%’ §f@&g

QUBB! PBOCBSSIHG IN A NULTIMEDIA
DOCUBENT SISTEE

‘
e
1
i

E. Bertino, S% Gibbs, F. Rabitti

1stituto di Elaborazione della Informazione
Consxgllo Nazionale delle Ricerche
Via S.Maria 46, Fisa (ILtaly)

P

e——




Append. B — Selectivity of Predicates on Attributes

Append. C - Proofs of Assertions in Section 7.

C.1 Proof of Assertion A.1. °
C.2 Proof Assertion C.l. . . .
C.3 Proof of Assertion C.2. -

9.0 REFERENCES @ 2 o @ © o o o o

Table of Contents

®

®

¢ & e 8

¢ ¢ ® ¢

& ¢ ¢ ¢

53
55
55
56
57

60

iv




1.0__INTRODUCTICOR

Multimedia Information Technoloyy has became a rapidly growing
field of investigation within the 1last [few years and several
research activities concerning various aspects of multimedia infor-
mation manavement have been reported [cCone85], [ ICEEBY ]. The chal-
lenge arises f{rom the capability of providing an inteyrated,
homogencous way to access, process and exchange multimedia informa-—
tion objects. A multimedia information object, which we will also
refer to as a multimedia document, may contain attributes, i.e.
formatted Jdata, text, images, graphics, as well as voice anno-
tations. The name multimedia means that such objects can  be
perceived, created, and retrieved using different types of media.

The inteyrated management of multimedia documents oflers great
" potential to increase the productivity of people in application
environments such as offices, military applications, CAD/CAW, and
libraries [CHRISS]}. The developnent of a multimedia systen
involves several issues. 3Such a system should in fact provide
capabilities to: ‘

— Dbisplay, create anl manipulate multimedia documents; issues
here concern document presentation and rendition as well as the
development of multimedia editors.

—_ Transmit and receive multimedia documents over both local and
long-haul geoqgraphic computer networks; an important issue here
concerns the definition of standards lor multimedia information
exchanye. '

- Store and retrieve multimedia docunents; some of the issues
here concern storage requirements, since multimedia documents
are large in size, and powerful retrieval capabilities.

Another imvortant issue concerns the def€ipition of suitable
conceptual models since traditional molels usa2d  in Jdata base
systems do not provide enough flexibility in modelling multimedia
objects [ RABIBS5]. A multimedia document is a4 collection of compo-
nents which containg the different types of multimedia information
and may be further structured in terms of other components (such as
the body of a paper that is composed of sectionus and paragraphs and
contains images and attributes embedded in text) . These complex
structures, which can greatly vary Jfrom one document instance to
another, cannot be adequatly described with the structuring mech-
anisms of the traditional data models.

Previous vwork on nultimedia documents has been primarily
concerned with document manipulation, presentation, and trans-—
mission. This is tlie case for instance of Diamond [ THOH8S]), a
system that allows the users to create, elit, manage, and transmit
documents containing text, graphics, imaje, voice, and electronic
spreadsheets. Some work has also been reported dealing with the
problem of representing the structure of multimedia documents. In
[GIBnY3 ] a data model for office objects is presented. , It is based
on the object-oriented modelling approach, and is focused on more

Introduction ‘ L]




|

t
i

dymimic aspects, such as data object presentation, manipulation and
distribution. !

|

A sophisticated model for multimedia documents is described in
[BARDB8S5 ). In this model different document structures coexist in
the same documents 1in order to support the different functions of
editing (logical structure), presentation {[layout structuce) and
retrieval (conceptual structure). Also some standards for docurent
exchange, formatting and editing are under definition by interna-
tional orgaunizations {[IS084), [HORABS], [POSTIR2]. The area of
filing and retrieving multimedia documents, though, has not heen
explored as throughly.

A sucrvey presented in [HURPB3 ] has shown that almost all systenms
surveyed have facilities for storing and tetrieving electronic
documents. llowever the systems described present serious drawbacks
for storing and retrieving of multimedia documents. If the docu=-
ments are filed directly at the user's workstations one is likely
to exceod the storage space, because of the large space require-
sents of wmultimedia documents. Moreover the distributed access of
these documents can be a problem. Locating the document (iling
functions on a host computer has the advantages of exploiting a
poverful operating environment. The available operating systems can
support a variety of software for database and information
retrieval systenms. However these "traditignal" tools may not be
adequate in handling multimedia documents containing different
types of data, and the performance obtained for large volumes of
documents coapared to the cost would prohably be umnacceptable. The
use of a file server over a network allows the vworkstations to
share the filing services [SVOB84 ). However, L€ it is a gecneral
purpose server otiented to files handling, then nultimedia docu-
ments can be seen only as ordinary files. In which case the only
type of document retrieval would be by address or name.

The advantages of a network file server could he enbanced if the
server is specialized for the filing and retrieval of multimedia
documenis. With this approach, it is possible to target the hard-
vare anl software choices tcwards the specific task of document
storage and retrieval. In particular it would be possible to use
high capacity storage devices such as optical disks.

A distributed system designed on this philosophy is presented in
[BERT85] and [ BERT86]. The system consists of a number of auton-
omous subsystems called multimedia document servers and a number of
client subsystems. The system provides dJdifferent types of filing
capabilities: dynamic filing dealing with documents that are
private to 4 client and that are under molification; current filing
dealing with updatable shared documents; archive filing dealing
with stahle shared documents. In order to provide adequate storage
capacity the " secrvers have been designed so that they can support
optical storage devices in addition to magnetic devices. Another
important feature of the system is that it supports a the document
nodel described in [ BARBB85)]. Document retrieval is based on the
conceptual structures as defined in this document model.

The 1internal structure of a document server consists of a
certain nuamhbecr of components that are described in 'detail in

Introduction . l 2




[BERTB6]. Among these the storaye subsystem provides access meth-
ods for document retrieval and allows the storage of large data
values while the translator maps document level operations onto the
data structures of the storage subsystem. Query processing in such
a server is complicated by the fact that both magnetic and optical
storage nmay coexist on a server. Since maynetic and optical storage
have Jifferent organizations, different storage models must Dbe
built and used for query optimization.

In the present paper we discuss rquery processing in such an
environment. The remainder of this paper is organized as follows.
In section 2 we describe the query langnajge and we briefly survey
the conceptual document model. In section 3 we describe the server
storaje organization. In sections 4 and 5 we describe respectively
the statistics and cost functions used in query optimization. in
section 6 we discuss the various steps in gnery processing. FPinal-
ly in section 7 we present query optimization strategies.

Introduction 3




2.0 _THE QUERY LANGUAGE

Retrieval of documents in our system is based on the document model
deseribed in [ RABIBS], [BARB85], and {RABLYG J.

The struclure of aultimedia docuuwents 1Is more complex than that
of the objects usually manayed in form processing systems [ GOUAB2Z |
or information retrieval systems [sALY83]. 1In order to support
different operations (i.e. editing, presentation, retricval) the
document model supports several structural descriptions of a multi-
med ia document. The logical structure determines how loyicul
coaponents, such as sections and paragraphs, are related [ HORABS J.
The layout structure descrives how document components are arranged
on an output device at presentation time {HORABS ]. There may be
couplings between lojyical and layout structures {see, [or instauce,
the template concept in [GIBB83]) . '

For many operations, such as query specification by content and
document creation, it is important to see a document in terms of
its conceptual components. A conceptual component is a document
component which has some coamonly understood function in the orgjan-
ization. The associated document structure is called the conceptu-
al structure. - An.example of a conceptual structure could be a
"meeting  announcemoent letterm™ containiny a conceptual component
called a "meeting . subject". The conceptual structure is used for
query specification since conceptual components are more meaningful
to the wuser than lojyical or physical components and, also, the
conceptual structure is often less complex than the loyical and
layout structures.

Since a document may go throuyh successive processing operations
after its creation, it is not sufficient to simply store the values
forming the document, one must also store structural inforwmation.
The document model adopts a  standardized representation  based on
ODA (the Office Document Architecture, a standard under definition
by IS0, BCMA and CCITT [LECIAB5] [ IS034 1) for the loyical and layout
structures.

Document retrieval by content is Yyreatly eunhancel if the concep-
‘tual role of document components can be described. For this
reason, in the adopted document mnmodel the conceptual document
structure has been introduced. Document type definition is essen-
tial for the retrieval. llovever, since nmultimedia document struc-—
tures tend to differ greatly from instance to instance, the kind ol
database schemata that arise with stronyly typed data models cannot
be used for document type definition. for this rcason, a weakly
typed data model, aimed at the flexibility required in multimedia
document definition, has been adopted. In this model, a weay type
is the specification of the coanon conceptual components within a
set of documents. (An instance of a weak type may have a much more
complex and detailed structure than that specified in the defi-
nition of the type.) This concept of weak type allows the defi-
nition of types at different levels of detail: an "is-a" hierarcchy
can be constructed among weak types. : -

The Query Language 4




A type definition mechanism is wuseful Ffor the storage and
retrieval of data objects when the rautio between instances and
types is high. In this case it is possible to use the structure
specified within the type to build efficient access methods and as
an aid in guery formulation. There is little regularcity in the
logical and layout structure of multimedia documents. However the
conceptual structure -is more uniform and so is suitable for forming
document types.

2.1 Basic Concepts of the Document Hodel

A document'®s conceptunal structure is specified by mean of a Struc-
ture Tree. A leaf node in the structure tree is a node with no
exiting edges. In the present paper Wwe wvwill refer to the nodes of
the structure tree as conceptual components, components correspond—
ing to non-leaf nodes in the structure tree 4ill  be referenced to
as intermediate conceptual components. The symbol + attached to a
node means that several instances of the corresponding conceptual
component may appear in a document instance. We refer to such
components as multi-valued components.

A simple example is given in fig.l. In the example RECBIVER is a
multi-valued conceptual component. It should be noticed also that
the conceptual components NABE and ADDRESS aAppear in two subtrees
having as roots respectively the conceptual conponents RECELVER and
SENDER. -

Prom the example it can be sSeen that thore are Dbasically tso
wvays of referencing to components:

- by a "simple™ name
- by a path—hame.
A path-name has in general the form
HANE<T> (o 1%} NAURC2> {[%) wea HANE<n=1> [.[*}] NANE<n> @

vhere each NAMETKI> is a simple name.
) i

The path-name specifies that the 'conéeptual component beinjy refer-
enced is the component having as "sinple" name NAME<n> and which is
contained within the conceptual component whose name is HANE<n=-1>.
The conceptual component NAHE<—1> is. in turn contained in
NAMD<n=-2> and so forth. Component names within a path-name can be
Separated by either a "." or a "&n_ Whon a ".n  jig used this means
that the conceptual component of the left side of the "." contains

3 Throughout this paper, for fXZ<i> we intend XXX with index i.
This representation can be nested: '
XXX<i<j>> means XXX with index i, i having index j.!

