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We perform a numerical study of transport properties of a one-dimensional chain with couplings
decaying as an inverse power r−(1+σ) of the inter-site distance r and open boundary conditions,
interacting with tho heat reservoirs. Despite its simplicity, the model displays highly nontrivial
features in the strong long-range regime, −1 < σ < 0. At weak coupling with the reservoirs, the
energy flux departs from the predictions of perturbative theory and displays anomalous superdiffu-
sive scaling of the heat current with the chain size. We trace back this behavior to the transmission
spectrum of the chain, which displays a self-similar structure with a characteristic sigma-dependent
fractal dimension.

I. INTRODUCTION

The main task of statistical mechanics is to relate the
microscopic interactions of a given system to its macro-
scopic properties. One typical instance is the context of
heat transfer. Suppose we apply a temperature gradient
∇T to a system, after a while the system will reach a
stationary state characterized by the presence of a heat
flux J . The thermal conductivity κ is defined in terms
of these quantities as:

J = −κ∇T, (1)

In the case of diffusive transport, Fourier’s law holds and
κ does not depend on the size of the system N in the
thermodynamic limit. This is typically the case for three-
dimensional systems with short-range interactions. We
remark, however, that there is currently no generic way,
given the microscopic properties of a system, to know
whether Fourier’s law holds or not.

A case in which Fourier’s law is systematically violated
is the case of harmonic interactions. For instance, for the
harmonic crystal each phonon propagates freely and the
transport is ballistic. This was showed for the first time
for a chain with nearest-neighboors interactions in the
seminal paper by Rieder, Lebowitz and Lieb [1]. They
found that the thermal conductivity κ diverges as κ ∝ N ,
N being the number of particles in the chain. Moreover,
the bulk temperature profile is flat, while Fourier’s law
would lead to a linear one. The non-equilibrium proper-
ties of quantum harmonic lattices have also been consid-
ered in the last decades [2–5, 42].

Generally speaking, in harmonic lattices transport fea-
tures are dictated by the spectral properties of both the
thermal reservoirs and the system itself. For instance in
the case of disordered lattices displaying Anderson local-
ization, the conductivity (or energy flux) depends on the
localization lengths, but also on the boundary conditions
[6], the spectral density of the baths at low frequencies
[7] as well as on the distribution and correlations of the

random disorder [8, 9]. For more general, non homo-
geneous harmonic networks, the spectral properties can
be accounted by random matrix theory and can describe
also current fluctuations [10]. This is even more striking
for active (non-equilibrium) baths that can lead to non-
trivial transport regimes even for the ordered harmonic
chain [11].

It became progressively become clear that in one (and
two) dimensions there are violations of Fourier’s law also
for nonlinear systems [12–16], such as the Fermi-Pasta-
Ulam-Tsingou (FPUT) chain. In one dimension, these
violations manifest themselves as a power-law divergence
of the thermal conductivity κ with the system’s size
κ ∝ Nα. Transport in these cases is called anoma-
lous. It is now clear that superdiffusive transport is a
generic feature of non-linear one-(and two)-dimensional
non-integrable systems conserving momentum, energy
and stretch. There are both numerical and analytical
evidences that the exponent α can be used to identify dif-
ferent universality classes [15]. For weakly non-integrable
models the scenario may be more involved since quasi-
particles may have very large mean-free paths [17, 18].

A further element of interest is represented by the pres-
ence of forces that are not strictly local. Indeed, much
less is known about systems with long-range interactions,
that is, systems in which the inter-particle interaction
scales with the particle distance r as V (r) ∝ r−d−σ. Sev-
eral physical systems are characterized by long-range in-
teraction, both classical (gravity, pure plasmas, 2d hydro-
dynamics) and quantum (dipolar systems and trapped
atoms). As a concrete experimental instance we mention
trapped ion chains, where ions are confined in periodic
arrays and interact with external reservoirs [19, 20]. On
a macroscale, effective long-range forces arise for tailored
macroscopic systems like chain of coupled magnets [21]
and the effects of fluctuations and nonlinearity may be
relevant.

