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A B S T R A C T

Nowadays, the scientific community and industry are increasingly pressed to provide solutions for developing
compact and highly-performing trace-gas sensors for several applications of crucial importance, such as
environmental monitoring or medical diagnostics. In this context, this work describes a novel configuration,
making use of a mid-IR spectrophone combining the compactness of a photo-acoustic setup, a non-conventional
micro-electro-mechanical (MEMS) acousto-to-voltage transducer, and the sensitivity enhancement given by a
cost-effective and easy-to-build dual-tube resonator configuration. In the optimal condition of sample pressure,
the system developed in this work can achieve a minimum detection limit (MDL) equal to 0.34 ppb when
averaging up to 10 s. Compared with previous literature of single-pass photoacoustic-based sensors for N2O,
this corresponds to a significant improvement both for the achieved normalized noise equivalent absorption
coefficient (NNEA) equal to 1.41 × 10−9 cm−1WHz−1∕2, and for a Noise-Equivalent-Concentration (NEC) of 1
ppb obtained at 1 s of averaging time.
. Introduction

The mid-infrared is the region of the electromagnetic spectrum par
xcellence for gas sensing [1–4]. Thanks to the strong, fundamental
olecular ro-vibrational transitions, high selectivity and sensitivity

an be simultaneously obtained. For this reason, the development of
ncreasingly high-performance sensors is a hot research topic: sampling
ery low quantities of substance, sensing a large variety of gases,
overing wide pressure ranges, and an overall cheap spectrometer are
ey parameters, addressed by set-ups in continuous evolution [5–7].

In this framework, pushing toward higher detection sensitivities
hen simultaneously miniaturizing the entire system, will enable the

abrication of more compact and high-performing sensors to be de-
loyed for in-situ applications [8–10]. Among all the various direct ab-
orption spectroscopic schemes, photoacoustic-based setups represent
n interesting compromise between performance and size, demonstrat-
ng promising and significant improvements [11–16].
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This technique lays on simple physical principles [17,18]: when the
laser beam’s wavelength is resonant with a molecular transition of the
selected trace-gas, the latter will absorb the impinging energy, jumping
to its associated excited state. If the de-excitation dynamics is non-
radiative, the relaxation to the ground state will occur by transferring
its kinetic energy to the surrounding molecules through collisions,
resulting in the generation of a pressure wave, and local thermal
expansion of the sample. If the excitation beam is modulated (in
amplitude or frequency) this phenomenon will be periodic, resulting in
the generation of sound waves. Finally, exploiting a sensitive acoustic-
to-voltage transducer, the latter are converted into a measurable signal,
known as the photo-acoustic signal, from which it is possible to give an
estimation of the sensor’s final detection sensitivity.

Alongside traditional photo-acoustic detection schemes, two al-
ternative variations have emerged, demonstrating promising results:
Quartz-Enhanced (QEPAS) and Cantilever-Enhanced (CEPAS) photo-
acoustic spectroscopy. In the former, a small quartz tuning fork (QTF)
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is exploited as a microphone [19,20], while in the latter this role is
played by a silicon-based cantilever [21,22]. Even if the sound wave’s
transduction occurs via the sensitive element’s oscillations in both
cases, these approaches are extremely different regarding the micro-
phone’s acousto-mechanical properties and the readout method. In fact,
for CEPAS-based instruments, the mechanical resonance frequencies
range from hundreds of Hertz to a few kilo-Hertz [23,24], while in
QEPAS-based setups the QTF typically works around 30 kHz [25,26],
although recent studies report the realization and implementation of
lower frequency QTFs, even below 10 kHz [27,28], optimized for
QEPAS sensing. Furthermore, the QTFs oscillations are measured via
an electronic readout taking advantage of the quartz’s piezo-resistivity.
While for silicon based-cantilever the readout is all-optic, typically
via interferometric-based techniques, allowing the measurements of
extremely small displacement, thus reaching high sensitivities. Never-
theless, operation at relatively low frequencies, below 1 kHz, where
noise is generally dominated by the 1/f electronic flicker noise [29,30]
and by the acoustic noise, can significantly reduce the signal-to-noise
ratio.