The Query Language 5




L v
| LELTER {
| ! |
| | {
! i | | I
| | ] | !
} DATE RECDLVER+ . SEHDER BODY {
i | | |
| | ! |
| —— —_— I
| I | I ! |
] | | | | {
{ HAME ADURESS HANE ADDRESS i
| | | | I !
I ! | I ! ]
| ! | ! | J |
i | ] I | ! I ! | I |
i PIRST LAST i | | { | o | |
{ STREET CITY COUNTRY { STREEDT CILTYZ COUNTRY {
| | |
! | !
| ! I I
| ] I !
| FIRST LAST i
| g [
} . Pig.1 Conceptual Structure for the Document type [
} ‘ : LETTIER §
[ W g

directly the component of the right. When a "*" j5 uysed there may
be one or more intermediate components between the component on the
left side and the one on the right. Examples of path-names are the
following: »

- SFUDER.NANE
In this case the | component referenced is the one having as
simple wname NANER and which is contained in the conceptual
component SLHNDER. ’

o~ RECBIVER#COUNTRY
In this case the conmponent referenced is the one having as
simple name COUNTRY and which is contained in RECEIVER. COoUl-
TRY however is mnot directly contained in RECEIVER since betweaen
the two there is the intermediate component ADDRESS.

|
i

2.2 Lanquage Definition

In general queries may have conditions on both the content and the
conceptual structure of documents, Expressing conditions on the
document conceptual structure asks for documents having the concep-
tual component whose name is specified in the condition.

The Query Language 6




In addition, a document conceptual t7ype can be specified in the
gnery. In such case, the conditions expressed in the query apply to
the documents belonging to that pacticular conceptual type. If the
document type indicated in the query has subtypes, then the guery
applies to all the documents having as type one of these subtypes.
When no tyve is specified, the query will apply to all possible
document types.

Finally a scope can be indicated in the query. This allows
restricting the gnery to a particulacr set ol documents. Usually
this set of documents is a document collection retrieved by a
previous 4guery.

In  general, then, a guery can be soen uas " composed of three
clauses: ,

SCOPE The scope restricts the query to a given set of documents.
The scope can be specified either by wyiving a collection
identifier or by givinyg an explicit set of document identifi-
ers. This clause is optional.

TYPE The TYPE specifies a document conceptual type at any level at
the type hierarchy. This clause is optional. When it is
missing the query applies to all document typese.

COND The COND clause is a boolean combination of a set of simpl
conditions, or predicates, that must be satisfied by th
documents retrieved. We discuss in tho tollowing the type
ol simple conditions that can be specified in the language.

0o

2221 CONDIPLONS

In our language conditions are usnally expressed ayainst conceptual
components of documents, that is a condition has in general the
form:

<component> <restriction>.

Where <component> is the name (or path_name) ol a conceptual Conpo-
nent and <restriction> is in geuneral an operator [ollowed by an
expression. We discuss restrictions in the next subsection.
) |

However, to implement content addfessability for the text part
of documents it is important to allow texl restrictions that 4o not
refer to a varticular conceptual composent. Such conditions will
be matched against all text components ol the documents searched.
In this case a simple condition has the form:

<restriction>
where <restriction> is one of the allowed restrictions for text.

Another important point concerns multi-valued components. Docu-
ments may contain repeating values for a conceptual component. In

The Query Lanyuaje ' 7



such a case, the query lanyuage must allow one to express the fact
that a restriction applies to either all the values of the multi-
valued components or at least one value. To Lhis purpose, we have
introluced the two quantifiers ALL and SO/IE. A condition involvinyg
quantifiers has the form:

{ALL]SOilE} <component> <restriction>.

Where <component> is the nawme (or path nama) of the maltivalued
conceptual component. Also we have introduced EFor the multivalued
components the operator IS IN. A condition containing the 1S 1IN
operator has the form:

<component_name> IS IN <set-expressiond>.
P - 2

The semantics of this condition is that the set of values of the
multivalued component must be a subset of the glven sct.

e refer to a conlition containing quantifiers or the IS IN
operator as a multivalued atomic condition. aAny other type of
condition is called a singlevalued atomic condition.

As we said previously a condition has the lorm

<component> <restriction>

It should be noticed that the component name (or path-name) aay
refer to a conceptual component which is contained in several
conceptual components. For instance, in the example in fig.1, we
could have condition of the form:

RAME <restriction>

The restriction applies to both the components whouse path-names are
SENDER.NANE and RECEIVER.NAMD. The problem is to decide how such a
condition is satisfied. There are two possibilities:
T. NANE <restriction> = True if
(SEUDER.NANE <restriction> = True) Aap
(Some {(RECCLVER.NANT <restrictiony = True))

2. HNANE <restriction> = True if
(SENDER.RANE <restriction> = True) OR  (Some(RECLIVER.RANR
<restriction> = TRUE)) B \
We have chosen to use the second solutlion since it seems more flex—
ible for 4yueries which are typeless or reler to very general types.

In addition to the previous types of conditions, the language
nust allow conditions on  the existence of conceptual components
within documents. This allows expressing  yueries on the conceptual
structure of documents. Therefore we have defined the operator
WiTH. A condition containing the WITH operator has ﬁ?e form:

HITH <component>. .

The Query Lanqguafje 8




This condition expresses the fact that the component whose name {or
pathname) is given, must be a conceptual component of the docunents
to be retrieved. To express conditions in  which it is regquired
that a conceptual component having name NAME<iL> is contained in a
conceptual component having name AL ) the palh-nanme
HAME<iI>*NANE<j> is used.

202.2 MESTRICTIONS

Four types of restrictions have been defined: numeric, string,
text, date, and component restrictions.

Kumeric restrictions have the form:
<rel_op> <numeric_ecxpr>
where <rel_op> is one of the following operators:
=, =, <, >, <=, >=, BATI4ALCEN.
The BETWELN operator is used to express ranje conditions.
Striny restrictions have the form:
{(<rel_op>|LIKE} <string_expr>
where the <rel_op> is one of the operators we have listed before
anl the LIKZ operator is used Lor partial matcih. In particular
when the LIKRE operator is used, the string expression may contain
any characters, with special meaning rescerved reserved for the
characters "_» and mgn,  [)e "_" characler cepresents fany single
character™, The "% character represenls  "auny string of zero or
more characters". These two special characters: may be used, in any
combination, in the string expression.
Text restrictions have the form:
CONTALIS <string_expr_list> [<distance> j
where <string _expr_list> is a  list of strinys. This restriction
specilies that the text must contain \ the given strings. The <dis-
tance> clause specifies the distance between the given strings.
Finally component restrictions have the form:
<rel_op> <comp>
where <rel_op> is one of Lhe relational operators and <comp> is the
name (or pathname) of a conceptual componcent. Restrictions of this

type are used to specify for erample that two conceptual component
have the same value.

The Query Language i 9




The query language grammar is defined in "™A.0 Append. A - The
Query Language Grammar'™ pag., 46,

The Query Language 10



3-0_ PHYSICAL STORAGE OBGARIZATIOR

In describing secondary storage Wwe will use the following terms:

devices

segments

extents

blocks

block pointer

files

- a device is either maynetic or optical. HMaynetic
devices consist of a number of cylinders, each
containinjy tracks which in tarn contain sectors.
An  optical disk simply contains a sequence of
Sectors. Optical disks may be arranged in a " juke-
box”™ in which c¢ase one disk is mounted and the
remaining are unmounted. To read or write an
optical disk it must be mounted.

- devices may be divided into seqments. A segment
is a set of extents. An optical segment may be
open or frozem. An optical segment is {rozen once
no more writing is allosed on the seyment, this
ustally occurs when the free space drops below some

minimum value. If writing is possible, the segment

is open.

- an  extent is a physically contiquous region of

secondary storage. An  optical extent is a set of

seqnential sectors a majnetic extent is a cylin-
¢ 3 ¥

der. Each seygment may bLe described in teras of the
extents it contains.

= each extent consists ol a sequence of f{ixed size
blocks.

- 2 block pointer luvcates a block within a segment.
It is the offset Crom the start of the sejment.

= a file is a yroup of blocks. AlL blocks in a
fFile are on the same segment. The manner in which
the blocks are grouped will depend on the file
oryanization. There are three file oryganizations
usad: sequential, linked-list, and B-tree. 1In the
fivst, blocks are grouped sequentially, in the last
two, by explicit links. Links are dimplemented
using block pointers, Ihe pointer to the first
block of a file is called a file pointer.
\

LY ' i P
There are four nossible uses of a seyment:  Ybulk storage®™, text
siynatures, document indexes, and system tables.

Physical Storage Organization 11




3.1 Bulk_Storaqe Segments

Bulk storage refers to those segments used to store document
instances. Documents are storeid in bulk storaye sequentially. The
location of a document is specif{ied by a Pil, a physical document
identifier. A PDI consists of a4 <seymeut number, block pointer>
paic. (Documents are stored on block boundaries.) The following
figure depicts this organization:

! ! ! [

R et b P f<~--PDI { ]

! I | !

I document | e ——— | <--PDI

i I |  document |

frmm e ! [ ===—mmmm e r
seyment x seyment y

In addition to a unique Pbl, each document also possesses  a
unique LDI or logical document identifier. LDIs are assigned by
the system on document insertion.

3.2 Text_Signature Seqments

Associated with each bulk storaje seyment is one signature seyment
used to hold text signatures for accessing  the documents on the
bulk storage segment. A signature segment contains a sinyle signa-
ture file. The structure of a siynature file is as follows:

{m==—=-= extent a =——-———=s> Ceummm—eeee_ extent b -->
| i signature for
| siynatures | signature f oeeew bulk storaje
1 } | seyment x
| !
| o
561 SGIL

A signature file consists of, a fequential list of signatures.
The sijnature of a Particular document i5 indicated by its s56I, or
signature identifier. An SGI is a <seyment number, block pointer>
pair. (Signatures are stored on block boundaries.)

' The signature of a document consists of a header followed by the
signatures o€ the document text blocks. The header contains the
LDI, total signature length, and a deletc flaj.

Each text signature Cile is stored in a signature segment which
contains the signature of the text portions of the documents stored
in the same bulk storaye seyment, A signature segment can be
stored ecither on a magnetic or on an optical device.