Long-range systems received considerable attention in
the last years, for reviews see for example [22] and [23]
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for classical and quantum systems respectively. For what
we are going to be concerned with in this paper, we re-
mind that, at equilibrium, the universality class of a one-
dimensional long-range system depends on the value of
σ. Indeed, for −1 < σ < 0, the critical exponents are
the mean field ones, that is the ones that we obtain by
putting σ = −1. Then, there exists a non universal value
σ∗ such that for σ > σ∗ we recover the critical expo-
nents of the short-range case σ = ∞. Typically σ∗ > 0.
Furthermore, excitations in long-range systems can prop-
agate at diverging velocity [24, 25] and therefore we can
expect some form of superdiffusive transport. There are
already several, mainly numerical, studies of heat trans-
port in long-range interacting systems that confirm these
expectations. On the classical side, the heat transport
was analyzed for the long-range XY model [26, 27] the
FPUT chain in [27–31] and the lattice φ4 theory [32].
In all cases Fourier’s law is violated in different ways
according to the value of σ. Scaling analysis of equi-
librium correlations also suggests that hydrodynamics is
non-standard [29, 32]. Thus, one may interpret transport
as a fractional diffusion process with energy carriers per-
forming Lévy flights, with jump statistics controlled by
the exponent σ.

A classical harmonic long-range model with a stochas-
tic dynamics was studied analytically in [33, 34] and the
heat flux and temperature profile for a mean-field chain
were computed in [35, 36]. The same system was studied
in the quantum regime in [36] and a hydrodynamic ap-
proach to study transport in quantum magnets was pro-
posed in [37]. We refer again to [23] for more references
on the study of dynamics and transport in quantum long-
range systems. However, in the literature there is not yet
a detailed study of the plain harmonic chain with power-
law interaction, and this contribution aims at filling this
gap. We will show that the results are far from trivial in
the strong long-range case and deserve careful analysis.

More precisely, in this paper we study numerically heat
transport in a quadratic chain with a power-law interac-
tion by coupling the first and last site of the system to two
heat baths at different temperature. We focus on com-
puting the heat flux in the stationary state with different
approaches. In section II we introduce the model and
the main methods that we will use to compute the heat
flux. In section III-V we report an analysis based on the
spectral properties of the nonequilibrium Green’s func-
tion and the transmission spectra and we discuss them.
Finally, we draw our conclusions in section VI.

II. MODEL AND METHODS

A. The long-range coupled harmonic chain

We consider a one-dimensional chain of particles with
a power-law interaction:

H =
1

2

∑
i

p2i +
1

2

∑
ij

xiΦijxj , (2)

where the interaction matrix Φ is given by:

Φij =

(
2δij −

1

Nσ

1

|i− j|1+σ

)
, Nσ =

N∑
l=1

l−σ, (3)

where Nσ is the usual Kac factor introduced to guaran-
tee extensivity of the energy, chosen as site-independent.
The matrix correctly reduces to the discrete Laplacian
for large σ. Note that definition (3) corresponds to open
boundary conditions, which are the ones appropriate for
our problem due to the presence of the baths. For long-
ranged systems we expect that the role of boundary con-
ditions can have very important consequences, even more
than for short-ranged systems, and we focus on this nat-
ural choice for simplicity.
In the case of open boundary conditions the spectrum

of matrix Φ is, to the best of our knowledge, not known
analytically. The usual standing waves are not eigenvec-
tors and the matrix cannot be diagonalized exactly. Even
in the continuum limit, this would correspond to solving
the spectral problem for the fractional Laplacian in a
finite domain, which is notoriously not straightforward
[38].
For comparison, it is useful to recall the solvable case

for periodic boundary condition where the proper defini-
tion of Φ is:

Φij =

(
2δij −

1

Nσ

1

min(N − |i− j|1+σ, |i− j|1+σ)

)
.

(4)
Here the spectrum is known, see for example [39]. Due to
translational invariance, the eigenvectors are plane waves
of wavenumber k. The nature of the eigenfrequency spec-
tra strongly depends on whether σ is positive or negative.
In the first case, the system has a proper continuum limit
and for low momenta k the squared frequencies ω2 of the
plane waves behave as:

ω2
k ≈

{
|k|σ, 0 < σ < 2,

k2, σ > 2.
(5)

Thus, for σ > 0 one has the standard acoustic disper-
sion and a finite group velocities while the group velocity

diverges as |k|σ−2
2 in the first case. This result can also

be derived from the continuum limit, corresponding to a
fractional wave equation in the infinite domain [40]. On
the other hand, if σ < 0 the spectrum remains discrete
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even in the thermodynamic limit and contains a count-
able infinite number of frequencies that accumulate at
the band edge [39].