For this reason, taking advantage of the immense possibilities of-
fered by micro-electro-mechanical systems (MEMS), silicon-based pas-
sive mechanical structures have been designed and realized to be ex-
ploited as performing sensitive elements in a photo-acoustic setup [31],
aiming at simultaneously achieving a significant elongation follow-
ing the interaction with the generated acoustic wave, and efficient
acoustic-to-voltage signal transduction via an all-optical interferometric
readout [32], similarly to what happens in quantum optomechanical
experiments [33].

In this framework, a novel photo-acoustic spectrophone has been
developed in this work to be used for all-optical detection, as in CEPAS
sensors. This approach combines the advantages of high performance,
robustness of operation, and ease of construction. The main focus is
the sound conversion optimization, leveraging first on sound amplifi-
cation and then on acousto-to-optical transduction with new geometry.
Indeed, although the interferometric-based reading system is, by defini-
tion, extremely sensitive, conveying the pressure wave onto a suitable
geometry by using appropriate ‘‘sound amplification systems’’ paves the
way to a significant increase in the photo-acoustic signal [34,35].

Based on these assumptions, a ‘‘racket-shaped’’ silicon-based MEMS,
resonant at around 7 kHz and exploited as acoustic-to-voltage trans-
ducer, has been coupled with a dual-tube configuration for proper
acoustic wave confinement and intensity amplification. The analysis
has been developed in three parts. (1): four different dual-tube sys-
tems, characterized by a similar geometry (in length and internal
diameter) have been realized. Two of them have been fabricated with
plastic materials, commonly used in 3D printers and particularly easy
to handle, while the other two are metallic tubes widely exploited
in QEPAS sensors [36]. Each of them has been coupled with the
transducer to quantify the signal enhancement compared to the ‘‘bare-
MEMS’’ configuration (i.e. without any acoustic resonance). (2): Once
having determined the best material, several dual-tube systems with
different lengths and internal diameters have been tested to find out the
best enhancement performance. (3): with the best couple of geometric
parameters the spectrophone’s detection sensitivity has been tested, at
a fixed trace-gas concentration and varying the sample pressure within
a range from 8 mbar to 335 mbar. Finally, both the long-term stability
and the achievable minimum detection limit of the spectrophone have
been analyzed at the best pressure working point (i.e. where the
signal-to-noise ratio is the highest).

2. Spectrophone design and optimization

Photoacoustic detection, regardless of the detection system, occurs
through the motion of a structure following its interaction with an
impacting pressure wave. By modifying the geometries around the
sensitive element it is possible to locally increase the amplitude of
2 
Fig. 1. (a): front view of the ‘‘racket-shaped’’ cantilever and its associated dimensions.
The oscillating structure is depicted in darker orange, while the substrate is colored in
lighter orange. (b): front view of the assembled spectrophone, made by the coupling
of the MEMS with a dual-tube acoustic resonator system. The laser beam exploited
for the photo-acoustic effect (PA excitation beam, depicted in light orange) is aligned
to cross co-axially the tubes, thus maximally exploiting the acoustic wave intensity
enhancement. The readout beam used to convert the structure’s oscillation into a
measurable voltage signal via an interferometric readout is colored in red and aligned
with the region affected by the highest displacement.

the impacting pressure wave, for the same number of target molecules
involved, and consequently increase the spectrophone’s sensitivity. In
particular, the conventional symmetry used is cylindrical for laser-
based PA techniques, developed in two possible variants. In the first
case, the laser beam is accommodated between a single tube equipped
with an aperture in correspondence with the sensitive element (single-
tube configuration) [37–39], while in the second case the laser beam
passes through a pair of millimetric tubes, defining the so-called dual-
tube configuration [35,40]. The spectrophone developed in this work,
and whose 3D sketch is depicted in Fig. 1(b), takes its inspiration from
the second configuration.