Physical storage Organization 12




Differcut signature techniques have been proposed in the litera-—
ture, The word siynature {r51¢83] and  the superimposed coding
[CHRIBbAa] are very flexible with respect to document insertion,
deletion and update. lowever, they require a complete scan of the
signature file in case of a Jeneric text guery. The bit slicing of
superimposed codes [ROBE7Y] requires access of a limited nunmber of
signature blocks also in case of generic text queries. However, in
case of document modification/insertion it implies an expensive
reorganization of the signoture file. Botyeon word signaturce and
superimposed coding, the latter performs better in teras of space
overhead and CPU consuamption [RABIB4 ]. With ‘superimposed coding
the ordering of words in a signature block is lost. flovever, if
required in the text query, the word order can be checked when the
document is retrieved from the bulk storage seyment.

“Given these considerations, it appears that the superinmposed
coding technique (SCT) is more suitable for magnetic siynature
segments, while the bit-slicing of superimposed codes (BSI) is more
suitable for optical signature seyments.

The storaje occupation for SCT and BST is the same, the only
difference is in the size of signature blocks and in the meaning of

the bits contained.

For the noment we assume that siynatures are stored sequentially
in  the signature file. The usage of bit-slicing teclhinique is
however under consideration.

3.3 Index Segments

—— e

Lach index segnent contains a number of document indexes. A docu-
ment index cousists of two files: i B-tree f[ile and a inverted
file. The B-tree file contains pointers to an inverted file while
the inverted f€ile contains document component values anl the LDIs

~of the documants containing those component values. Records in the

inverted file are ordered by key value.

B-tree files are not stored contiguously on either maynelic and
optical storaye. The blocks of an inverted [ile are stored contig=-
uously on optical storage, while they ate not stored contiguously
on maynetic storayge.

The maynetic index segments together form a composite index which
indexes all documents on all segments. An optical index segment,
however, indexes only those documents within a single (optical,
frozen) segment.

Physical Storaye Organization i 13




3.4 System Table Seqments

Finally certain maynetic seyments are  reserved for systen tables
and temporary file space.

We divide the control information usedl by the storayge subsysten
into two parts: internal data structures and  systewm tables.
Internal data structures are used only within the storage suvsysten
and are not visible to other server components. The internal data
structures are used to store information concerning transaction
control, device configuration, and segment and extent layout. We
vill not Further specify these structures here. System tables
contain shared and persistent information. Systen tables are main=-
tnined by the storage subsystem and can be accessed by the higher
level comvonents of the document Server. Examples of such informa-
tion are conceptual  type definitions and statistics that are used
by the query processor.

The concept of a cluster is useful in describing the grouping of
seghents on uptical storage. We will assunie that a frozen optical
bulk storage seyment has a sinjgle signature seyment and a single
index segment. Such a group of three segments forms a cluster.
Clusters are meant to he self—contained in that they contain a set
_0f documents plus access information for those documents.

A cluster is formed when a bulk storaje segnent is frozen. The
cluster®'s siqgnature seyment is  formed by either copying the
original signature segment  (if a magnetic segment  was beiny used)
or calcnlating the siynature directly Lrom the document text (if a
different signature encoding is used). The cluster®s index segment
is formed by extracting indexes from the composite index and writ-
ing these to an optical seyment.

3.6 Access Paths

In our system we have three types of access paths:

- Document Access
The access path consists of scanning the set of document
instances. It may take as an argument a set of PDI. 1In this
case #@e  have random accesses to the set of documents. If it
has no arguments the whole set of documents is scanned. 1In this
case we have a serial access. : ‘

Physical Storage Organization 14




Index Access

An index can be scauned by using the B-tree or by using direct-
ly the inverted file. This last type of scan is used for
instance to evaluate predicates such as <,<=. In this case the
inverted file scanned from the beginning until a record is
found that does not satisfy the search condition. An indeyx
scan has as input parameter a search condition consisting of:

the index nane;

an index operator (0P) ; the woperator can be one of =,
<l>l<=l>=;

a key valuc (KV);

The result of'an index scan is the set ol Lbls of the documents
satisfying the search condition.

Signature Access
A signature scan has the following input parameters:

A set of text conditions {T<I>,T<U>, .. . T<n>)
(the form of the text conditions is defined below)

a set of document identifiers (optionaly .

The result of a signature scan is for each T<i> the set of LDlis
of documents that satisfy T<i>.

A text condition has the followiny form:

{m, S_L_LJ ‘

where S_T_L is a set of string exprossion lists and m  is the
number ol string expression lists contained in the set S_ L L.
The documents that satisfy a text condition are the onns that
satisfy at least one of the string expression lists in the set
S_F_L. A string expression list is defined in  the query
lanjuage grammar (see Appendix A) . A document satisfies a
striny expression list if it contains all the strings contained
in this string expression list.

It should be noticed that by passing to the signature handler
several string expression 1lists one can evaluate all the text
restrictions within a gquery with only one siynature scau.

The costs of the various access Paths are presented in Section

3.7 Storage Subsystem Parameters

The essential parameters lheCcessary to describe the storage devices
inside the storage Ssubsystem are: . !

. '

i

Physical Storage Organization 15



— For magnetic media:

MSK Seek time for locating a Physical block (in sec.)

MIR

il

Disk transfer rate (in bytes/sec.)
- For optical media::
0SS = Seek time for locating a physical block (in sec.)

OTR

i

Disk transfer rate {in bytes/sec.)

1]

onT Disk mounting time (in 5eC.), in the case we have a
juke~box which allows the switching of optical disks.

Physical Storaye Organization ‘ 16




B.0_ STATISTICS

During query processing statistical information is used to estimate
the selectivity of the various restrictions appearing in a given
guery. Statistics are collected and stored for each document clus-—
ter. It should be noticed that Separate statistics are needed for
each cluster since +document characteristics may vary from cluster
. to cluster. As a conseguence, the optimal execution of a given
- query, may vary from cluster to cluster. .

The following statistics are used to evasluate the selectivity of
the various restrictions:

- SD = Averaye document size in bytes
- STD = Average size in bytes of the text part of a document

- For each conbeptual document type, T, the number of documents
having type T. 4e indicate this as NDI(ID)

- For each conceptual document type, T, the averadge documeunt
size. We indicate this as SD(T) .

- For each conceptual document type, T, the averaye size of the
text part of the document. He indicate this as STD(T)

- For each bulk storage segment, S, the nuaber of documents
contained. We indicate'this as NDB(S)

- For ecach multivalued conceptual comvonent, ¢, the averayge
number of occurrences of that component in a document. We indj-
Ccate Lhis as n{c). :

- For cach index 1I: |

HA(IL) = number of distlinct kKeys in the index
HV(L) = highest key value

LV(1l) = lowest key value

RL(I} = numbéc of blocks in the inverted file
NI(I) = index cardinalitj \

UL} = 1 if the index is unique else = ¢

Statistics ‘ 17




.1 Statistics for text

It is important to identify the target to which the various text
statistics refer. We call this target a Text Set, which may be a
set of text documents or a set ofF toxt document components. In
relation with our storage subsystem, a text set is defined as the
text vhich is represented in a sinyle siynature segment.

With respect to a text et X, the statistical parameters rele-
vant for determining the Lext access times areg

— W[ X] numver of words in £

- DW[X] number of distinct words in X

— NCW[X] number of non common words in i

= CW[X] number of common words in X

- RCDAY[ X] number of non cOmmpn distinct words in X
- CDA[ X ] number of common distinct Wwords in X

- CWL number of common distinct words specified in the slop-word
list for the application.

Not all these parameters are independent. The following
relationships hold:

= R[X] = CH[X] + NCA[X]
— DW[X] = CDW[X] + NCDW[X) ;
It is usually too expensive to keep all these statistics for

each text set . 1In yeneral, it is more convenient to defline for X
the followiny functions:

1]

— DA[X] = €(W[K])
gJ(d[ X ]

— HCDW[X] = h(NCK[X])

-  CH[X]

]

If we can determine EQ, 90 and h() for X, we are able to
deterzine all the statistical parameters Lor X knowing only W[X].

For the function y(), we can assume [KRARISY ]
CHW[X] = CWPLR * H[X ] :

where the coustant CWPEQR represents the percentage of commnon words

and is determined by the choice of Lhe stop-word 1list for the

application.

The nost crucial part, is estimation of the function (). 1n
order Lo predict the performance of an access method it is essen=—
tial to know the number of unique words for the text set and any
portion of it. For example, in computing the performance of signa-

Statistics ‘ 18




ture technigues it is important to estimate the number of distinct
vords in a page or block. In [RABIBH] it is shown that no analytic
function can closely approximate DAfX] EFor very different text
sizes W[X]. Two main factors, reflecting the text set character~-
istics, determine the function £(): '

1. DFNS = document density
represents the average variety of words in each text component.
This quantity is sensitive to the type o€ the document and the
writing style. I DENS->1, each word is unique, while if
DENS->0 there is only one repeated word.

2. POUT = document fanout
Lepresents the averaye variety of words amony the different
text components. FOUT reflects correlation in topic amony docu~
ments., IL FOUT->1, each document contains different words,
while if FOUT->0, documents contain the same words.

In [RABIBU ], a way to approximate the parameters DLNS and POUT
has been proposed. 1t is easy to compute, since it consists in
counting words (H) and distinct words (UW) for two different sample
subsets of the text set X. '

1. For the parameter DENS, we refer to a sample subset X1 of X,
with "standard” characteristics in 1. For example, its length
is adjysted so that H[X1] corresponds to the average length of
document or text components in %. #We define L1=W[X1]. fle
impose:

DENS = DA[X1] / W[X1]

2. For the parameter FOUT, we refer to a simple subset X2  of X,
such that its length W[ X2 ] corresponds to the average length of
1000 documents or text components in X (i.e. T000*4 [ XT1])
NYotice that FOUT can be computed only when the size of X is
large enougth. We define L2=d[X2]. 4We impose:

FOUT = In(DU[X2]) / Ln(W[X2]) =

Tn [RABIBH] it is observed that the tunction £() presents
dif ferent behavior on three intervals for W[ SX], where SX is a
generic subset of X. The intervals are: below L1, from L1 to L2,
and  beyond L2. The influence of document density and document
fanout on the function £(), differs in these intervals.

