 4.4. Let Ω be a domain in RN with finite measure and 1 < q < p.
Equation (4.2) has a unique (up to the sign) nontrivial solution w ∈ W 1,p

0 (Ω)
with the following property: J(w) ≤ J(v) if v ∈W 1,p

0 (Ω) is a nontrivial solution
to equation (4.2). Moreover, w is an eigenfunction corresponding to λ1(p, q).

Proof. The proof follows immediately by Lemma 4.3 and by observing that by
Theorem 3.1 λ1(p, q) is simple since q < p.
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5 On the spectrum σ(p, q)

We denote by σ(p, q) the set of all the eigenvalues of (1.2). We refer to σ(p, q)
as the spectrum of the p-Laplacian.

The following result is well-known in the case p = q: the proof given in [17,
Theorem 5.1] does not require any significant modification.

Theorem 5.1. Let Ω be a domain in RN with finite measure, 1 < p <∞ and
1 < q < p∗. Then σ(p, q) is a closed set.

As in the case p = q, it is possible to produce an infinite sequence of eigenval-
ues by means of a min-max procedure which generalizes the well-known min-max
Courant principle. Namely, for all n ∈ N we set

λn(p, q) = inf
M∈M(p,q)

sup
u∈M

∫
Ω
|∇u|pdx( ∫

Ω
|u|qdx

)p/q , (5.1)

where M(p, q) is the family of those conic subsets M of W 1,p
0 (Ω) \ {0}, whose

intersection with the unit sphere of Lq(Ω) is compact in W 1,p
0 (Ω) and whose

Krasnoselskii’s genus γ(M) is greater than or equal to n. Recall that

γ(M) = min
{
k ∈ N : ∃F ∈ C

(
M,Rk \ {0}

)
, F (f) = −F (−f)∀f ∈M

}
,

(5.2)
where C(M,Rk \ {0}) denotes the space of all continuous functions of M to
Rk \ {0}. It is understood that γ(M) = ∞ if the set in the right-hand side of
(5.2) is empty.

The following theorem is proved by applying the abstract result of Szulkin [23,
Cor. 4.1, p. 132 ] as done in Cuesta [3, Prop. 4.5, p. 85] where one can find a
detailed proof for the case p = q.

Theorem 5.2. Let Ω be domain in RN with finite measure, 1 < p < ∞ and
1 < q < p∗. Then λn(p, q) ∈ σ(p, q) and limn→∞ λn(p, q) =∞.

Proof. Let I and E be the functions of W 1,p
0 (Ω) to R defined by

I(u) =
(∫

Ω

|u|qdx
)p/q

, E(u) =

∫
Ω

|∇u|pdx,

for all u ∈W 1,p
0 (Ω) and let M = {u ∈W 1,p

0 (Ω) : I(u) = 1}. Note that I and E
are of class C1 and that M is a closed submanifold of W 1,p

0 (Ω) of codimension
one whose tangent space at a point u is given by TuM = ker duI. It is clear that
the eigenvalues λ of (1.2) are exactly the critical levels of E restricted to M ;
i.e., are those real numbers λ for which there exists u ∈M such that E(u) = λ
and TuM ⊂ ker duE. It is not difficult to adapt the argument in Cuesta [3] to
prove that E satisfies the well-known Palais-Smale condition on M . Thus, by
applying [23, Cor. 4.1, p. 132 ] to the functions I, E it follows that the numbers
λn(p, q) are critical levels of E restricted to M .
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It remains to prove that limn→∞ λn(p, q) =∞. To do so we use an argument
in Zeidler [25, Ch. 44]. First of all, we recall that by [25, Lemma 44.32] for every
n ∈ N there exist a finite-dimensional subspace Xn of W 1,p

0 (Ω) and an odd
continuous operator Pn of W 1,p

0 (Ω) to Xn such that for every u ∈ W 1,p
0 (Ω) we

have that ‖Pnu‖W 1,p
0 (Ω) ≤ ‖u‖W 1,p

0 (Ω) and Pnun converges weakly in W 1,p
0 (Ω)

to u for all sequences un, n ∈ N weakly convergent in W 1,p
0 (Ω) to u. Clearly,

it suffices to prove that for any fixed L > 0 there exists n ∈ N such that
supu∈AE(u) > L for all symmetric subsets A of M such that A is compact

in W 1,p
0 (Ω) and γ(A) ≥ n. Assume to the contrary that there exists L > 0

such that this is not the case and set BL = {u ∈ M : E(u) ≤ L}. By means
of a simple contradiction argument one can prove that there exists nL ∈ N
such that infu∈BL ‖PnLu‖W 1,p