To simulate the non-equilibrium steady state, we follow
the usual procedure and connect the first and last sites of
the system to two Langevin heat baths at temperatures
TL and TR, respectively. The coupling with the baths
introduces both noise and dissipation in the dynamics of
the system. The resulting equations of motion are:

ẍi = −
∑
j

Φijxj + δi1 (ξL − λẋi) + δiN (ξR − λẋi) , (6)

where the ξ’s are Gaussian noises that satisfy the
fluctuation-dissipation relation:

⟨ξa(t)ξa(t′)⟩ = 2Taλδ(t− t′), a = L,R. (7)

After a transient, the system reaches a stationary state:
we are interested in the heat flux of the chain in this
state. To compute this quantity, we will employ three
different methods.

B. RLL approach

The first method was introduced long time ago in this
context in [1]. It consists in solving the many-body
Fokker-Planck equation related to (6) (in the following
we will refer to this method as the RLL method). In par-
ticular, defining the vector y = (x1, ...xN , p1, ...pN ), and
denoting by P (y, t) its probability at time t, the afore-
mentioned equation reads as:

∂P (y, t)

∂t
= Aij

∂

∂yi
(yjP ) +

1

2
Dij

∂2P

∂yi∂yj
, (8)

where the drift and diffusion matrices are

A =

(
O −I
−Φ λR

)
, D =

(
O O
O 2kBλT (R+ ηS)

)
, (9)

where
T =

TL + TR
2

,

η =
TL − TR

T

, Rij = δij(δi1 + δiN ), (10)

Sij = δij(δi1 − δiN ). (11)

The solution of equation (8) is a multi-variate Gaussian
whose covariance matrix is given by the matrix of corre-
lations among the canonical coordinates:

P (y, t) ∝ exp

{
−1

2
C −1

ij yiyj

}
, C =

(
⟨xixj⟩ ⟨xipj⟩
⟨pixj⟩ ⟨pipj⟩

)
.

(12)

By plugging (12) in the Fokker-Planck equation (8) we
get:

∂tC = D −AC − CAT . (13)

Furthermore, in the stationary state ∂tC = 0, so we get
the so-called (continuous) Lyapunov equation:

AC + CAT = D, (14)

which has to be solved numerically. Knowing the various
correlators, we can then express the heat flux in the sta-
tionary state as the difference between the temperature
of the left bath and the temperature of the first site:

J = λ (TL − T1) , Ti =
1

2

〈
p2i
〉
. (15)

C. Nonequilibrium Green’s function

The second method consists in writing the exact solu-
tion to (6) in terms of the Green’s function G(ω), which
is possible due to the linearity of the equations. The
details of this method are explained in refs. [3, 13, 41].
Since we are interested in the stationary state, we work
directly in frequency space:

x̃l(ω) =
∑
ln

Gln(ω)(ξ̃L,n(ω) + ξ̃R,n(ω)), (16)

G(ω) =
(
−ω2I+Φ+ iλωR

)−1
, (17)

where the tilde indicates the Fourier transform and R is
the matrix defined in Eqs.(9, 11). As explained in [13],
we can express the heat flux in the stationary state as:

J =
2∆Tλ2

π

∫ ∞

0

dω ω2|G1N (ω)|2. (18)

D. Generalized eigenvalue method

There is in the literature another approach to the
Green’s function method, called generalized eigenvalues
method, which we briefly outline below (for a more de-
tailed explanation see [42–44]). Let GL(s) be the Green’s
function defined in Laplace’s space:

GL(s) =
(
−s2I+Φ+ λsR

)−1
, (19)

and introduce the 2N complex numbers {sa}2Na=1 and the
2N vectors {ra}2Na=1 as defined by the following linear
problem:

GL(sa)ra = 0. (20)

Then, the Green’s function (19) can be written as [44]:

GL(s) =

2N∑
a=1

sa
s− sa

rar
†
a. (21)

Note that the sa come in complex conjugate pairs. We
now recall that we can obtain the Green’s function in fre-
quency space G(ω) via a Wick rotation G(ω) = GL(−is).
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Then we can compute the integral in (18) with a contour
integration one finding [42]:

J = 2∆Tλ2
2N∑

a,b=1

s3asb
sa + sb

ra,1ra,Nrb,Nrb,1. (22)

Formula (22) gives yet another way of computing the heat
flux and extract the scaling exponents.