The MEMS structure selected as the acoustic-to-voltage transducer
is a ‘‘racket-shaped’’ cantilever similar to a conventional rectangular
cantilever [41] but with a geometry optimized for efficient interaction
with generated acoustic waves.

As shown in Fig. 1(a), this structure has a lower base equal to 1 mm
(corresponding to the only part in which the structure is anchored to
its substrate), a total height of 4 mm, a free-end diameter of 2 mm,
and a thickness of 10 μm. The resonance frequency has been prelim-
inary evaluated via finite element modeling (FEM). An experimental
investigation has been performed in Ref. [31], measuring a resonance
frequency equal to 7.18 kHz at a pressure of 20 mbar, associated with
a quality factor of approximately 1500.

Finally, a custom-made support has been realized to accommodate
the resonator tubes as close as possible to the structure without touch-
ing it and to guarantee good collinearity with the excitation laser beam
(colored in blurred orange in Fig. 1(b)). The device’s free end, affected
by the highest displacement following the interaction with the acoustic
wave, is aligned with the readout probe beam (in red) to maximize the
transduction efficiency.
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Fig. 2. Front-side view of the four different resonators under investigation: stainless
steel (top left), brass (top right), UV resin (bottom left), and PLA (bottom right).

Table 1
Material, length (L), internal diameter (ID), and external diameter (ED) of the four
different resonators investigated. The small discrepancies between internal diameters
depend on the manufacturing process of each material.

Material L (mm) ID (mm) ED (mm)

Stainless steel 19.20 2.75 3.98
Brass 19.20 2.75 4.00
PLA 19.20 2.75 3.99
UV resin 19.20 2.81 4.09

According to the theory, the optimal length of the resonators, L,
is linked to the chosen MEMS resonance frequency, f, by the equa-
tion [35]:

L =
vs
2f

−
16ID
3𝜋

(1)

where vs is the speed of sound and ID is the resonator internal diameter.
The optimal length of an open-ended tube differs from a closed res-
onator by a factor of 8ID∕3𝜋 for each opening [42,43]. This difference,
known as open-end correction (OEC), takes into account the boundary
conditions existing for a standing wave of a specific frequency inside
the resonator: compared to the case of closed resonators, the anti-nodes
appear slightly outside the tubes due to the interaction between the
resonator and the external environment, reducing its optimal length.
Although for each ID there is a unique correspondence with the optimal
length, there is no analytical methodology that links the chosen pair
(L, ID) to the effective acoustic enhancement. For this reason, as a first
approximation, the dimensions of the resonator’s tube have been cho-
sen taking inspiration from studies previously carried out with similar
PA-based setups. In particular, in the work of Patimisco et al. [26],
a pair of tubes with an internal diameter equal to 1.6mm have been
exploited for the amplification of a 12.46 kHz sound wave. By operating
a simple proportion, an internal diameter of approximately 2.77mm
and consequently a length of 19.18mm (according to Eq. (1)) represent
good values for an efficient amplification of our 7.18 kHz sound wave
frequency.

In addition to the size, the fabrication material could also play
a fundamental role in the amplification capability of the dual-tube
system. Hence, a comparative analysis of these two properties is crucial.
Accordingly, four different types of material have been selected to
quantify any differences in performance related to chemical-physical
features or production defects. Two pairs have been made via 3D
printing/additive manufacturing in UV curing resin and Polylactic acid
(PLA) via liquid crystal display (LCD) resin printer and filament printer
respectively. The other two, made of stainless steel and brass, have been
fabricated with more common computerized numerical control (CNC)
techniques and subtractive manufacturing.

Fig. 2 shows the front-side view of the four types of resonators
realized for the comparison, while Table 1 reports the associated length,
internal diameter, and external diameter (measured with a digital
3 
caliper with a precision of 0.01 mm). A more accentuated surface
roughness, due to the limitations of the manufacturing technique, can
be observed for PLA resonators (machine resolution 200 μm). The
surface roughness of the resin tubes, although barely visible from the
image, is slightly worse compared to one of the metal resonators, with
a nominal machine resolution of 50 μm (pixel size of the LCD display).
This characteristic of resonators made with additive manufacturing
could compromise the optimal coupling conditions between resonators
and MEMS.

