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ABSTRACT
Constraint pushing techniques have been proven to be ef-
fective in reducing the search space in the frequent pattern
mining task, and thus in improving efficiency. But while
pushing anti-monotone constraints in a level-wise computa-
tion of frequent itemsets has been recognized to be always
profitable, the case is different for monotone constraints. In
fact, monotone constraints have been considered harder to
push in the computation and less effective in pruning the
search space. In this paper, we show that this prejudice is
not founded and introduce ExAnte, a pre-processing data
reduction algorithm which reduces dramatically both the
search space and the input dataset in constrained frequent
patterns mining. Experimental results show a reduction of
orders of magnitude, thus enabling a much easier mining
task. ExAnte can be used as a pre-processor with any con-
strained patterns mining algorithm.

Keywords: Data Mining, Constrained Frequent Patterns
Discovery, Pre-Processing.

ACM Computing Classification System: H.2.8 Database
Application - Data Mining

1. INTRODUCTION
Constrained itemsets mining is a hot research theme in data
mining [3, 6, 7, 8, 9, 10, 11, 12]. The most studied constraint
is the frequency constraint, whose anti-monotonicity is used
to reduce the exponential search space of the problem. Ex-
ploiting the anti-monotonicity of the frequency constraint is
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known as apriori trick [1, 2]: it dramatically reduces the
search space making the computation feasible. Frequency
is not only computationally effective, it is also semantically
important since frequency provides ”support” to any discov-
ered knowledge. For these reasons frequency is the base con-
straint of what is generally referred to as frequent itemsets
mining. However, many other constraints can facilitate user-
focussed exploration and control, as well as reduce the com-
putation. For instance, a user could be interested in mining
all frequently purchased itemsets having a total price greater
than a given threshold and containing at least two products
of a given brand. Among these constraints, classes have been
individuated which exhibit nice properties. The class of anti-
monotone constraints is the most effective and easy to use
in order to prune the search space. Since any conjunction of
anti-monotone constraints is in turn anti-monotone, we can
use the apriori trick to exploit completely the pruning power
of the conjunction: the more anti-monotone constraints, the
more selective the apriori trick will be.

The dual class, monotone constraints, has been considered
more complicated to exploit and less effective in pruning
the search space. As highlighted by Boulicaut and Jeudy in
[3], pushing monotone constraints can lead to a reduction
of anti-monotone pruning. Therefore, when dealing with a
conjunction of monotone and anti-monotone constraints we
face a tradeoff between anti-monotone and monotone prun-
ing. Our observation is that the above consideration holds
only if we focus completely on the search space of all item-
sets, which is the approach followed by the work done so
far.

In this paper we show that the most effective way of attack-
ing the problem is to reason on both the itemsets search
space and the transactions input database together. In this
way, pushing monotone constraints does not reduce anti-
monotone pruning opportunities, on the contrary, such op-
portunities are boosted. Dually, pushing anti-monotone con-
straints boosts monotone pruning opportunities: the two
components strengthen each other recursively. We prove our
previous statement by introducing ExAnte, a pre-processing
data reduction algorithm which reduces dramatically both
the search space and the input dataset in constrained fre-
quent patterns mining.



ExAnte can exploit any constraint which has a monotone
component, therefore also succinct monotone constraints [9]
and convertible monotone constraints [10, 11] can be used
to reduce the mining computation. Being a preprocessing
algorithm, ExAnte can be coupled with any constrained pat-
terns mining algorithm, and it is always profitable to start
any constrained patterns computation with an ExAnte pre-
process. The correctness of ExAnte is formally proven in this
paper, by showing that the reduction of items and transac-
tion database does not affect the set of constrained frequent
patterns, which are solutions to the given problem, as well as
their support. We discuss a through experimentation of the
algorithm, which points out how effective the reduction is,
and which potential benefits it offers to subsequent frequent
pattern computation.

Our contributions:
Summarizing, the data reduction algorithm proposed in this
paper is characterized by the following:

• ExAnte uses for the first time, the real synergy of
monotone and anti-monotone constraints to prune the
search space and the input dataset: the total benefit
is greater than the sum of the two individual benefits.

• ExAnte can be used with any constraint which has a
monotone component: therefore also succinct mono-
tone constraints and convertible monotone constraints
can be exploited.

• ExAnte maintains the exact support of each solution
itemsets: a necessary condition if we want to compute
Association Rules.