E. Comments

Before proceeeding, let us comment on the numeri-
cal issues connected with the above approaches. The
numerical implementation of the RLL method is rather
straightforward resorting to the numerical routines avail-
able to solve the Lyapunov equation based on the Bartels-
Stewart algorithm, as implemented for instance in the
SciPy library [45]. Indeed, one can easily reach sizes
of N ∼ 103. Some convergence issues may arise in the
case of strong degeneracies [36]. The numerical imple-
mentation of the Green’s function method can be more
involved than the one of the RLL method. Indeed, we
need to numerically invert the matrix in the definition
of the Green’s function (17) in the range of ω where the
transmission is non-vanishing in order to be able to com-
pute the integral in (18). Furthermore, the sampling over
ω has to be fine enough to ensure accuracy, especially if
the transmission coefficient oscillates rapidly. This diffi-
culty does occur in our model, as it will be clear in what
follows. In practice, it is difficult to study lattices larger
than N ∼ 102 using this method. The generalized eigen-
values method has the advantage of reducing the problem
to the calculation of the eigenvalues and eigenvectors of
a 2N × 2N matrix [43], which can be done by standard
linear algebra routines, the main limitation being mem-
ory storage and accuracy of very small eigenvalues and
avoiding the sampling problem.

III. HEAT FLUX

In the short-range case, σ = ∞, two of the methods
outlined above have been used to obtain exact analyti-
cal results for the heat flux in the thermodynamic limit
[1, 13]. This is possible because the matrix of the in-
teractions Φ reduces to the discrete Laplacian, which
is a tridiagonal matrix. In our case the matrix Φ is
dense, and we are unable to either solve analytically
the Lyapunov equation or to exactly compute the Green
function. Nonetheless, it is possible to obtain a certain
amount of informations about the heat flux numerically.

A. Small coupling

If the coupling with baths λ is small, a perturbative
calculation of the steady-state current is possible in terms

of the eigenvalues and eigenvectors of the isolated har-
monic chain. This approach yields the so-called Matsuda-
Ishii’s formula, whereby J ≈ JMI to the leading order
in the coupling constant [12, 46], with JMI given by

JMI = λ∆T
∑
k

ψ2
k,1ψ

2
k,N

ψ2
k,1 + ψ2

k,N

(23)

where ∆T = TL−TR and ψk,,n denotes the n component
of the kth eigenvector of the matrix Φ defined in (3). For
the model we consider here (which is homogeneous and
mirror-symmetric, i.e. the first and last component of
each eigenvector are equal ψk,1 = ψk,N for k = 1...N)
the above expression simplifies to

JMI =
λ∆T

2

∑
k

ψ2
k,1 =

λ∆T

2
, (24)

where in the last step we used the property of complete-
ness of the set of eigenvectors. Note that eq. (24) ex-
presses the fact that the chain is a ballistic conductor.
Typically, in the short-range case σ → ∞, this result

applies for λ ≪ λ0 ≈ O(1). In the our long-range case,
however, the situation is more complicated. In Fig. 1,
we compare formula (24) and the numerical solution of
the Lyapunov equation. As we can see, (24) holds for λ
smaller than a certain threshold λ0(σ,N), that depends
both on N and on σ. More specifically, λ0 decreases
with σ and with N . On the other hand, for σ > 0 the
perturbative approximation holds well in the considered
range.
To have some insight into these deviations we may

perform some further checks. Usually the perturbative
approach is justified assuming that the separation of the
unperturbed normal mode frequencies is smaller than the
typical dissipation caused by the coupling with the baths
[42]. This assumption can actually be checked by exam-
ining the poles sa. In particular, we compare the spac-
ings between the imaginary parts of consecutive poles
Im(sa+1 − sa) and the real parts Re(sa) . As we can
see from Fig. 2, the former is always much larger than
the latter, therefore this assumption is justified. This
suggests that the observed deviations from the Matsuda-
Ishii formula may have a different origin.

B. Strong coupling

We now want to understand how the flux scales with
the system size N for not too weak coupling λ. In order
to so, we computed the heat flux using the RLL method
for several values of N and σ for λ = 1 (and we will set
λ = 1 for the rest of the paper) As shown in Fig.3 the
data can be fitted with a power law J ∝ N−γ .
Although the direct computation of the Green’s func-

tion is numerically cumbersome, we can easily compute
its poles, compute the heat flux according to (22) and
fit a power law as we did before. In panel b) of Fig. 4
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FIG. 1. Plots of the ratio between the heat flux J , computed
numerically with the RLL method, and the Matsuuda-Ishii
heat flux (24) versus the system size N for several values of
σ and λ in the weak coupling regime.

we report both the exponents fitted with the generalized
eigenvalues method and with the RLL method. As we
can see, they are qualitatively in agreement.