As reported later in Section 4, a preliminary comparison has been
made to choose the best resonator’s fabrication material in terms of
performance, costs, environmental impact, and production times. Once
the material has been selected, a series of dual-tube resonators with
different lengths and internal diameters have been realized to find
out the geometric configuration associated with the highest acoustic
enhancement. Finally, the sensitivity performances of the optimized
spectrophone have been studied varying the sample pressure.

3. Experimental setup

A schematic representation of the setup developed for MEMS–
resonator acoustic enhancement analysis is reported in Fig. 3. A mid-
infrared continuous-wave (CW) Quantum Cascade Laser (QCL), is used
for the acoustic wave generation addressing, with an impinging optical
power of 15 mW, a well-isolated N2O ro-vibrational transition at
2189.273 cm−1 and characterized by a line-strength equal to 2.14 ×
10−19 cm/molecule. The QCL is managed in current and temperature,
the latter set at 20 ◦C, via an integrated modular controller provided
by ppq Sense S.R.L. (QubeCL 52) and through a waveform generator
(WFG), used as an external current modulator, to scan the absorption
feature via a low-frequency ramp (2 mHz). The emitted radiation is
first conveyed into an optical isolator (OI, COHERENT FM2 MID-IR
4.55 μm), to avoid feedback, and subsequently into an acousto-optical
modulator (AOM, M1208-G80-4), triggered by the WFG, for intensity
modulation at the MEMS resonance frequency, thus allowing the acous-
tic wave generation following the trace-gas non-radiative relaxation.
This approach is usually called 1-f amplitude modulation (1-f AM) [44].
The laser beam finally enters the gas chamber through a Zinc Selenide
(ZnSe) wedged window, after being focused through a Calcium Fluoride
(CaF2) Plano-Convex Lens with a focal length of 150mm. The beam
diameter at the lens plane is 2 mm, resulting in a beam diameter of
∼0.43 mm at the focal plane of the lens, also corresponding with the
center of the MEMS. The ZnSe output window and the power meter
(PM) in Fig. 3 serve solely for alignment purposes.

The chamber is filled via a gas cylinder containing 200 ppm of
N2O in pure nitrogen, while the working pressure is variable and is
managed via a vacuum pump (PFEIFFER DualGauge), a pressure con-
troller (PFEIFFER HiCUBE) and a system of needle valves (not shown
in Fig. 3). In this way, it is possible to evaluate the acousto-optical
response of the resonators–MEMS system for a constant concentration
of the target gas and pressure.

The generated photo-acoustic signal is measured via Michelson
interferometry [32]. A Helium-Neon (He-Ne) probe laser is split into
two paths via a beam splitter (BS). One part is reflected and focused
via a lens (CaF2, f = 100 mm) and a wedged NBK-7 window on the
high-reflectivity coated MEMS surface, while the transmitted part hits
a mirror which acts as an immovable reference. The two back reflected
beams are re-collected at the same BS, and finally sent to a photo-
detector. During the alignment phase, the reference arm is moved via
a piezo driver connected to the WFG: this is done to simulate the
continuous movement of the ‘‘racket-shaped’’ cantilever, thus optimally
overlapping the two recombined beams. Four- and half-wave plates
(𝜆/2 and 𝜆/4 respectively, not shown in the figure) were used to
maintain the same polarization state of the arms, thus maximizing the

interferometric fringes. Finally, the photo-detector output signal is sent
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Fig. 3. Schematic representation of the setup. QCL: Quantum Cascade Laser. CD: current driver. TEC: temperature controller. OI: optical isolator. AOM: acousto-optical modulator.
PM: power meter. He-Ne: Helium-Neon laser. RM: reference mirror. PZT: piezoelectric material DET: photo-detector. WFG: waveform generator. LIA: lock-in amplifier. REF: reference
signal. For graphical reasons, the following components are not reported in the sketch: the gas pressure control system (a vacuum pump, a pressure controller, and a system of
needle valves), and Four- and half-wave plates used to balance properly the interferometric arms.
to a lock-in amplifier (LIA, Zurich Instruments, 100 mHz 3 dB cut-
off bandwidth), together with a TTL reference (REF) identical to the
AOM input trigger, and the overall, R-component output is acquired
at the trigger frequency, eliminating off-resonance signal components,
and retrieving the 1f photo-acoustic (1f-PA) signal.