• ExAnte can be used to make feasible the discovery of
particular patterns which can be discovered only at
very low support level, for which the computation is
unfeasible for traditional algorithms.

• Being a pre-processing algorithm, ExAnte can be cou-
pled with any constrained patterns mining algorithm,
and it is always profitable to start any constrained pat-
terns computation with an ExAnte preprocess.

• ExAnte is efficient and effective: even a very large in-
put dataset can be reduced of an order of magnitude
in a small computation.

• A thorough experimental study has been performed
with different monotone constraints on various datasets
(both real world and synthetic datasets), and the re-
sults are described in details.

2. PROBLEM DEFINITION
Let Items = {x1, ..., xn} be a set of distinct literals, usu-
ally called items. An itemset X is a non-empty subset
of Items. If k = |X| then X is called a k-itemset. A
transaction is a couple 〈tID, X〉 where tID is the trans-
action identifier and X is the content of the transaction
(an itemset). A transaction database TDB is a set of
transactions. An itemset X is contained in a transaction
〈tID, Y 〉 if X ⊆ Y . Given a transaction database TDB
the subset of transaction which contain an itemset X is
named TDB[X]. The support of an itemset X, written

{}

{c}{a} {b} {e}{d}

{a,b} {a,d}{a,c} {b,c} {b,d} {a,e} {c,d} {b,e} {c,e} {d,e}

{c,d,e}{b,d,e}{a,d,e}{b,c,e}{a,c,e}{a,b,d}{a,b,c}

{a,b,c,d} {a,b,c,e} {a,b,d,e} {a,c,d,e} {b,c,d,e}

{a,b,c,d,e}

{b,c,d}{a,b,e} {a,c,d}

Figure 1: Itemset lattice for Items = {a, b, c, d, e}. The
portion of lattice of supersets of {a, b} is highlighted.

suppTDB(X) is the cardinality of TDB[X]. Given a user-
defined minimum support δ, an itemset X is called fre-
quent in TDB if suppTDB(X) ≥ δ. This the definition of
the frequency constraint Cfreq[TDB]: if X is frequent we
write Cfreq[TDB](X) or simply Cfreq(X) when the dataset
is clear from the context.

Let Th(C) = {X|C(X)} denotes the set all itemsets X that
satisfy constraint C. The frequent itemset mining problem
requires to compute the set of all frequent itemsets Th(Cfreq).
In general given a conjunction of constraints C the con-
strained itemset mining problem requires to compute Th(C);
the constrained frequent itemsets mining problem requires to
compute Th(Cfreq) ∩ Th(C).

We now formally define the notion of anti-monotone and
monotone constraints.

Definition 1. Given an itemset X, a constraint CAM is
anti-monotone if

∀Y ⊆ X : CAM (X) ⇒ CAM (Y )

If CAM holds for X then it holds for any subset of X.

The frequency constraint is clearly anti-monotone. This
property is used by the APRIORI algorithm with the fol-
lowing heuristic: if an itemset X does not satisfy Cfreq, then
no superset of X can satisfy Cfreq, and hence they can be
pruned. This pruning can affect a large part of the search
space, since itemsets form a lattice as shown in Figure 1.
Therefore the APRIORI algorithm operates in a level-wise
fashion moving bottom-up on the itemset lattice, and each
time it finds an infrequent itemset it prunes away all its
supersets.

Definition 2. Given an itemset X, a constraint CM is mono-
tone if:

∀Y ⊇ X : CM (X) ⇒ CM (Y )

independently from the given input transaction database. If
CM holds for X then it holds for any superset of X.



Monotone constraint CM ≡
cardinality |X| ≥ n

sum of prices sum(X.prices) ≥ n
maximum price max(X.prices) ≥ n
minimum price min(X.prices) ≤ n
range of prices range(X.prices) ≥ n

Table 1: Monotone constraints considered in our
analysis.

Note that in the last definition we have required a monotone
constraint to be satisfied independently from the given input
transaction database. This is necessary since we want to
distinguish between simple monotone constraints and global
constraints such as the ”infrequency constraint”:

suppTDB(X) ≤ δ.

This constraint is still monotone but has different properties
since it is dataset dependent and it requires dataset scans in
order to be computed. Obviously, since our pre-processing
algorithm reduces the transaction dataset, we want to ex-
clude the infrequency constraint from our study. Thus, our
study focuses on ”local” monotone constraints, in the sense
that they depend exclusively on the properties of the item-
set (as those ones in Table1), and not on the underlying
transaction database.