The results of fits using the two methods are reported
in Fig. 4. We can identify three regions. The region
close to the mean-field case σ = −1 and the one close
to the short-range case σ > 1, where finite-size effects
are almost absent, and an intermediate region in which
finite-size effects are quite strong. We also note that γ
seems to be converging to the short-range value γ = 0
while σ goes to 1. Summarizing, even if we are not able
to extract the exact values of the exponents, it is clear
that the flux scales with some nontrivial power of the
system’s size N .

IV. TRANSMISSION SPECTRA

To understand the origin of the nontrivial dependence
of the flux on the size, let us investigate the transmis-
sion spectrum of the chain. We begin by plotting the
transmission coefficient, namely the integrand in (18) as
a function of the frequency ω. In Fig. 5 we report its plot
for several values of σ. We can see that it is characterized
by a rather complicated peak structure which consists of
N − 2 peaks (as can be checked numerically).
A manin point we want to make and explore is that

the structure of such resonances determines the scaling
of the current. Notice that a change of sign in ω in (17)

100 101 102 103
pole index k

10 8

10 6

10 4

10 2

100

FIG. 2. Plots of the spacing between the imaginary parts of
the poles of the Green’s function Im(sk+1)− Im(sk) (circles)
and the real parts of the poles Re(sk) (crosses) for σ = −0.5.
Different colors correspond to different system’s size: N =
256, 512, 1024 in blue, orange, green, respectively.

102 103 104
N

10 4

10 3

10 2

10 1

= 0.7
= 0.5
= 0.3
= 0.1
= 0

= 0.1
= 0.3
= 0.5
= 0.7

FIG. 3. Log-log plot of the heat flux J versus the system’s size
N for λ = 1 and different values of the long-range exponent
σ. The flux is computed using the RLL method as described
in the text.

is equivalent to the complex conjugation of G(ω). Since
the transmission coefficent depends on the square modu-
lus of G(ω) it is an even function of ω and we can there-
fore restrict ourselves to study positive frequencies. Let
us denote by ωk, k = 1, 2 . . . the location of the peak
frequencies for positive ω. The peaks accumulate at a
band-edge frequency ωB < 2, i.e ωk → ωB for k large.
Furthermore, upon approaching ωB , the width of the
peaks decreases. Notice that this is the reason why it
is important to finely sample the Green’s function in ω,
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0.8

1.0
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FIG. 4. Plot of the scaling exponent of the flux γ, defined as
J ∝ N−γ , (a), we report the exponents obtained by fitting a
power law on the heat flux obtained with the RLL method.
To check the finite-size effects, each data set corresponds to
a fit over different length ranges, 50 ≤ N ≤ 1600 (circles),
500 ≤ N ≤ 2000 (squares), 1500 ≤ N ≤ 7500 (triangles).
Panel (b), comparison between the exponents obtained by the
RLL method (circles) and the generalized eigenvalue method
(triangles).

especially in the proximity of the band edge. Indeed, we
used a logarithmic sampling in order to increase the sam-
pling points near ωB . The integrand is thus a much more
complicated function of ω with respect to the mean-field
case σ = −1 [35, 36], where only the first peak is present.
It can be checked numerically that the first few peaks are
Lorentzian with amplitude ∆k ≈ N−1, exactly like the
peak in mean-field case. The subsequent peaks are too
narrow to be resolved. For positive values of σ the situa-
tion becomes even more complicated, as a curve emerges
below the peaks, as we can see in Fig. 5 for σ = 0.5.
For the reasons outlined above, it seems more conve-

nient to consider the cumulative function F (ω), that is,
the integral (18) performed up to frequency ω. In the
rightmost panels of Fig. 5 we report the function F (ω)
for several values ofN of order 102 and σ, rescaled byNγ ,
where γ is the exponent obtained with the RLL method
for values of N of order 102 : 103. As we can see, the
curves nicely collapse for σ = −0.7,−0.5, but for higher
values of σ, such as σ = −0.3, the collapse is not as good
due to the finite-size effects, as expected. Regardless of
the lack of further quantitative progress in the computa-
tion of the exponents, the qualitative information about
the peak structure will be crucial in our understanding
of the model, as we will see later.