4. Result and discussion

4.1. Material comparison

During the material comparison, the pressure inside the chamber
was fixed to 300 mbar. Each tube has been positioned at a distance
of around 200 μm from the MEMS with the help of a USB microscope
to avoid any contact. The acquired 1f-PA signals in the four cases
have been compared to the spectra obtained with the ‘‘bare-MEMS’’
configuration (i.e. without any acoustic resonance) in the same working
condition.

According to Fig. 4, compared to the signal obtained with the bare
MEMS, whose peak value is equal to 10.86mV, peak values equal to
102.88mV, 97.63mV, 103.71mV, and 97.15mV have been measured for
stainless steel, brass, PLA and UV RESIN respectively, each of them
corresponding to a peak signal enhancement equal to 9.47, 8.99, 9.55,
and 8.95, as reported in the inset of Fig. 4. Discrepancies of less than 5%

Fig. 4. Comparison between the 1f-PA spectra obtained with the dual-tube con-
figurations of different materials (stainless steel in purple, brass in pink, PLA in
orange, and UV RESIN in yellow) and the 1f-PA spectrum associated with the ‘‘bare-
MEMS’’ configuration (depicted in blue). For all the traces the sample pressure within
the aluminum cell is fixed at 300 mbar. Inset: signal enhancements with the four
investigated material. These values are defined as the ratio between the peak signals
in dual-tube and bare configurations.
4 
on the peak signal between the various materials investigated can be
ascribed to slightly different positioning of the resonator tubes within
the setup rather than to a difference in signal enhancement due to the
material itself.

Furthermore, the surface roughness of the tubes due to manu-
facturing techniques does not bring appreciable differences to the
phenomenon described, since the sound wavelength for a 7.18-kHz
modulation corresponds to 47.8mm, three orders of magnitude greater
than the worst surface roughness analyzed (200 μm for PLA, see Fig. 2).

4.2. Best geometry investigation

Since the manufacturing material does not introduce appreciable
differences in the amplification ability of the dual-tube system, the
choice for the best geometry investigation fell on the UV Resin. In fact,
if the subtractive techniques exploited for the metal tube fabrication
are time-consuming and polluting, while the tubes made of PLA have
very long production times (half an hour per pair), in the case of UV
Resin it is possible to produce a high number of pairs of tube in a single
one-hour processing.

In Fig. 5 an overview of the study is reported. To perform a
comprehensive study, different sizes have been investigated in addition
to the set described in Table 1, all designed to operate in the 7-kHz

Fig. 5. Comparison between the signal enhancement of the dual-tube configuration
made of UV Resin with different lengths and internal diameters. The three data sets
are obtained fixing the internal diameter (purple trace ID = 2.75mm, pink trace ID
= 3.14mm, and orange trace ID = 3.34mm respectively), and varying the single tube
length.
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Fig. 6. (a): 1f-PA spectra acquired with the best dual-tube configuration (ID = 3.14mm, L = 19mm) as a function of the sample pressure. The black trace represents the envelope
of the associated peak signal values. (b): comparison of the peak signal values trends between the dual-tube (purple trace) and ‘‘bare-MEMS’’ (pink trace) configurations.
amplification range, as summarized in Fig. 5. For each pair of tubes,
the 1f-PA spectra have been acquired, and the associated peak value has
been compared with the one obtained in ‘‘bare-MEMS’’ configuration,
retrieving the signal enhancement factor. These measurements have
been performed in the same experimental condition of the material
comparison.