The general problem that we consider in this paper is the
mining of itemsets which satisfy a conjunction of monotone
and anti-monotone constraints:

Th(CAM ) ∩ Th(CM ).

Since any conjunction of anti-monotone constraints is an
anti-monotone constraint, and any conjunction of monotone
constraints is a monotone constraint, we just consider two
constraints: one per class. In particular, we choose fre-
quency (CAM ≡ suppTDB(X) ≥ δ) as anti-monotone con-
straint, in conjunction with various simple monotone con-
straints (see Table1).

Th(Cfreq) ∩ Th(CM ).

Problem Characterization
The concept of border is useful to characterize the solution
space of the given problem. However, this notion is not
directly exploited by ExAnte.

Definition 3. Given an anti-monotone constraint CAM and
a monotone constraint CM we define their borders as:

B(CAM ) = {X|∀Y ⊂ X : CAM (Y ) ∧ ∀Z ⊃ X : ¬ CAM (Z)}

B(CM ) = {X|∀Y ⊃ X : CM (Y ) ∧ ∀Z ⊂ X : ¬ CM (Z)}
Moreover, we distinguish between positive and negative bor-
ders. Given a general constraint C we define:

B+(C) = B(C) ∩ Th(C)

B−(C) = B(C) ∩ Th(¬ C)

In Figure 2 we show the borders of two constraints: the anti-
monotone constraint supp(X) ≥ 2, and the monotone one
sum(X.prices) ≥ 14. In the given situation the borders are:

B+(CM ) = {e, acd, bcd} B+(CAM ) = {bcd, bce, ade}
B−(CM ) = {cd, abc, abd} B−(CAM ) = {ab, ac, bde, cde}

The solutions to our problem are the itemsets that lie in
between the two borders: under the anti-monotone border
and over the monotone border:

R = {e, ae, be, ce, de, bcd, bce, ade}
The next theorem proves algebraically what we have just
seen graphically.

Theorem 1.

X ∈ (Th(CAM ) ∩ Th(CM )) ⇔ ∃Y ∈ B+(CAM ) : X ⊆ Y ∧

∃Z ∈ B+(CM ) : X ⊇ Z

Proof. Trivially by definition of border:

X ∈ Th(CAM ) ⇔ CAM (X) ⇔ ∃Y ∈ B+(CAM ) : X ⊆ Y

X ∈ Th(CM ) ⇔ CM (X) ⇔ ∃Z ∈ B+(CM ) : X ⊇ Z

The ExAnte algorithm proposed in this paper allows to re-
duce the transaction database and the relevant 1-itemsets
without affecting the set of solutions Th(Cfreq) ∩ Th(CM )
and without exploiting the notion of border.

3. SEARCH SPACE AND INPUT DATA RE-
DUCTION

As already stated, if we focus only on the itemsets lattice,
pushing monotone constraint can lead to a less effective anti-
monotone pruning. Consider again Figure 1 and suppose
that {a, b} have been removed from the search space be-
cause it does not satisfy some monotone constraints CM .
This pruning avoids checking support for {a, b}. But it may
be that if we check support, {a, b} could result to be in-
frequent, and thus all its supersets could be pruned away.
By monotone pruning {a, b} we risk to loose anti-monotone
pruning opportunities given from {a, b} itself. The tradeoff
is clear [3]: pushing monotone constraint can save tests on
anti-monotone constraints, however the results of these tests
could have lead to more effective pruning.

In order to obtain a real amalgam of the two opposite prun-
ing strategies we have to consider the constrained frequent
patterns problem in its whole: not focussing only on the
itemsets lattice but considering it together with the input
database of transactions. In fact, as proved by the theorems
in the following section, monotone constraints can prune
away transactions from the input dataset without loosing
solutions. This monotone pruning of transactions has got
another positive effect: while reducing the number of trans-
actions in input it reduces the support of items too, hence
the total number of frequent 1-itemsets. In other words,



tID itemset

1 a,b,c
2 d
3 b,c,e
4 b,c,d,e
5 e
6 a,d,e
7 b,c,d
8 a,d,e

item price

a 4
b 3
c 5
d 6
e 15

{}

{c}{a} {b} {e}{d}

{a,b} {a,d}{a,c} {b,c} {b,d} {a,e} {c,d} {b,e} {c,e} {d,e}

{c,d,e}{b,d,e}{a,d,e}{b,c,e}{a,c,e}{a,b,d}{a,b,c}

{a,b,c,d} {a,b,c,e} {a,b,d,e} {a,c,d,e} {b,c,d,e}

{a,b,c,d,e}

{b,c,d}

B(Cm) B(Cam)

{a,b,e} {a,c,d}

Figure 2: The borders B(CM ) and B(CAM ) for the transaction database and the price table on the left with
CM ≡ sum(X.prices) ≥ 14 and CAM ≡ suppTDB(X) ≥ 2.

the monotone pruning of transactions strengthens the anti-
monotone pruning.