These funciions are: . |

1. Por A[SX] < L1
€10 ¢ DA[SX] = W[S8X] / (1 + AVERL 5K ])
where A1 = {1/DENSY - 1. :

2. For L1 < H[S5X] < L2
£20: DI[SX ] = B2 * W[SK]*t*A2
where B2 = 10%DLNS
andl A2 = rour - In(B2) /In (W[ SX ])

2 In the followvwiny, for 1ln we mean the natural loyarithm.

Statistics 19




3. For A[SX] > L2
£3():  DY[SX) = R3 * W[ SX]**A3,
where B3 = 100%DENS
and A3 = FOUT = Lln(R3)/ln (A[ SK1])

For the [unction h(), we notice that for a large text set X we have
D[ X J>>CAL, so it is likely that all words in the stop-wvord list
actually appear in the sample (L.e. CDU[XJ=CHL) . HWe have:

NCDW[X] = DW[X ] - CHL :

Otherwise, for a small size text set A it is probable that
CDW[X J<KCWL. In this case, the following approximation is acceplta=
ble [ RABIBUY }:

CDW[X] = CAPHR*¥0.5¥DW[X |
thus, we have:
NHCDW[X] = DA[X ] * (1 - CRPER * 0.5)

4.2 Selectivity of predicates on attributes

Atlribute selectivity is  evaluated on the hypothesis that the
values of epch attribute are uniformly distributed and non-corre-—
lated. Zven if these assumptions may provide a pessimistic cost
estimations, as discussed in [CHRIB4 ], they are yenerally assumed
by query optimization algorithms of existing systens.

In general a predicate has the fornm:
<comp> <restriction>

vhere <coap> is the name of 4 conceptual component and
<restriction> is an operator followed by an expression.

The selectivity of a predicate D ois denoted by st(p) and it is
estimated as is usually done in database systems. The selectivity
of the various types of restrictions is listed in Appendix B.

It should be pointed out that since not all the conceptual docu-
ment types have the sane components, the estimate of the nuaber of
documents satisfying the a predicate p involving a conceptual
component ¢ is calculated as follous;

NBT(T) * st(p) if ¢ is a singlevalued component

BDT(T) * (1 - ((1-st(p))*sn(c)) 3
if ¢ is a multivalued component

wvhere T is the highest document type in the type hierarchy having
as concepltual compouent the one whose name appears in p. Therefore
st(p) defines the selectivity of the predicate onm the set of docu-

3 x**y is read as x raised to Y

Statistics . 20




ments belonyiny to type T. The selectivity of p on the entire set
of documents is denoted by s(p) and it is calculated as follous:

il

s {p) (dDT(T) /D) = st (p) if ¢ is singlevalued

I

s(p) = (NDT(T)/ND) * (1 - ((I-st(p)) **n(c)) if ¢ is a multivalued
conponent.

4.3 Selectivity of predicates onvtext

In computing the selectivily of predicates on text, we assume the
independence of the words in the text sets. 1In our case a text set
can be identified as the text bart of a set of documents whose
signature is stored in the same siynature sejment. Otherwise, ve
could consider only one text set, comprehensive of  all docunents
stored in the system. With these simplifications the text statis-—
tics we need to compute are W[X], DENS, FOUT.

Ye also assume the equiprobability of words, that is, the proba-
bility to find a word in a text set is ogual to the averaye
frequency of any word in the text set. More precise estimates
would be possible if we keep track oF the relative freguency of
each word in the toxt set [ RABLB4 ], but this would require main-
taining a dictionary of distinct words. This is too expensive in
our application environment.

Since in  signature creation only mnon-common words are consid-
ered, va compute the selectivity based only on non-common words in
the text set. We call pw the probability to find 4 specific word
in a certain position of the test set X:

PY = UCHA[ X J/NCH] 4]
= (DALX ] = CHL) "/ W[ R J*(1-CHPER)
where Di[X] = E(ifx])) .

The probability to £ind a word in the subset S4 of % iss
PWISX] = 1 - (1-pw) EETCH] 5X ]
Where NCA[X] = (1-CHPLR) *4[ 4 ]

If we consider only one Lext set v in the system, we can estimate
the number of documents selected with one word predicate:

ND % (1 = (1-pw) *x( (1-CipLR) (5LD/ (HLET+1.2)) ) )
where WLILH is the average word length in bytes and 1.2 is the over-
head due to hlanks and punctuations.
and, if the documents are restricted to the type T:

SDT(T) * (1 ~ (1-pw)**( (1-CHPER) »* (SID(L) /(HLEN+1.2)) ) )

The probability o€ boolean conbinations of text predicates p can
be combined in the following nanner, assuming the ~ predicates are
independent:

;

— P(p1 OR p2) = P(pl) + p(p2) - P{p1)*p (p2)

Statistics . 21




-_— P(p1 AND p2) = P(pl)*p(p2)

- p(uor (p)) = 1-2(p)

Statistics

22




5.0 _CoST FURCTIONS

In the folloving ‘we present the cost formulae for the various
access pathse. The cost functions are in terms of 1/0. For each 1,0
operation the cost formualae ~consider both the seek and transfer
tine,

5.1 Cost_Formulae for Document Access

Documents are stored in bulk Storage seqments and are identified by
a PDhIL. The cost of accessing  n documents depends on whether the
storaye seygaents where the documents are stored are on magnetic or
optical devices.

- In case of magnetic d1isks , we haves
COSL = n*N3K + (n*SD)/NTR
- In case o€ optical disks, Supposing that the n documents are
spread into segments on n different optical disks, we have
COST = a*OUT + n*0SK + (n*SD) /OTR

If the documents belong to a specific type T, SD(T) will bLe substi-
tuted for SD in the previous formulae.

5.2 Cost_Pormulae for Index_Access

The cost formunlae Leported here are derived fronm [SELL79], [YALT9 ],
[ASTR30]. In the followiny the notation 1oy<ze> is read as log with
base z. .

As descrived in Section 3 an index can be accessed by using the
B-tree or by using directly the inverted file. Given an index I the
costs for both cases are computbted as, tollows:

Case 1

The index is unigue and the indox predicate is =, In this case at
most one LDI is retrieved.

The cost for maynetic storage is given by:
C{I} = (loy<z>AI(L) + 1) * (usK+ BLK/ITR)

The cost for optical storaye is ygiven by: ‘ '

Cost Functions : 23




C(I} = (log<ez>HL(I) + 1) * (0Sk+ BLK/OTR) where:
BI(L) is the index cardinality;
z is a number dependent upon the stoﬁage organization; it is a
number such that a block holds between =z anda 22 keys (index
elements) [BAYE72].

Case 2

The index is npot unigque and the index predicate is one of =y De =D,
The cost for majnetic storage is given by:

C(1) = (Log<z>nr(r) + f£=» NL{X))* (M3K + BLE/HTR)

The cost for optical storaye is given by:

C(L) = loy<z>HI(I) * (USK+ BLR/0rR)
* OSK + €*NL (I)* (BLK/OTR)

where £ is the sélectivity of the index predicate.
Case 3 |
The predicate is one of <,<=.

The cost for maghetic storage is given by:

C(L) = £XUL(L)* (nSK + BLK/iITR)
The cost for optical storagye is given by:

C({I) = 03K + [*NL (1) * (BLE/0TR)
In the previdus formulae BLK is the block size in bytes.

The main difference between the magnetic and optical storaye is
that in the first cage the Dblocks of the inverted files are not
contiguous therefore a Seek operation  is needed for each block
access. In the sccond case inverted Files are stored contiguously
ani only a sinyle seck operation is needed.

|
\

5.3 Cost Pormulas for Signature Access

The SCT signature is constructed in  this manners The text portion
of each document is divided into one or more text subsets TS, each
containingy the same number of words (except the last TS} . A signa-
ture block SIGN[ IS ] is conpused of g bits. A word W is represented
in a signatuce block by M Lits. Common words are disregarded., A
hashing technique is used to determine the ¥ bits corresponding to
each W. SIGHN[ IS ] is created by initially setting all its P bits to
"0®, and then setting to "1 the bits Cortresponding to the words ¥

Cost Functionsg 21




present in B. In this manner, only NCUW[IS] words are coded in
SIGE[TS J: duplicate words in TS are represented once in SIGH[ TS ].
The SCT signature segment consists of the sigynatures of the TS's of
documents contained in the corresponding bulk storage Segyment.

In order to query the SCT signature Cfor a single word W (i.e.
simple predicate), the same transformation is applied to W and the
B corresponding bits  are determined. Then all the indicated bits
are checked in all the signature blocks SIGR{TS] by scanning the
signature segment. 1I1f all M bits are set, W is assumed to appear
in that TS of the document. 1In order to perform a query with a
complex predicate (i.e. a boolean combination of several words) it
is still hecessary to scan the entire siynature Segment, only the
processing in the core memory buffers becomes heavier.

In order to estimate the cost of text query processing for
signatures the parameters I, F, and NTS (L.e. the number of TS®s ip
the signature Seyment) must be derived. First, it hecessary to fix
the desired (alse drop probability (FDP) , which gives the expected
error rate for Lhe signature technique (eg. 11000 or 1/100000) .
If H[TS] is the number of words at most contained in a TS, we have:

DH[TS] = E1(W[TS]) = RIS J/(T+A1%0[ TS ])
wvhere A1 is either relative to a particular siynature segment or to
the text set of all the documents in the system.

NCDW[TS] = (1-CWPRR*0.5) =* DW[ TS ]

M = | In(FEDF)/1n(2) |

Fo= ] (W*CDR[TS})) / 1n(z) |

NIS = WDB(S) * (0.5 + (uTS / ((ALEN+1.2) * W[ TS])))
where the constant 0.5 represents the average waste in the last TS
of a document.

The storage overhead of the Signature is:
(NIS * |F/3]) / (NUB(S) * DTS)
In case the hulk storage segyment contains only documents of type T,
DTS should be substituted by Drs(1r) .
We can now estimate the cost of computiny simple ang complex
text predicates (on documents stored in a single bulk storage
Segment), using different access strategyies. Let

- 32 be the number of extents of the siynature segment;

- NL be the number of LDI's of documents to which the guery is to
be restricted. Notice that if there is no such restriction, we
impose HL=NDB(S) . , \

TWwo strategies are possible:

1. Sequential signature scan »
COSI = HE*HSK + (NTS # VE/B1) / arr
The parameters NL and Np do  not appear in this cost formula,
In fact, since only 1/0 cost igs considered, SCT cost is inde=-
pPendent from the number of words in the text predicate. Hore-

over, since all siynature blocks are accessed, * the cost jis
independent of §L.

2. Random signature access

Cost Punctions 25




COST = NSK*NSK + NL * (NTS * |F/8|) / (NDB (S) *NIR)
+ CADDR (NL)

where NSK = min (NL,NT)
CADDR (NL) is the cost of determining the signature addresses
for a number NL of documents.

The number of disk seeks is estimated as the minimunm between
the number of documents and the number of extents.