Following the discussion made in Section 2, as the internal diameter
of the resonators increases, the associated optimal length decreases.
In fact, if for an internal diameter of 2.75mm the associated optimal
length is equal to 20.5mm, when ID is increased to 3.34mm, L decreases
up to 17mm. The greatest signal enhancement, equal to 18.22, has
been obtained with a pair of resonators with an internal diameter of
3.14mm and a length of 19mm. According to Eq. (1), the expected
optimal resonator length with ID = 3.14mm and developed to amplify
sound waves around 7.18 kHz should be 18.56mm, highlighting that
the experimental results are in good agreement with the theory.

4.3. System performance in the best configuration

The trend of the 1f-PA signal as a function of the pressure, ranging
from 8 to 335 mbar, and obtained with the best dual-tube configuration
(ID = 3.14mm, L = 19mm), is reported in Fig. 6(a) together with
the envelope of the peak values (black trace). Comparing this latter
trend with the one associated to the ‘‘bare-MEMS’’ configuration (see
Fig. 6(b)), it is evident that the coupling between the structure and
the dual-tube determines a shift of the best working point at higher
pressure.

In fact, if for the ‘‘bare-MEMS’’ configuration the highest peak sig-
nal, equal to 30.78 mV, has been measured at a pressure of 20 mbar, in
the dual-tube configuration the best condition, associated with a peak
signal equal to 272.52 mV, has been found at a pressure of 75 mbar.
This evidence can be attributed to the acoustic enhancement pressure
dependence, based on the necessity of having a suitable number of
molecules for its maximization. Furthermore, following an increase of
the signal in the low-pressure range, after reaching its maximum peak
value, it explores a decrease at higher pressure due to the well-known
increases of the pressure-depended viscous damping losses [45].

Then, for each value of pressure, a 60-second-long noise trace
has been acquired with the same 3 dB cut-off LIA bandwidth used
to collect the 1f-PA spectra (i.e. 100 mHz, corresponding to a LIA
time constant equal to 0.8 s), and the standard deviation has been
computed to retrieve the 1-𝜎 noise. In this way it is easily possible to
access both the signal-to-noise ratio (SNR) and the Noise Equivalent
Concentration (NEC). The latter is defined as the ratio between the
trace-gas concentration c (i.e. 200 ppm of N O) and the SNR. Both the
2

5 
trends of the SNR and the NEC as a function of the pressure are reported
in Fig. 7.

The SNR remains approximately constant (ranging from 1.343 × 105

to 1.247 × 105), within 75 mbar and 300 mbar. The highest value,
equal to 1.442 × 105, occurs at 200 mbar, where the photo-acoustic
signal amplitude decrease due to the damping effect and the overall
noise level reduction effects reaches an optimal trade-off, and a NEC of
1.39 part-per-billion is achieved.

Fig. 7. SNR (purple trace), and MDL (pink trace) trends as a function of the sample
pressure, both obtained setting the cut-off LIA bandwidth at 100 mHz.

Finally, the Allan–Werle deviation analysis has been performed to
investigate the stability and the overall behavior of the spectrophone as
a function of the integration time. The long-time noise trace has been
acquired by fixing the laser current at the N2O absorption peak but
filling the chamber with 200 mbar of pure N2 to prevent the inter-
action of the laser beam with any residual trace-gas spectral features.
Furthermore, during the acquisition the 3B cut-off LIA bandwidth was
set to 1 Hz, corresponding to an integration time of 0.08 s and a roll/off
equal to 18 oct/decade. This choice allows the understanding of the
sensor’s performances in different time regimes, starting from its real-
time response (i.e. at 0.08 s) up to an average response of 30 s, as shown
in Fig. 8(b).