Moreover, infrequent items can be deleted by the compu-
tation and hence pruned away from the transactions in the
input dataset. This anti-monotone pruning has got another
positive effect: reducing the size of a transaction which sat-
isfies a monotone constraint can make the transaction vio-
lates the monotone constraint. Therefore a growing num-
ber of transactions which do not satisfy the monotone con-
straint can be found. We are clearly inside a loop where two
different kinds of pruning cooperates to reduce the search
space and the input dataset, strengthening each other step
by step until no more pruning is possible (a fix-point has
been reached). This is precisely the idea underlying ExAnte.

3.1 ExAnte Properties
In this section we formalize the basic ideas of ExAnte. First
we define the two kinds of reduction, than we prove the
completeness of the method. In the next section we provide
the pseudo-code of the algorithm.

Definition 4. [µ-reduction] Given a transaction database
TDB and a monotone constraint CM , we define the µ-reduc-
tion of TDB as the dataset resulting from pruning the trans-
actions that do not satisfy CM .

µ[TDB]CM = Th(CM ) ∩ TDB

(Recall here that a transaction is an itemset).

Definition 5. [α-reduction] Given a transaction database
TDB, a transaction 〈tID, X〉 and a frequency constraint
Cfreq[TDB], we define the α-reduction of 〈tID, X〉 as the
subset of items in X that satisfy Cfreq[TDB].

α[〈tID, X〉]Cfreq [TDB] = F1 ∩X

Where: F1 = {I ∈ Items|{I} ∈ Th(Cfreq[TDB])}. We
define the α-reduction of TDB as the dataset resulting from
the α-reduction of all transactions in TDB.

Example:

Items = {a, b, c, d, e, f, g} X = {a, c, d, f, g}
Th(CAM ) = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
F1 = {a, b, c}
α[〈tID, X〉]CAM = F1 ∩X = {a, c}

The following two key theorems state that we can always µ-
reduce and α-reduce a dataset without reducing the support
of solution itemsets. Moreover, since satisfaction of CM is
independent from the transaction dataset, all solution item-
sets will still satisfy it. Therefore, we can always µ-reduce
and α-reduce a dataset without loosing solutions.

Theorem 2 (µ-reduction correctness). Given a
transaction database TDB, a monotone constraint CM , and
a frequency constraint Cfreq, we have that:

∀X ∈ Th(Cfreq[TDB]) ∩ Th(CM ) :

suppTDB(X) = suppµ[TDB]CM
(X).

Proof. Since X ∈ Th(CM ), all transactions containing
X will also satisfy CM for the monotonicity property. In
other words: TDB[X] ⊆ µ[TDB]CM . This implies that:

suppTDB(X) = suppµ[TDB]CM
(X).

Theorem 3 (α-reduction correctness). Given a
transaction database TDB, a monotone constraint CM , and
a frequency constraint Cfreq, we have that:

∀X ∈ Th(Cfreq[TDB]) ∩ Th(CM ) :

suppTDB(X) = suppα[TDB]Cfreq
(X).

Proof. Since X ∈ Th(Cfreq), all subsets of X will be
frequent (by the anti-monotonicity of frequency). Therefore



no subset of X will be α-pruned (in particular, no 1-itemsets
in X). This implies that:

suppTDB(X) = suppα[TDB]Cfreq
(X).