LDI's are identifiers generated by the system, so they can
be sequentially yenerated as natucal numbers. Address tables
for WLDI's, in particular to determine for a given LDI the
siynature address SGl1 and the  physical document address Pbi,
can be structured as sequential files in which the LpJI is the
absolute record number of the corresponding address.

With this assumption, we can compute the function CADDH (4)
as: ’

CADDR(k) = b * (MSK + p*d4 / HTR)

where each address takes 4 bytes, v is the blocking factor for
these addresses {t.e. number of addresses per disk block). 1f
m is the total number of blocks for the address table on disk,
¥e can use the formula in [CARD75 ]}, as used in Systex R
[ASTRB0], to compute b:

b=uwmx* (1 - (1 = 1/m) *%k)

owever, since this formula is based on the assumption that
records (i.e. addresses) are selected with replacement, while
in our case - they cannot be selected more than once {supposing
distinct LbI's), an error up to 36.8% can be introduced
[Wi1AY83). If a more precise estimation is required, the formu-
la in [WHANY3] can be nsed, with a maximum error of 3.7%

When Xk <= n - p:
b=m=* ((1- (1 - 1/m) k)
(1 (p*mx22) x k*(k-1) /2 * (1 - 1/m) 2% (k~1))
(1eS/((n*#3) % (prxy) ). = k* (k=1)* (2k~1) /6
(1 =1/m) ** (k-1)) )

* <+ + 3

When Xk > n - p: |
b = nm

Cost Functions : : 26




The task of yuery processing can be divided in four main phases. In
the first phase, some initial activitiss ave performed such as
Parsing and cataloy access. Also the gquery is modified in light or
the type hietvarchy. We call this the preprocessing phase. In the
second phase, the set of document clusters that must be accessed is
determined. Since document‘distribution on  the various clusters is
transparent to the. applications, to solve a query it is necessary
to determine which clusters contain documrents that can potentially
satisfy the query. We refer to this phase as multi-cluster query
resolutiom. Once the set of clusters involved in the query is
determined, [or each cluster a Juery processing strategy is
defined. We refer to this phase as single~cluster query optimiza-
tion. Finally the query execution takes place by following the
strategies defined at the previous step.

Before describing the various phases in detail it is useful to
give a classification of the predicates that can occur in a query.
Predicates can be divided into four classes depending how Lhey can
be checked: ' :

'

1. Predicates on the structure

These predicates are evaluated by accessing the system cata-
logs.

2. Index prodicatoes
These predicates are evaluated by using the indexes.

3. Text predicates
These predicates are evaluated by means of signature scanning.

4. Residual predicates
These are predicates that can be only evaluated by accessing
the documents, that is Predicates on coaponents [or wihich there
are no access structures. TIhis is Lthe case for instance of
attributes for which thero are mno indexes. Also predicates
defined on live (spriny) nodes helong to this class.

In the remainder of the discussion we use Lhe follovwiny terms:

- index query: a query issued against the index seqments by
usinjy the access paths provided vy the index handler:

- text query: a query issued against the signature scyments by
using the access paths provided by Lhe signature handler;

- document query: a query issued ayainst the bulk storage
Segments by using the access paths provided by the bulk Storage
handler.

Steps in Query Processing 27




6.1 Preprocessing Phase

This phase consists of the following steps.

6.1-1__PARSING

The query is parsed by a conventional parser. Parsing verifies that
the query has a correct syntax. The parser output is a query parse
tree, which is augmented and modified by the subsequent steps in
the query processing. In the parse tree the COND clause, that is
the boolean combination of predicates, is expressed in Conjunctive
Normal Form (CHNFP).

6.1.2 CATALOG ACCESS

During the cataloy access information concerning the definitions
for conceptual types and components are fetched. 7This information
is stored in several tables (or other data structures) in main
memory to be used in the subsequent steps in the query processing.

6.1-3__CONPONERT CHICKING

1f a type is specified in the query then it is checked that the
conceptual components present in  the quoery belony to Lhat typea
Also each conceptual component name is expanded to its conplete
path name. IF there are saveral paths corresponding to the given
hame (see for an example section 3) the condition C in whiich the
component apnears is substituted by a disjunction of conditions
Clyee.Cn, where n i5 the number of the path names. Bach Ci has the
same form as c, except that the name of the conceptual component
.appearing in C is Substituted by the i-th path name.

If no type is specified the cataloys are accessed to determine
the document types containing the conceptual components whose names
avpvear in the query conditions. The list of these types is added
to the query tree. If no document' type exists containiny such

conceptual components the query results in an empty set and query
processing stops,

Steps in Query Processiny ‘ 28




6.2 HMulti-cluster query resolution

The goal of this phase is to determine the clusters involved in a
query. The set of clusters to be accessad may be restricted in
different ways. Por instance if A4 collection identifier has been
specified the ‘query can be restricted only to clusters storing
documents belonging to the collection. Also conceptual docunment
types specified in the quely can be wused to restrict the number of
clusters to access for Juery resolution. 1In ‘the followinyg we
describe the steps in multi-cluster guery resolution.

6.2.1 _SCOPE CLAUST RLESOLUTION

If a SCOPE clause is specified in  the query by wmeans of a
collection identifier, then the LDIs for documents contained within
this collection are retrieved. The set of clusters where such
documents are stored can then be determined.

The result of scope resolution step is a  set of pairs of the
form <cluster-id, {LDI}> where cluster-id is a cluster identifier.

-

6222 IYPR_CHURCKING

For each conceptual document type in the uevy the identifiers of
the clusters storiny documents of thal type are retrieved. This
information is obtained from system tables. This set of cluster
identifiers is intersected with the scot obtained by the previous
step.  If  the intersection is empty query Processing stops. I€
however the previons step has not been executed because no SCOPE
clause has been specified in the query, then the set of clusters
botentially uscful For the ‘query are all the clusters storing docu=-
ments having the qgiven types.

It should be pointed ont that type checking is  useful if docu-
ments  are grouped on clusters on  the base of their conceptual
types. IL however clusters contain documents of almost every type,
then type checking is not s0 useful.

}
\

6.2.3__COIPOSITE IN DX _CHRECKING

In this step  the set of clusters is restrictod by evaluating some
ot the index predicates in the query against the composite indexes.
It should be noticed that not all the index predicates in the query
are eligible for use in multi-cluster query resolution. This
happens when a index predicate is in  OR with a text predicate or a
residual predicate. In this case the indes predicate cannot be used
to reduce the set of clusters that must be accessed, ' since there

i

Steps in Query Processing 1 29




may be clusters containing documents that Satisfy the Juery even if
they donrt satisfy this particnlar index predicate, Pig.2 shous
the COND clause of @ query toyether with the predicates eligible
for multi-cluster query resolution.

After the Predicates for milti-clustor 4lery resolution have
been selected, a set of index queries aro generated and executed to
evaluate these predicates. '

The result of this Step is a set of Llogical docunment identifiers
(LhIvs) . For each 1LD[ ip this set, the Corresponding physical
address is retrievod from systen cataloys. The Physical address
contains the cluster-id of the. cluster where the document js
located. The result of this bPhase is  therefore 4 set of pairs of
the fornm <cluster-id, {LDI1} > where {LDL} is the set of identifiers
for documents located in this cluster that have Satisfied the index
query. Also the original query is reduced by elininating the index
predicates that have have heen evaluatedq in this phase. Ine query
obtained is referred to as reduced query. '

6.3 Single~cluster query optimization

-

For each cluster determined inp the previous phase, g query
execution strateyy is defined. It should Vpe pPointed out that the
given query must be optimized Separately for cach cluster involved,
since the statistics used for Yuery optimization may be different
for different clusters,

The result of single-cluster dquery optimization is a set of
index, text, and documoent queries. [n addition a schedule is
defined stating the order of execution for the various yguories. 1t
should be notod that index Jyueries are yenerated only for the index
predicate:s  that have not paeep already evaluated during the
milti-cluster query resolution., The single-cluster query optiaizg-
tion is Jescribed in detail in section 7.

6.0 Query Execution

For each cluster involved in the query, the “orresponding sejments
are mounted, ir they aro  yot alceady nounted, and the yuery is
executed following the Strategy defined by the optimizer. Hountiny
a segment meang mounting the digk where the segment is stored. The
result of the query is a set of LUL's. The rosult of the original
qQuery is the union of the LDI's returnoed by all the single-cluster
queries. ;

H

Steps in Query Processing Jo




f ki
i AND |
! - | |
| | I !
i pl AND I
! | |
! | ! i
] OR AND !
| I ——— |
! ! | ] | !
I p2 t1 £2 ALD ]
| | !
! | ‘ { !
I p3 OR ]
! ! !
! | ! !
i p4 i |
I pl, p2, p3, P4 are index predicates; i
! |
I 1, t2 are text restrictions; J
| ]
I *1 is a residual predicates. . I
| |
| The index predicates eligyible for multi-cluster query 1§
| resolutions are pt and p3. J
] - !
I Reduced Query: !
| |
I AND ]
] . !
| | ! |
| 0OR , AND !
I | |
] | ] I | ]
| p2 t1 £2 UR §
' —_ :
] | I [
] P ri i
| !
| FPig.2 An example of index predicates eligible for |
} multi-cluster queryresovlution i
i B

It should be pointed ont that several quecies fronm Several users
nay be executed in parallel. This raises the problem of scheduling
mounts so that the numnbor 0of mounts is minimized. This problen,
however, will not be addressed in the present paper.

Steps in Query Processing ‘ 31




7.0 _SINGLE-CLUSTER_QUERY OPTIMIZATION AND EXECUTION

Dutring the phase of singyle-cluster query optimization an optimized
query strategy execution is yenerated for a specific cluster. The
input to this phase consists of:

1. A sot of logical docusent identifiers denoted by (LDI}. These
LbIs are  of documents that have been selected by evaluating
index predicates in the multi-cluster query resolution phase.

2. A reduced query denoted by RQ.

Recall that 19 is obtained Eron the original guery by removing
the indegx pradicates that Yave been evaluated during the
aqulti-cluster yuery resolution.

To execute a query a certain number of tasks mUst be performed.
Iu general it is necessacy: (1) to evaluate the text predicates:
(2) to evaluate the remaining index predicates; (3) to intersect
the sot of documents obtained by the tasks (1) and (2) with the set
{LDI} obtained from the multi-cluster query resolution phaseg {4)
to evaluate the residual predicates aund detect the false drops.

It is impourtant to notice the followiny fact. ' rhe index predi-
cates reaaining in the gquery after query reduction are the ones
Wwhich avvear in disjunctiuns with either text predicates Or resi-
dual predicates, else they would have been selected for multi-clus-
ter  quety resolution. A consequence of this is that gyiven a
disjunction of an jindex bredicate and a text predicate, false droo
detection must he performel only for documents that are in the
resulting set but do not sitisfy the index bPredicate. This allows
us to nminimize the nunber of documents accnessed for false drop
detection.