0 (Ω) > 0 hence PnLu 6= 0 for all u ∈ BL. Let

kL = dimXnL + 1. By assumption there exists a symmetric subset A of M
such that A is compact, γ(A) ≥ kL and supu∈AE(u) ≤ L. Since A ⊂ BL then
PnLu 6= 0 for all u ∈ A hence γ(PnL(A)) ≥ kL; on the other hand PnL(A) ⊂ XnL

hence γ(PnL(A)) ≤ dimXnL = kL − 1, a contradiction.

We remark that, despite the results of Binding and Rynne [2] who have
recently provided examples of nonlinear eigenvalue problems for which not all
eigenvalues are variational, it is not clear yet whether for our problem the varia-
tional eigenvalues exhaust the spectrum if N > 1, not even in the classical case
p = q. However, a complete description of σ(p, q) is available for N = 1, see
Ôtani [21] and Drábek and Manásevich [6].

The following theorem is a restatement of [6, Theorems 3.1, 4.1]. We include
a detailed proof of (5.3) for the convenience of the reader. Recall that the
function defined by

arcsinpq(t) =
q

2

∫ 2t
q

0

ds

(1− sq)
1
p

,

for all t ∈ [0, q/2], is a strictly increasing function of [0, q/2] onto [0, πpq/2]
where πpq = 2 arcsinpq(q/2) = B(1/q, 1 − 1/p) and B denotes the Euler Beta
function. The inverse function of arcsinpq, which is denoted by sinpq, is ex-
tended to [−πpq, πpq] by setting sinpq(θ) = sinpq(πpq − θ) for all θ ∈]πpq/2, πpq],
sinpq(θ) = − sinpq(−θ) for all θ ∈ [−πpq, 0[, and then it is extended by period-
icity to the whole of R.

Theorem 5.3. If N = 1 and Ω = (0, a) with a > 0 then

λ1(p, q) = q
p(1−q)
q

( 2πpq

a
1
q−

1
p+1

)p(
1− 1

p

)(1

q
− 1

p
+ 1
) p−q

q

, (5.3)

and λn(p, q) = npλ1(p, q) for all n ∈ N. Moreover, σ(p, q) = {λn(p, q) : n ∈ N},
λn(p, q) is simple for all n ∈ N and the corresponding eigenspace is spanned by
the function un(x) = sinpq

(nπpq
a x

)
, x ∈ (0, a).
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Proof. Let u be an eigenfunction corresponding to λ1(p, q) with u > 0 on (0, a)
and ‖u‖Lq(0,a) = 1. By [21, Lemma 2.5] it follows that

p− 1

p
|u′(x)|p +

λ1(p, q)

q
|u(x)|q =

p− 1

p
|u′(0)|p, (5.4)

for all x ∈ (0, a). Recall that u′(x) > 0 for all x ∈ (0, a/2) and u′(a/2) = 0.
Thus, by setting y = u(x)/u(a/2) and by means of a change if variables in
integrals it follows by (5.4) that

a = 2

∫ a/2

0

dx

= 2
( q(p− 1)

λ1(p, q)p

)1/q

|u′(0)|p/q−1

∫ 1

0

(1− yq)−1/pdy

=
2

q

( q(p− 1)

λ1(p, q)p

)1/q

|u′(0)|p/q−1πpq.

(5.5)

By integrating (5.4) and recalling that λ1(p, q) = ‖u′‖pLp(0,a) it follows that(p− 1

p
+

1

q

)
λ1(p, q) =

p− 1

p
|u′(0)|pa. (5.6)

By combining (5.5) and (5.6) we deduce (5.3).
By [21, Proposition 4.2, Theorem II], one can easily deduce that σ(p, q) =

{npλ1(p, q) : n ∈ N} which, combined with the argument used in [3, Proposi-
tion 4.6] for the case p = q, allows to conclude that λn(p, q) = npλ1(p, q). For
the proof of the last part of the statement we refer to [6].
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