At an integration time of 0.08 s (first point of the Allan–Werle
deviation), the spectrophone achieves a NEC of 3.6 ppb, corresponding
to a Normalize Noise Equivalent Absorption coefficient (NNEA) equal
to 1.3 × 10−9 cm−1 W Hz−1∕2. Moving to 0.8 s, the NEC reaches a value
in agreement with the one obtained from the 1-sigma noise analysis
(equal to 1.3 ppb, represented by the red star in Fig. 8(b)), since they
are both associated with the same integration time. Then, averaging up
to 10 s allows the system to achieve a sub-ppb minimum detection limit,
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Fig. 8. (a): 1f-PA spectrum acquired at 200 mbar. (b): long-time noise acquisition (bottom panel), and associated Allan deviation analysis (top panel) converted from noise level
mV) to noise equivalent concentration (ppb). The red star represents the point of the Allan deviation obtained at an integration time equal to 0.8 s, whose value is in accordance
ith the one estimated via the 1-𝜎 analysis setting the LIA to 100 mHz of 3 dB cut-off LIA bandwidth (corresponding to a time constant of 0.8 s). The blue star represents the
EC obtained at 1 s of averaging time, while the green star is the MDL achieved when increasing the integration time up to 10 s.
Table 2
State-of-the-art single-pass photo-acoustic sensors for N2O detection. The last row marked in bold identifies the results achieved
in this work. To have a fair comparison, NEC values at the same integration time (1 s) have been reported, except for rows
five and six. In these latter cases the 1 s-NEC values are neither declared in the main text, nor deducible from the graphs
presented.

Year Wavelength (μm) Power (mW) NNEA (cm−1 W Hz−
1
2 ) NEC (ppb) Integration time (s)

2013 [46] 4.61 400 2.9 × 10−9 23 1
2014 [47] 7.83 250b N.A. 6 1
2021 [48] 4.47 100 N.A. 20 1
2021 [49] 4.53 17.5b 5.69 × 10−9 28 1
2022 [50] 4.52 25b 5.4 × 10−9 7 0.1
2023 [51] 7.84 77 N.A. 9 0.1
2024 [52] 4.56 100 1.5 × 10−8 4b 1
2024a 4.56 15 1.3 × 10−9 1 1

N.A.: data not available.
a This work.
b Data extracted from the graphs of the related cited work.
eing equal to 0.34 ppb (green star in Fig. 8(b)). Increasing further the
integration time is no longer advantageous because the Allan deviation
experiences an increase that worsens the overall performance at longer
time scales

To conclude, considering the state-of-the-art of single-pass photo-
acoustic sensors for this target molecule, summarized in detail in
Table 2, our newly developed set-up emerges for several important
advantages. Indeed, with an integration time comparable to previ-
ous literature (1 s), with an incident laser power as low as 15 mW,
record values have been achieved for the NNEA coefficient (equal to
1.3 × 10−9), and even better for the associated NEC (1 ppb), mak-
ing this spectrophone ideal for further exploitation in more advanced
configurations.

5. Conclusions

In this work, we have demonstrated how the combination of a
high-performing ‘‘racket-shaped’’ silicon-based MEMS cantilever with
an easy-to-build acoustic resonator, made by a dual-tube configuration,
allows the development of a sub-ppb mid-IR trace-gas sensor addressing
an N2O fundamental roto-vibrational transition. As far as we know,
this study reports a record value for single-pass PA-based N2O trace
as sensing in terms of both Normalized Noise Equivalent Absorp-
ion coefficient and Noise Equivalent Concentration at 1 s integration
ime. Given the result achieved, future studies will be focused on
arallel fronts. On one hand, due attention will be given to a further

ize reduction of the entire system, both testing new geometries and

6 
fabrication materials for the sample cell and developing alternative
and more performing detection schemes to measure the photoacoustic
signal. It is also worth mentioning that, as every photoacoustic sensor,
even if the one developed in our work has been tested with N2O,
it can be in principle exploited for a broadband detection of a large
variety of molecules exhibiting strong transitions in the mid-IR region.
Finally, due to the relatively simple but effective design of the dual-tube
configuration and the possibility of 3D-printing with a large variety
of materials, a low-cost version of our set-up can be planned, with an
easy integration with different MEMS classes. This will pave the way
to the realization of mid-IR, high-performing gas sensors optimized for
harsh environments and working conditions up to atmospheric pressure
operations.
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