Another important observation concerns  the fact that it ig
necessary to access the documents to detoct the falsa drops and to
evaluate the residual predicates (if any). Iy Jeneral, accessing
documents is cather expensive and it is convenient to restrict the
set  of documents as wnch as possivle. Therafore it is usually
convenioent to execute tasks (1) and (2), by using signaturces anpd
indexes to reduce the set of documents belore accessing the docu-
ments  themsaelves. However text predicates and index predicates
could be also evalunated on the documents, without using the access
mechanisas. This is in general convenient whepn the text predicates
and the index predicates are not very restrictive.

The overall execution strategy can bo summarized as  follows.
Pirst text predicates Anl  index predicates are evaluated Lo
restrict the set of documents. The execution strategy for text
Cestrictions and index predicates is  delermined by the optimizer
and will be described in the next section. Then for each document
in the resulting set, one determines the text bredicates for which
false drop detection must be  performed and the residual predicates
evaluated. This Point will be discussed in section 7.2.:

Single-cluster Yuery Optimization and Execution 3 32




In  the remainder of the paper, please read X<i> as x with
subscript i.

7.1 Query Optimization

7.1.1__nmastc DEEINITIONS AND HOTALIONS

In describing the various strategies we will use the following
operations:

ST(TC(1>,.-..TC<H>) TOTAL SIGNATURE SCANING
. Input: n text conditions
Output: for each text condition TC<i> the
set of LuIs of documents that satisfy TC<i>,

SR(TC<1>,...-TC<n>|D) RANDON SIGNATURD SCAUNING
: Invbut: n tegt conditions, a set D of LDIs
Output: for each text condition TC<i> the
- . set of LbIs of documents that satisfy 7TCi.

I{p) INDEX scan
Input: an indeg predicate
Vutput: set of LDIs of documents that satis-
£y p.

U({D<1>,D<2>) UnIoN
Inputs: tvwo sets of Lbls
Output: a set union of DLT> and p<2>

IRT (D<1>,D<2>) IATLRSECTLON .
Input: two sets of Liis
OQutput: a set of LiuIs that are both in D>
and in D>

DIFF(D<1>,D<2>) " DIFFTREERCE
Input: two sets of Lblsg

Output: a set of LDIs that are in D<1> but
not in D<2> |

A graphical fepresentation of the various operations is given in
fig.3.

We will also use the following definitions.

Definition 1

Given & text predicate t<i>, we denote by e<i> the string
expression list in t<i>.

.Single-cluster Query Optimization and Lxecution : 33




SNOILVY3dO IHL 40 NOILVINISIHISH TVIIHIVYD € ainbig

ION3¥3ddIg .
~

NOILDIS¥ILNI

NOINN

NYOS X3aNI R e d
US> == el -----<u>9|
ONINNVIS J¥NLYNDIS WOONYY <4>0=---4  Y§ fe---- (58]

o a
SU> ([ <t = -] mme=<u>dl

...... Ls

ONINNVOS I8N LVYNDIS TVLiOL <AU>Q =-me-d <--c- <1501




Definition 2

Given n text predicates <12 ,8<2>, 0 aa t<n> (n>1), the concatenation
of t<1>,t<2>, coat<nd is defined as the concatenation of e<1>,
e<l>, oD The concatenation will be denoted as
el2el2>...e<n.

Delinition

—— ————

Given a query COND clause in conjunctive normal form, we say that a
conjunct C<i> is:

a text-conjunct (t-conjunct) if C<i> is a text predicate or a
disjunction of text Predicates;

a index-text-conjunct (i-t-conjunct) if Cc<i> is a disjunction
of text predicates and index predicates;

tion of text predicates and residual predicates:

a rusidnal—téxL-conjgnct (t—t-conjuuct) if C<i> is a disjunc-

a Lesidual-indes-text-con junct (C-i-t-conjunct) if C<i> is a

disjunction of text predicates,index predicates and residual
predicate.

-

1.1.2_ BASIC _CASES

A large number of different strateyy types can be devised. In this
subsection we describe the types of Slrategies for some basic
cases. In the following, D<E> will denote a set of document iden~
tifiers obtained froa the evaluation of text and index predicates.

71-.1.2.1 Case A}

Let Q be a guery having a CURD clause of the form:

C<T> ARD C<2» seee AND C<n>

such that each C<i> (i=1,n) is a text predicate t<is>;

let D be a set of documents over which we wish to evaluate Q, then

the following Stratejgies can be defined:
' i

Combined Stratejy - Type 1 [CST-1)

This type of Stratejy is based on the principle ot evaluating all
the text predicates within the query by pecforming one siynature
Scan. The expression lists associated to text bredicates are
concatenated to form a single expression list which is passed as
argument to the signature handler. This type of strateyy has the
followiny steps: o

- D<K = 538T({1,2})
Where e = e<l>e<2>....e<n2

Single-cluster Query Optimization ang Executioun 3y




- DLE> = INT (D<1>,D)

A graphical representation of this type of Strategy is given in
fig.u,

Combined Strateqy = Type 2 (CsT-2)

This type of strateqgy differs from the Previous one in  that the a
random signature scan is performed for document in D. Therefore
there is not need of execnting the intersection ¥ith D after the
signature scan. This strategy has the follovwing steps:

— D<E> = SR({1,e} D)
vhere o = ecl2es2>. . ..e<n

A graphical fepresentation of this type of strateyy is given in
fig.5. '

Serial Strateyy {Ssr)

This type of strategy is based on the princivnle of evaluating serj-
ally the various text predicates. This strateyy requires the deter-—
mination of the bpest order in which to. evaluate the text
predicates. The Steps are as follows:

= D> = Sp({1,e<it>}| D)
=~ D<2> = sR({1,e<i2>}| D<I>)
- D<I> = SH{{1,e<in>y D<n=-1>)

wvhere the indexes i1 012 ceea.,in Lepresent a  permutation of the
cindexes 1,2,...n. & Jraphical representation of this type of stra-
~tegy is qiven in fig.6.

However serial strategies for these Lyres of gqueries are never
convenient. The following assertions hold.

Assection A.1.

Let Q be a query having a COND clause of the (orm:
C<I> AND C<2> cees AND C<n> | |

i

such that each c<i> {(i=1,n) is a text predicate:

let D be the set of documents on which the query is to be evaly-
ated, then: :

Cost(CSTr-2) <= COSL(55T) always.

Proof The proof is yiven in Appendix cC.

The previous assertion states that thoe combined strategy - type
2 is always more efficient than the serial Strategies. |

Single-cluster Query Optimization and Execution 35




(oj-=-=wf ST oo __ -®-—--—-—~—D<1>
D-w =

Figure 4 GRAPHICAL REPRESENTATION OF STRATEGY CST-1 (CAsE A)
{1-6}—_-->
SR —————D<f>
o ' ,
Figure 5 GRAPHICAL REPRESENTATION OF STRATEGY CST-2 (cAsE A)
D---—--» — o _““—":.......—-f—"-b D<f>
SR SR SR = e
{lie<i>)m meep ——— ‘ —-—— ]
{1,e <2>} {l.e<n>}
Figure 8

GRAPHICAL REPRESENTATION OF STRATEGY S$ST-2 (CAsE A)

!




From the previous assection it can pe concluded that for these
types of queries the optimization algorithm is very simple since
the optimizer must choose only between the two types of combined
strategies. In fact, if the cost of the sequential Signature scan
for card(p) (where b is the set of documents on which the query is
to be evaluated) is lower than the cost of random signature access
for card(p) then the combined strategy-type 1 is belter than the
combined strategy-type 2.

7.1.2.2 Case B

Let Q be a query having a COND clause of the form:

C<1> AND C<2> ... AND C<n> |

such that each C<i> has the form:

 P<A<I>> QR..... P<i<m (i) >> OR t<i<1>> OR .... t<i<s (i) >>

.where: { |
m(i)>=1 and s(i)>=1
each p<i<j>>» J=1,m(i) i=1,n is an index predicale
each L<i<h>>  h=1,s (i) i=1,n is a text predicate

(Each C<i> is an i-t-conjunct)

let D be a set of documents, then the following strategies can be
defined:

Combined Strateqgy - Type 1 (Cs5T-1)

In this type of Strategy the text predicates are evaluated by
performing a single siynature SCane. . In this case the Sijnature
handler receives as input a number n of text conditions vhere g is
the number of conjuncts in the guery. The Lext condition for a
conjunct C<i> contains a mumber of set expression lists equal to
the number of text bredicates in Cc<i>. This type of strateyy has
the following steps: '

—  ST(TCKI>,TCK2>...1C<n>) ;

where: 1TC<1> =
TC<2> =
TC<n> = {s(n), {e<n<i>>, e<n<2>>,....e<n<s(n)>)]

let D<i1>, D<2>, ...h<n> be Lhe resulting document sets satis-

f£ying respectively TC<1>,TC<2>,..,TC<n>;

C
(5(1), (e<1<1>>, e<IC2>>, ... Le<IKs (1) >} )
(5(2), (e<2<1>>, @<2<2>>, ... .e<2<5(2) >) ]

= D> =U(L (p<IKO, U (p<ik Dy, L L. L. Up (<1<m=1(1) >>, p (<1<n (1) >
= D@ =u(np2<y, U pea<sy, ..., ULp(<2<m=1(2)>>,p (<1<n (2) >>)

— P Oee B0 o

Single-cluster Query Optimization and Execution ’ 36




- D*<n> =U(l(p<n<1>>,U(p<n<2>>,..... U(p(<u<m~1(n))),p((n(m(n;)))

- D7<C1> =U(D<1>,D < 1)
D"<1> is the set of documents satisfyiny the conjunct c<1>

=  D"<> = u (D<n>,v<n>)
D"<n> is the set of documents satisfying the conjunct C<n>

—~  D<KE> = INP(D,INT(D"<1>,1NT(D"<2>,......INT(D"(u-l), UR<nd) ) ..)

A graphical representation of the strategy for n=2 is gyiven in
figa.7. '

Combined_ Strategy ~_Iype 2 (CSI-2)

This type of strategy is similar to the previous one except that
the signature scanning is executed only for documents in the set D,
_that is a random siynature scanning is performed.

Serial Strateqyy (ssr) .