3.2 ExAnte Algorithm
The two theorems above suggest a fix-point computation.
ExAnte starts the first iteration as any frequent patterns
mining algorithm: counting the support of singleton items.
Items that are not frequent are thrown away once and for
all. But during this first count only transactions that satisfy
CM are considered. The other transactions are signed to be
pruned from the dataset (µ-reduction). Doing so we reduce
the number of interesting 1-itemsets. Even a small reduc-
tion of this number represents a huge pruning of the search
space. At this point ExAnte deletes from alive transactions
all infrequent items (α-reduction). This pruning can reduce
the monotone value (for instance, the total sum of prices)
of some alive transactions, possibly resulting in a violation
of the monotone constraints. Therefore we have another
opportunity of µ-reducing the dataset. But µ-reducing the
dataset we create new opportunities for α-reduction, which
can turn in new opportunities for µ-reduction, and so on,
until a fix-point is reached. the pseudo-code of ExAnte al-
gorithm follows:

Procedure: ExAnte(TDB, CM , min supp)

1. I := ∅;
2. forall tuples t in TDB do

3. if CM (t) then forall items i in t do

4. i.count++; if i.count ≥ min supp then I := I ∪ i;

5. old number interesting items := |Items|;
6. while |I| < old number interesting items do

7. TDB := α[TDB]Cfreq
;

8. TDB := µ[TDB]CM
;

9. old number interesting items := |I|;
10. I := ∅;
11. forall tuples t in TDB do

12. forall items i in t do

13. i.count + +;

14. if i.count ≥ min supp then I := I ∪ i;

15. end while

Clearly, a fix-point is eventually reached after a finite num-
ber of iterations, as at each step the number od alive items
strictly decreases.

3.3 Run-through Example
Suppose that the transaction and price dataset in Table 2 are
given. Suppose that we want to compute frequent itemsets
(min supp = 4) with a sum of prices ≥ 45.

During the first iteration the total price of each transaction
is checked to avoid using transactions which do not satisfy
the monotone constraint. All transaction with a sum of
prices ≥ 45 are used to count the support for the singleton
items. Only the fourth transaction is discarded. At the end

item price
a 5
b 8
c 14
d 30
e 20
f 15
g 6
h 12

tID Itemset Total price
1 b,c,d,g 58
2 a,b,d,e 63
3 b,c,d,g,h 70
4 a,e,g 31
5 c,d,f,g 65
6 a,b,c,d,e 77
7 a,b,d,f,g,h 76
8 b,c,d 52
9 b,e,f,g 49

Table 2: Run-through Example: price table and
transaction database.

Supports
Items 1st 2nd 3rd

a 3 † †
b 7 4 4
c 5 5 4
d 7 5 4
e 3 † †
f 3 † †
g 5 3 †
h 2 † †

Table 3: Run-through Example: items and their
supports iteration by iteration.

of the count we find items a, e, f and h to be infrequent.
Note that, if the fourth transaction had not been discarded,
items a and e would have been counted as frequent. At
this point we perform an α-reduction of the dataset: this
means removing a, e, f and h from all transactions in the
dataset. After the α-reduction we have more opportuni-
ties to µ-reduce the dataset. In fact transaction 2, which
at the beginning has a total price of 63, now has its total
price reduced to 38 due to the pruning of a and e. This
transaction can now be pruned away. The same reasoning
holds for transactions number 7 and 9. At this point Ex-
Ante counts once again the support of alive items with the
reduced dataset. The item g which initially has got a sup-
port of 5 now has become infrequent (see Table 3 for items
support iteration by iteration). We can α-reduce again the
dataset, and then µ-reduce. After the two reductions trans-
action number 5 does not satisfy anymore the monotone
constraint and it is pruned away. ExAnte counts again the
support of items on the reduced datasets but no more items
are found to have turned infrequent.

The fix-point has been reached at the third iteration: the
dataset has been reduced from 9 transactions to 4 trans-
actions (number 1,3,6 and 8), and interesting itemsets have
shrunk from 8 to 3 (b, c and d). At this point any constrained
frequent pattern algorithm would find very easily the unique
solution to problem which is the 3-itemset 〈b, c, d〉.

4. EXPERIMENTAL RESULTS
In this section we deeply describe the experimental study
that we have conducted with different monotone constraints
on various datasets. In particular, the monotone constraints
used in the experimentation are in Table 1.



Max Avg
Dataset Transactions Items Trans Trans

Size Size
POS 515,597 1657 164 6.5
IBM 8,533,534 100,000 37 11.21

FoodMart 54537 1560 28 4.6
Italian 186,824 4800 31 10.42

Table 4: Characteristics of datasets used in the ex-
periments.

Dataset Min Price Max Price Avg Price
FoodMart 0.5 3.98 2

Italian 100 900,000 6454.87

Table 5: Characteristics of the price datasets used
in the experiments.