V. POLES OF THE GREEN’S FUNCTION

In view of the numerical difficulties encountered above
and for comparison, we also performed a study of poles
of the Green’s function. These are computed through the
generalized eigenvalue method described above.

The main advantage of the analysis is that we gain a

new perspective on the peak structure discussed before.
Indeed, the positions ωk of the peaks in Fig. 5 are given
by the absolute value of the imaginary part of sa, while
the absolute value of the imaginary part should be pro-
portional to their widths ∆k.
In particular, we consider all the peaks as Lorentzian

– for simplicity, but also because all the peaks that we
were able to resolve are actually very well approximated
by a Lorentzian – with width given by ∆k(N) = Re(sk).
In this approximation, as far as scaling with the size is
concerned, the heat flux can be estimated as the sum of
the widths of the peaks ∆k(N). Furthermore, the height
of each peak can be shown to be equal to λ2/4 (indeed,
note that in Fig. 5, in which λ = 1, the heights of the
peaks are all the same and equal to 1/4). Thus, we re-
place the integrand in eq. (18) with a sum of normalized
Lorentzians, and we get:

J (N)

∆T
≈

∫ ∞

−∞

dω

π

N−2∑
k=1

λ2∆k(N)2/4

(ω − ωk)2 +∆k(N)2
=
λ2

4

N−2∑
k=1

∆k(N).

(25)
The relevant information should thus be contained in the
dependence of the ∆k on k and N . Physically, this is the
effective damping of plane waves due to the coupling with
the thermal reservoirs.
The dependence of ∆k on N is reported in Fig. 6,

where we plot (parametrically) the real parts of the poles
as a function of the imaginary ones, for negative and
positive values of σ, respectively. Since the resonances
accumulates at the band-edges, it is convenient to report
the frequencies as a function of their relative distance
from ωB . Let us focus on the case of negative σ, to
begin with. From the leftmost panels of Fig. 6, it is seen
that the poles can be grouped in two sets, each having
different dependencies on ωk and N . Empirically, this is
accounted for by the following scaling:

∆k(N) ≈

{
dk/N, k < ko
dk/N

δ, k > ko,
(26)

where ko << N and dk do not depend N . We do not
have an a-priori theoretical estimate of δ, but we find
that there is a good collapse upon choosing δ ≈ 1 + |σ|.
It is interesting to point out that the exponent δ can be
interpreted as the fractal dimension of area below the
graphs in Fig. 5. Indeed, if we increase the system’s
size N new peaks emerge with progressively shrinking
area and, in a putative N → ∞ limit we would have an
infinite number of peaks with vanishing area.
In addition, there are a few poles whose widths do not

follow this scaling and fall consistently well outside the
collapsed curve. It actually turns out that there are two
degenerate eigenvalues between the sas that do not follow
the scaling law. However this is inconsequential, as one
can check that the contribution of the these eigenvalues
to (22) vanishes. Heuristically, this is because, as one
can check, the eigenvectors related to these eigenvalues
are localized at the endpoints of the chain and therefore
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FIG. 5. Panels a), b), c), d) : transmission spectra (the integrand of the heat flux expression (18)) for different values of the
range exponent σ = −0.7, 0.5, 0.1, 0.5 and for a chain with N = 100. Only positive frequencies are reported. Panels e), f),
g), h): rescaled cumulative function NγF (ω), for N = 80, 100, 120, 140 and σ = −0.7,−0.5,−0.1, 0.5 in panels a), b), c), d)
respectively. The values of γ are taken from the blue points in Figure 4. The abrubt increase of the cumulative function in
panels e) and f) at ω ≈ 1.3 is due to the dominant contribution of the first peak in panels a) and b. The subsequent, smaller,
jumps are due to the contributions of the other peaks.

do not contribute to transport. This also explains why
the peaks in Fig. 5 are N − 2 instead of N . We can
therefore infer the following scaling law for the heat flux
(22) plugging (26) into (25):

J ≈
∑ko

k=1 dk
N

+

∑N
k=ko

dk

Nδ
∝ N1−δ. (27)

The first term scales as N−1, since ko does not scale with
N (as can be inferred from Fig.6). On the other hand,
the second term scale as N1−δ since each dk is of order 1
and thus their sum scales as N . Finally, since δ > 0, we
get the reported scaling for the heat flux. For positive σ,
the scaling of ∆k is reported in the right-most panels of
Fig. 6: as we can see in this case ∆k ≈ N−1, over the
entire spectrum. Therefore, the estimate the heat flux
yields

J ≈
∑N

k=1 dk
N

≈ O(1). (28)

So the heat flux for positive σ behaves as the heat flux
for σ = ∞ (the nearest-neighboors case), that is, it does
not scale with N .