These types of Strategies are based on the principle of evaluating
serially the various text predicates. This strateyy requires deter—
mination of is.the best order in  which evaluate the various
conjuncts. Let's suppose. that 1i1,i2,...,in represent a permuta-
tion of the indexes 1,2,20,n, then the serial Strategy has the
following stepss
~-  D(p<iw)=

U (L(p<i1<ioo, 0 (p<i1<2>>, .. ... UAD (<ET<m=1(1) >>,p (<i1<m (1) >>)

= DD = BIFF (D, D(p<iDd))

= DPCil> = SR({TCKL1> b (p<i1>))
where: TC<it> = {s(i1), (e<i1<12>, e<i1<2>>,....e<11<s(i1)>)J

- D"<il> =y (DO<LT>, NI (D (p<i 1) ,D))
DRCil1> is the sct of documents satisfying the conjunct C<iit>

® e 0 e

— D (p<in>) =
U (I(p<in<1>>,u (p<iu<2>>,.,...\U(p(<in<m~1(1)>>,p(<iu<m(in;>>)

-— D<in> = DIFP (D"<i (n=1) >, b (p<in>))

= D'<in> = SR{IC<in>} | (p<in>)) .
where: TC<in> = {s{in), {e<in< 1>, e<in<2>>,....e<in<s(in)>)}

- DKE> =y (DP<in>, INT (D (p<in>) ,b<i (n-1)>))

This strateyy is based on the fact that given one or more text . . .o

predicatles which appear in  a conjunct it is more convenient to
evaluate the text predicates only for documents that do not satisfy

i
'

-

Single-cluster Query Optimization and Execution 1 37




< <«<{(Z)w>z>d
(8 3svd) |-1S0 ADILlvyls

40 NOILVIN3SIUdZY TVOIHIVYD £ enbig -\ ﬁ‘ﬁm:évmvp
. . ﬁl’ AANVNVQ
_ﬂ’ﬁrvmvﬁ

<< (w>|>d

<i>q

<<(1)l=-w>L>d

A
MI./WNIIAANVFVQ
N/

<< i>1>d

ANVD .H.m <t > L

<1>d <i>0.1




the index predicates that appear in the same conjunct as the text
predicates,

A graphical representation of the strategy for n=2 is given in
fig.8.

To evaluiate the best evaluation order for the various con juncis
the following algorithm is used.

Algorithm B.1.
Step

Por each conjunct C<i> evaluate:

- S({T<i>) where T<i> is the predicate t<i<i>> OR  «..UR
t<ids (1) >>

— S (P<i>) wnere P (i) is the predicate pLi<i>> OR  +..0R
p<i<n (i) >> ‘

= g<i> = s(I<id>) = (1-s(P<i>))
Order the q<i>'s in increasing order:
q<i1>,q<12>,....q<in> - |
The obtained permutation 11,12, c0.in is the output of the alyo=-

rithm.

For these types of queries, the optinizer has to find the best
execution order for the serial strategy by using Algorithm B.7..
Then the cost of the serial strategy is compared with the costs of
the combined Strategies to find the optimal strategy.

1.1.2.3__case <

Let Q be a query having a CoND clause of the form:
C<I> AND C<2>  such that:
’ |

C<1> has Lhe form  t<1> OR p<i> .
where t<1> is a text predicate and p<1> an index predicate;

C2> is a text predicate <>

let D be a set of documents, then the followiny Strateyies can be
defined:

Combined Strateqy - Tvne 1

This type of strateyy consists of executing only one Signature scan
and evaluating both t<i> and t<2>, The steps are as follows:

Single-cluster Query Uptimization and Execution ‘ ki




(8 3ISVD) 1SS Ao3alivuls
40 NOILVINISIY¥dIY -VOIHJAVYD 8 2inbig

<(z)w>g>d

<(ENH=-w>g>d

<g>E>d

Avava

<<(})w>}>d

<(l)l-w>|>d

<<z>l>d

<«<|>i>d




= ST({1,2<1>}, {1,0<25})
let D<K1> and  D<2> be the sets of documentss satisfyiny respec-
tively t<1> and t<2>;

- D<3> = [(p<1>) (evaluate predicate p<i> using the index)
— D<Y> = U(b<1>,D<3>) {nrerge D<I> and D<3>) ¢
—  D<E> = INT (ENT (D<2>,D<4>), D)

A graphical representation of the strateygy is given in figy.9.

Combined Strateqy - Type 2

This type of strategy is similar to the Previous except that the
signature scan is rostricted to the set of document in D. This type
of strateyy has the following steps:

= SR({1,e<1>}, (1,e<25} | D)
let DKI> and D<2> boe the sets of documents satisfying respec-
tively the text conditions {1,e<1>} and {1,e<2>}) .

= D3> = I(p<1>) (evaluate predicate p<i> using the index)
- D<s> = u (<>, D<3>)
= D<E> = INT (D<2>, D<ud) .

A yraphical representation of the strategy is given in £ig.10.

Serianl Strateyy - Tyve 1

Iu this type of strategy two separate Siynature scans are executed
to evaluate the text Predicates. This Lype of strategyy has the
following steps:
—_ DCI> = SR({1,e<1>) i D)
L= DL2> = I{o<1>)
= D3> = (b<1>, D2
=  D<I> = SR O({1,e<2>] |Dp<3>)
in  this case the siynature scanninyg for evaluating t<2> jig

restrictel to the sot of documents that have satisfied the
other conjunct. ‘

A graphical representation of the strateqgy is given in fig.11.
From this strateqgy another strateyy can be derived where a4 total
siynature scan is executed to evaluate t1 and then the intersection

with the set D is performed.

Serial Strateqy - Lype 2

This tyne of strategy is similar to the previous one, except that
the signature Scanning to evaluate ti is executed only for the

+

Sinqle-cluster Juery Optimization ang Execution 3 39




(D 3svD) T-1SD ADILVYILS
40 NOILVLINI¥d3Y TVIIHdVYYD - Ol @inbig

\/ <

. <lz>Qg ﬂ?wv%;
: _ 4/ -
AwVQ‘Ar'A@X m + vkh i S - .....I.IAvam.ww
| vazD _ a
(D 3sVD) L-1SD AD3LvHIS
40 NOILVLNISIYLIY IVIIHAVYD 6 24nbig I ci>d
<iz>a
a U ,AIQIAANV@.&
wa—( ) G (— | s
— e {<1 -w



documents that do not satisfy pi. This type of strateyy has the
following steps:

—  DLKI> = I(p<id)

—  D<2> = PIPFP (D<T1> ,LD)

— D3> = SR({1,e<1>} | D<2>)
= DU> = U (DT>, D<3>) '
= D<I> = SR({1,e<2>) |n<U>)

In ageneral this Stratejy is convenient with respact to the Seri-
al -~ Type 1 when the predicate p1 is not much restrictive.

A graphical ctepresentation of the strateyy is given in fig.12.

Serial Strateyy - Type 3

This type of strateyy is based on the observation that a condition
clause of the form: “

(t<1> OR p<1>) AND t<2> can be transformed as follows:

Ap<I> AND t<2>) OR (t<1> AND t<2>) .

In this case the gquery would be executed evaluating p<i> first,
restricting the siynature scan for tL<2> to  the set of documents
satisfying p<1> and then performing the signature scan ftor (<>
AND t<2>) on only the documents that Jdo not satisly the disjunct
(p<I> AND t<2>). The staps are as follows:

@

i

- D<I> L(p<1>)
= D<2> = INP(D<1>,D);

- D<3>

i}

SR ({1,8<25] | D<2>)
~  D<U> = DLFF(D,D<3>) ;

— n<h> = 8 {{1,e} | D<y>)
where ei= e< e,

~  DKL> = D<3> U DL,
A graphical representation OE the sLFutegy is given in fig.13.

From the previous discussion it can be seen that several Stratlegies
Can be defined. However the following assertion holds.

Assertion C.1

Let Q0 be a query having a CUND clause of the [orm

C<1> AND C<2> where

C<1> has the form t<1> ap p<1>; . !
C<2> is a text predicate £<2>; ‘

Single-cluster Query Optimization and BExecution t 40




(D 3svd) g-1s88 AD3lvyls
40 NOILVIN3S3IY¥dIY TVIIHAYND

€l 3ynoid

{z

NVmAFVo.ﬂv

| a

AuVO‘I’@’.

I

AANV m.&, Dﬂ
ds NS = GA /\ <i>d
(2 25VI) ¢-1SS AD3lvyls i
40 NOILVINISINLIY AVIOIHdVYYD  2leinbidg
AANVm.Q A‘ANVm.& Oﬁ
e ) S amn e
<j;>@d dS : + 4SS = l@n - /\:NA <1>d
. ~
(2 3SYJ) -1SS ADIIV¥ILS
40 NOILVINISINLIY IVOIHdY YD 1l ainbig <i>d
AANVon
<i>73

ds

S AA wVO.wv

xl..l.l....lD




let D be the set of documents on which the query is to be evalu-
ated, then:

cost (C5T~-2) <= cost (S5T) alwajys.

Proof The proof is given in Appendix C.

As in case of gueries of Type A, the combined strategyies are better
than the serial ones. Therefore the optimizer has only to decide

between a total signature scan and a randon signature scan.

We now extend now this result to the more general case.

Assertion C.2

Let Q be a query having a COND clause of the form
C<I> AND CK2> svaeC<> vhera
a set J (card(J) >=1) of indexes exists such that
- ¥j € J, C<j> is a text bredicate t<j> or a disjunction of text
predicates t<j<1>>,t<j<2>>,...¢t<j<s(j)>> (€<j> is a t-con-
Jjunct)
= ¥l g J (i €{1,...n}), C<i> has the form
PLLCI>> OReeen. p<idnm (i) >> OR t<i<1>> Of ceee t<iks (1)>>
vhere: )
m{i)>=1 and s (i)>=1
each pdi<j>> J=1,m (i) i=1,n is an index predicate
each t<i<h>> h=1,m(i} i=1,n is a text predicate

(C<i> is an i-t-conjunct)

let D be tihe set of documents on  which the query is  to be evalu-
ated, ' o

then the combined Strategy-type 2 is always more efficient than any
serial strategy.

Proof The proofl is yiven in Appendix\c.
This assertion states that wvhen the condition clause of a2 yuery

contains one or more t-conjuncts then the conbined strategyies are
more elficient than the serial Strategies.

7.1.2.4 Residual Predicates

If some of the con juncts are C-conjuncts, or C=-t-conjuncts, or
r-i-t-conjuncts, then the same strateyies descrived in the previous
subsections apvly. Por the choice of the type of strateqgy, combined
Vs serial, a L-t-conjunct is considered as a t-conjunct, while a

Sinyle-cluster Query Optimization and Execution : 41




C-i-t-conjunct is considered as a  i-t-conjunct. Por each r-t-—con-
junct or t-i-t-con junct a separate text condition is genaerated for
the text predicates of that conjunct. For combined strategies of
Case A this text condition is not concatenated with the text predi-
cates of the other conjuncts. still only one signature scan is
performed, the only difference beiny that instead of one text
conlition, there will be 2+l text conditions where p is the number
of r-t-conjuncts in the ynery. A residual predicate will then be
evaluated on the set of documents that do not satisfy text predi-
cates and index predicates in the same conjunct.