In addition, we have experimented a harder to exploit con-
straint: avg(X.prices) ≥ n. This constraint is clearly nei-
ther monotone nor anti-monotone, but can exhibit a mono-
tone (or anti-monotone) behavior if items are ordered by
ascending (or descending) price, and frequent patterns are
computed following a prefix-tree approach. This class of
constraints, named convertible, has been introduced in [10].
In our experiments the constraint avg(X.prices) ≥ n is
treated by inducing a conjunction of two weaker monotone
constraints: sum(X.prices) ≥ n and max(X.prices) ≥ n.

Note that in every reported experiment we have chosen
monotone constraints thresholds that are not very selective:
there are always solutions to the given problem.

The test bed architecture used in our experiments was a
Windows2000 based personal computer, equipped with a
Pentium III processor running at 866MHz and 1GB RAM.
ExAnte was implemented using Microsoft Visual C++ 6.0.

For a more detailed report of our experiments see [5].

4.1 Datasets used
In our experiments we have used four datasets with differ-
ent characteristics (see Table 4). The first dataset, named
”POS”, was used in the KDD-Cup 2000 competition and
it is described in [13]. The dataset is available from the
KDD-Cup 2000 home page1. ”POS” is a real world dataset
containing several years worth of point-of-sale data from a
large electronic retailer, aggregated at the product category
level.

”IBM” is a synthetic dataset obtained with the most com-
monly adopted dataset generator, available from IBM Al-
maden2. We have generate a very large dataset since we
have not been able to find a real-world dataset over one
million transactions.

”FoodMart” has been obtained from the FoodMart2000 database
which is provided as demo with Microsoft SQL Server. We
have constructed transactions grouping by CustomerID and
TimeID at the product level. We have chosen this database

1
http://www.ecn.purdue.edu/KDDCUP/

2
http://www.almaden.ibm.com/cs/quest/syndata.html#assocSynData

Iteration Transactions 1-itemsets
0 8533534 2367
1 1033508 398
2 323519 296
3 280186 289
4 278288 289

Execution time: 45.6 sec

Table 6: Execution of ExAnte on Dataset ”IBM”
with min supp = 7000 and cardinality ≥ 6

Iteration Transactions 1-itemsets
0 17306 2010
1 13167 1512
2 11295 1205
3 10173 1025
4 9454 901
5 9005 835
6 8730 785
7 8549 754
8 8431 741
9 8397 736
10 8385 734
11 8343 729
12 8316 726
13 8312 724
14 8307 722
15 8304 722

Execution time: 1.5 sec

Table 7: Execution of ExAnte on Dataset ”Italian”
with min supp = 40 and sum of prices ≥ 100000

in order to have real transactions together with real prod-
ucts prices. In Table 5 characteristics of the price database
are reported.

”Italian” is another real-world dataset obtained from an
Italian supermarket chain within a market-basket analysis
project conducted by our research lab, few years ago (note
that the prices are in the obsolete currency Italian Lira).

4.2 Data reduction
In Table 6 and 7 two typical executions of ExAnte are re-
ported. The first one exhibits a data reduction of one order
of magnitude on both the number of transactions and the
number of interesting 1-itemsets. The fix point is reached at
the fourth iteration with a very efficient computation (con-
sidering the size of the input dataset). The second execution
exhibits a progressive data reduction without huge gaps,
which terminates at the fifteenth iteration. The resulting
number of interesting 1-itemsets is around one third of the
initial number: recall that even a small reduction of interest-
ing 1-itemsets represents a very large reduction of the search
space as shown in the next section. These graphs confirm
that stronger monotone and anti-monotone constraints yield
more effective items and transaction reduction by means of
ExAnte.

In Figure 3 the reduction of the number of transactions w.r.t



Dataset "IBM", Cardinality constraint
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Figure 3: Transactions reduction on dataset ”IBM”

Dataset "IBM", Cardinality constraint
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Figure 4: Reduction of interesting 1-itemsets on
dataset ”IBM”.

the cardinality threshold is shown for four different support
thresholds on the synthetic dataset. When the cardinality
threshold is equals to zero the number of transactions is ob-
viously as the total number of transactions in the database,
since there is no monotone pruning. Already for a low sup-
port threshold as 0.1% with a cardinality constraint equals
to 2 the number of transactions decreases dramatically. Fig-
ure 4 describes the reduction of number of interesting 1-
itemsets on the same dataset.