To summarize, according to approximation (25) and
the numerical estimate of δ extracted from the data, we
find that the heat flux scale as:

J ∝ N−γ̃ , γ̃ ≈

{
1− δ, σ < 0,

0, σ > 0.
(29)

As we already mentioned, see Fig. 6, we found a good
collapse of the imaginary part of the poles of the Green’s
functions for δ ≈ 1− |σ|. So this yields

γ̃ ≈ −σ (30)

for negative σ. Admittedly, this estimate accounts only
qualitatively for the behavior of the exponents as given in
Fig. 4. The deviations are sizeable and, in addition the
dependence of γ on σ appears to be non-linear. While
this could be due to the aforementioned finite-size ef-
fects, the discrepancy is present even for values of σ for
which the exponent γ has basically converged (for exam-
ple σ = −0.7,−0.5). Another possibility, which seems
more likely, is that, while the widths of the peaks of Fig.
5 are indeed related to the real parts of sa on general
grounds, they are not exactly equal. On the other hand,
we point out that, since the sa are related to the widths
of the peaks, the transition in the scaling of the ∆ks at
σ = 0 suggests that the scaling of the heat-flux between
the short-range and the long-range behaviour has to oc-
cur at σ = 0.

VI. CONCLUSIONS

Heat transport in short-range linear systems has been
widely studied [12]. On the contrary, the behaviour of
linear oscillators with long-range power-law couplings
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FIG. 6. Real parts of the poles of the Green’s functions sa versus the distance of their imaginary parts from the band-edge.
Leftmost panel: σ < 0, vertical axis rescaled by Nδ with δ ≈ 1 − σ. The inset in panel (a) demonstrates the different scaling
the collapse for the widths of the first peaks (the first 80, 160, 320, 640, 1280 for N = 256, 512, 1024, 2048, 4096, respectively)
rescaled by N . For the other values of σ, we get the same scaling for the first peaks. Rightmost panel: same for σ > 0, with
vertical axis rescaled by N . Note that such scaling works for the whole spectrum in this case.

is not yet well understood beyond the mean-field
(fully-coupled) case [35, 36]. In this paper, we have
made a step forward along this direction by applying
three different methods [1, 13? ] that allow to compute
numerically both the heat flux and its scaling with the
system’s size. All the methods give a clear scaling of
the current with a power-law in the system’s size. This
scaling interpolates between the short-range behaviour,
where the current is constant in the system’s size, and
the mean-field behaviour, where the current is inversely
proporational to the system’s size. However, the fitted
scaling exponents show significant finite-size effects for
all the three methods. The method of ref. [1] which con-
sists in solving a matricial equation is straightforwardly
applicable to the long-range case. The Green’s function
approach allows to express the current as an integral
over frequencies, which cannot be solved analytically.
However, the integrand has the interesting property of
showing a sequence of peaks that accumulate near the
band edges of the spectrum. Further properties of these
peaks can be inferred using the third method, which
allows to compute the poles of the Green’s function.
Indeed, the real and the imaginary part of these poles
are related to the position and the width of the peaks,
respectively. We find a sharp transition in the scaling of

the real parts of the poles at the value of the long-range
coupling exponent σ = 0 corresponding to the transition
between the long-range and the short-range behaviour of
the system. The crucial problem is now the dependence
on σ of the scaling exponent of the current. Assuming
that all of the peaks of the integrand are well-separated
Lorentzians and that their widths are exactly given by
the real parts of the poles, we might conclude that the
heat current scales as J ∝ N−|σ| for −1 < σ < 0. cin
agreement with the one derived directly from the fit
of the current, which is anyway affected – at least for
small values of |σ| – by significant finite-size effects.
The disagreement between these two scaling exponents
remains to be explored, even though our analysis of
the scaling of the real part of the poles of the Green’s
function clearly supports the presence of a transition at
σ = 0 from the long-range to the short-range behaviour.
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