4.3 Search space reduction
As already stated, even a small reduction in the number
of relevant 1-itemsets represents a very large pruning of the
search space. In our experiments, as a measure of the search
space explored, we have considered the number of candidate
itemsets generated by a levelwise algorithm such as Apriori.
In Figure 5 is reported a comparison of the number of can-
didate itemsets generated by Apriori and by ExAnteApriori
(ExAnte pre-processing followed by Apriori) on the ”Ital-
ian” dataset with various constraints. The dramatic search
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Figure 5: Search space reduction on dataset ”Ita-
lian”.

Dataset "POS" cardinality constraint

Minimu support (%)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

C
an

di
da

te
 it

em
se

ts
 g

en
er

at
ed

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103
Apriori
ExAnteApriori card > 6
ExAnteApriori card > 8 

Figure 6: Search space reduction on dataset ”POS”.

space reduction is evident, and it will be confirmed by com-
putation time reported in the next section. The same com-
parison on dataset ”POS” with the cardinality constraint is
reported in Figure 6.

How the number of candidate itemsets shrinks by increas-
ing strength of the monotone constraint is shown in Figure
7. This figure also highlights another interesting feature of
ExAnte: even at very low support level (min supp = 5 on a
dataset of 186,824 transactions) the frequent patterns com-
putation is feasible if coupled with a monotone constraint.
Therefore, ExAnte can be used to make feasible the discov-
ery of particular patterns which can be discovered only at
very low support level, for instance:

• extreme purchasing behaviors (such as patterns with
a very high average of prices);

• very long patterns (using the cardinality constraint
coupled with a very low support threshold).



Dataset "Italian"

n

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

T
ot

al
 n

um
be

r 
of

 c
an

di
da

te
s 

ite
m

se
ts

0

2x106

4x106

6x106

8x106

min_supp = 10 & avg(prices) > n
min_supp = 5 & range(prices) > n

Figure 7: Search space reduction with different con-
straints.

Dataset "Italian" 

Support (%)

0,00 0,02 0,04 0,06 0,08 0,10

R
un

tim
e 

(m
se

c)

0

10000

20000

30000

40000

50000

60000
Apriori 
ExAnteApriori Sum > 150k 
ExAnteApriori Avg > 25k 

Figure 8: Runtime comparison between Apriori and
ExAnteApriori with various constraints.

Dataset "POS", Cardinality constraint
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Figure 9: Runtime comparison between Apriori and
ExAnteApriori with Cardinality constraint.

4.4 Time reduction
In this section we report time comparison between Apri-
ori and ExAnteApriori (ExAnte pre-processing followed by
Apriori). We have chosen Apriori as the ”standard” fre-
quent pattern mining algorithm. Recall that every frequent
pattern mining algorithm can be coupled with ExAnte pre-
processing obtaining similar benefits. Execution time is
reported in Figure 8 (dataset ”Italian”, sum and average
constraints) and Figure 9 (dataset ”POS”, cardinality con-
straint). The large search space pruning reported in the
previous section is here confirmed by the execution time.

5. RELATED WORK
Being a pre-processing algorithm, ExAnte can not be di-
rectly compared with any previously proposed algorithm for
constrained frequent pattern mining. However, it would be
interesting to couple ExAnte data reduction with those algo-
rithms and to measure the improve in efficiency. Among con-
strained frequent pattern mining algorithms, we would like
to mention FICM [11] and the recently proposed DualMiner
[4].

6. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced ExAnte, a pre-processing
data reduction algorithm which reduces dramatically the
search space the input dataset, and hence the execution
time, in constrained frequent patterns mining. We have
proved experimentally the effectiveness of our method, using
different constraints on various datasets. Due to its capacity
in focussing any particular instance of the problem, ExAnte
exhibits very good performance also when one of the two
constraints (the anti-monotone or the monotone) is not very
selective. This feature makes ExAnte useful to discover par-
ticular patterns which can be discovered only at very low
support level, for which the computation is unfeasible for
traditional algorithms.

We are actually developing a new algorithm for constrained
frequent pattern mining, which will take full advantage of
ExAnte pre-processing. We are also interested to study in
which other mining tasks ExAnte can be useful. We will in-
vestigate its applicability to constrained sequential patterns,
and to the discovery of anomalies and outliers in data cubes.

ExAnte executable can be downloaded by our web site:
http://www-kdd.cnuce.cnr.it/
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