J.1.3 QUERY OPIIATAATION ALGORITHY

From the ovprevious results, it can  be seen that the complexity of
gquery optimization is yreatly reduced. Tae overall query optimiza-
tion algorithm, . Presented in {fig.14. is decomposed in two main
phases,

In the [irst phase (steps 1,2,3) the nmost elficient strategy for
performing signature scanning  is determined. In Jeneral tLhe
combined stralegies are tie best, exceplL for yueries where all the
conjuncts contains index predicates. For these types of queries
the optimizer uses the Algorithm B.1. to delernine  the nost effi-
cient serial strategy and then compares it with the cost of the
most convenient between the two types of combined strategies.

In the second phase (step 4, 5, 6, 7) the optimizer tries to
improve the strateyy obtained at the brevious step by evaluating
strateyies vhere some of the conjuncts are not solved using the
access mechanism (indexes and Signature) bul on the documents them—
selves. 1In the fig.14 Lhis set of conjuncts is denoted as RCONJ,
It should be noticed that Lhe conjuncts that must be examined are
only i-t-conjuncts and L-i-t-conjuncts. The t-conjuncts or r-t-con=-
juncts instead do not . need to be examined. In fact if text predi-
cates in one of such conjuncts are nol solved by using the
signature mochanism, the cost of siguature scan  does not decrease
while the resulting selectivity is lower and then the nunber of
documents to be accessed increases. Instead for conjuncts contain-
ing index predicates Some saving can  bhe achiueved because the index
access 15 not performed. The set of candidate conjuncts is denoted
as BECONJ.

The algorithn examines eVery, conpjunct in LCONJ Lo see if the
cost of the query execution decreasesg by evaluating the conjunct on

the documents rather than wusing the access nmechanisns. The
conjuncts that inccease the cost are elimiuated from the Set ECOHJ
(step 5) . Then amony the conjuncts remaining in  LCONJ the one

which yields the minimum cost is eliminated from Bcong and arddel o
RCONJ (step 7). Then the algorithm goes again to step 5. It stops
vhen ECONJ is empty.

Single-cluster Query Optimization and Bxecution : §2




¥

!

|

I

]
f

I

!
!
I

!
I

!
!
I

!
|
!
!
!
]
!
|
|
I
!
]
|
I
]
!
]
|
]
I
]
|
I

I

!
!
!
!
|
!
{
I
i

|
!

J
!

!

]

[

(94
L]

Let Q be a query, let COHD be the condition clause of 0 of
the form:

C<T> AUD aeeeeoC<n>

let D the set of documents on which the guery is to be
evaluated. Let T be the resulting strategy type.
Determine the most efficient combined strategy: if the
cost of the sequential siynature scan for card (D) is lover
than the cost of randon siynatucre access for card (D) then
then T=combined-type-1 (total scall) else T=combined~type-2
(random scan) . :

If an  index i, (i=1,n) exists such that C<i> is either a
t-conjunct or a L-t-conjunct then Jolo step  (4) else yoto
step (3).

Detecnine the most efficient serial  strategy by using
Algorithm B.1. Let I be the index permutation representing
the execution order of the various conjuncts.

It cost (serial (1)) < cost (1) then I=serial(l).

Determine the set RCoNd of conjuncts that must be evaluated

on the documents.

Let Cost0 be the cost of strategy T; let ECONJ denote the

set of conjuncts to be examined.

ECONJ = { i/ C<i> is a i~t-conjunct or a I=i-t-conjunct ]

RCOAT = 0 If ECONJ = 0 then exit.

For each 1 in Econg:

— evaluate the cost of the Straltegy obtained from T not
evaluating the conjunct C<i> with the access mechanism.,
Let denote this cost as cost (T (U<i>)) ;

- 1€ Cost (T(C<KLi>)) > Cost0 then eliminate C<i> [ron
Beonag.

If ECoud = 0 then exit,

Let j €RCONJ an index such that;
COSL(T(C<F>)) = min | COSE(T(CCi>)) / i€RCUNJ} then

= set T = T(C<j>);

-  set Costd = cost(F(C<j>))§
- add j to RCONJ;

- eliminate j from rcong.

- goto step 5.

- Fig. 14 Query oOvtimization Algorithm

—
I
|
!
!
l
|
I
!
!
!
!
!
]
|

]
!
|
J
!
/
!
!
|
I
[
I
!
!
!
!
!
|
!
!
|
!
l
!
|
|
!
!
|
]
!
!
!
|
]
|
|
]
|

Single-cluster Query Optimization and Bxecution

43




7.2 FPalse Drop Detection

False drop detection is verformed after signature scans and index
accesses. It is pecformed by retrieving the document text compo-
nents which are referenced in Lhe text predicates and execuling a
full text scanning on these components. Since this operation is
rather expensive, for each i-t-conjunct (or c-i-t-conjunct) a list
of LDIs is Jenerated, after the evalualion . of the conjunct,
containing the identifiers of documents Ssatislying text predicates
in  the conjunct but not the index predicates. These lists are
intersected with the final set of documents. Therefore the false
drop detection for text Predicates in a conjunct C<i> is performed
only for documents in the list associated to C<i> that belony to
the final set of documents.

Single-cluster Query Optimization and Execution ‘ 4y




8.0__CORCLUSIONS

In this paper we have described query processing in a multimedia
document system. Documents can be retrieved by specifying condi-
tions on both document attributes and content. The yuery language
defined is baseqd on a document conceptual model. This means that
users can tailor their gueries on the base of the document types
commonly found in their world. Thereby providiny the flexibility
needed in environments such the office one.

Document storage is Supported by a storage subsystem that inte-
grates bolh optical and maynetic devices. I'hus the system i3 able
to provide the storaye capacity needed Lo store multimedia informa-
tion. The storage subsystem provides access pPaths such as indexes,
used for secarch on formatted components oif documents, and signa=-
tures, n=ed for text searching. In addition it provides bulk store
for documents and a table handler, to support the manayesnent of
various internal data structures and system tables.

The problem of query optimization in such a system has beoon
discussed in detail. Pirst the statistics and selectivity formulae
are  presented. In addition to the statistics  commonly found in
DBl1Ss, statistics for texts are also supported. Then the various
Steps  in query processing have been described, Focusing on the
Guery optimization. Despite. the larye number of possible excecution
strategics, the results presented in the paper show that for most
types of queries the number oi possibilities is gyreatly reduced.
To validate our results a simulator [GIANR6 ] has been built to
estimate the execution costs for various strategies.

An implementation of the query processor is undecway as part of
the ESPRIT (Furopean Strateqgic Proyramme for Research in Informa~
_ tion Technoloygy) Project 28, called MuL7ToS. It aims at the real-
~ization of a pPrototype scrver for multimedia document filing and
retrieval based on  an open architecture LRLRTBS ], A first proto=-
type of this server, incluling the query processor module based on
data and text components of documents, is expected by March 1987.
A second prototype will follow, in which also image and audio
componets will pe cousidered also in tive  guery process {RADLIYGa ],
Future work on the query processing includes the extension of the
yuery optimization to the case of different signature mechanisnsg,
such as bit-sliced organization [ROBETI | or S-tree [ brepBG ).

|
i

Conclusions : 8y




APPEND. A - THE QUERY LANGUAGE_GRAMMAR

(Described usiny the Unix LEX/TACC style)

LEX definitions
DIGIT [0-9]
EXPORNTHNT [Fe ]l +- 12 (DIGIT} LEITER [a—-zA-2 ]
LETTDIGIT [a-zA-20-9_]
%%

t nj ’

( |
R ANAVANA U ACAVA NS {
return (yytext[0 ] ; }

Find|FIUuD B
retucn (PIND);  }

version |VERS10J {

retucn (VERSION) ; J
first|{PIRST {
~ retucn (FIRST) ; )
last|LAST {

return (LASI) ; )
alljaLL {

returcn (ALL) ; }
scope | S5CO PR . {

return (SCOPR) ; _ ]

collection|COLLLCTION {

returcn (COLLECTION) ; )
type|TYPR

returcn (Ir'{PL) ; }
where |WHERE o \

return (WIlERD) 3 }
notjNOT

return (NOT) ; . '}
andjAlD

return (A4D) ; J
or|OR

return (OR) ; J
with| WLl ' {

Append. A - The Query Lanjuaye Grammar

46




return (WLTH) ;

between|BETWER N {
return (OPER_BE) ;

like|LIKE {
return (LIKE) ;

contains|CONTALINS { ‘
Leturn (CONTAINS) ;

is|Is {
return (LS) ;

injIn {
return (LH) ;

every [ LVERS {
: Leturn (LVELRY) ;

some| SOUE {
retucn (soin) ;

W19

teturn(UPBR~HQ);
"y ) ' { )

retucn (OPLR_NE) ;
"(ll . {

ceturn (OPLR_LT) ;
W=t ) {

Teturn (OPER_LE) ;
DS ' T

returu(OPun_GT);
">-_—:" {

return(OPnﬂ_GE);

(LDTIER) + (LETTDLGLT)*

returu(IDHNr[FlER);
o \
{DIGIT} + {

returcn (INT2GER) ;

(DIGIT) + " (WTGLT} * ({LXPONENT]) ?
""" {DIGLT) ¢ ({EIPONENTY) ? I
(DIGLT} +(LxPONENT}

returcn (REAL) ;

N[ a-za~-50-9_% RIS VAV SR I

oo o

Append. A - The Query Language Grammar

{

u7




return (SIRING) ;

%%

Append. A - The Query Language

Grammar

48




YACC definitions

Ttoken TI4n
Ftoken VERSINN
*token FLUST
Stoken LA3P
%token ALL
Ftoken scCopg
Btoken COLLICTLUN
Stoken IDANTICIRR
%token TYPR
%Ytoken WHIRE
ntoken vor
%token AMD
%token OR
Bloken WITH
Stoken OPLR_LO
YtoXen OPIR_NE
Jtoken 0OPZR_NEN
%token nopw_Lv
Stoken NPTR_LE
“token OPLR_GT
Stoken opir_on
Ytoken 0p=R_np
RtoXken CONTPALHS'
Ftoken LIKE
%token TS
Stoken IV
Ytoken sonnr
“token BYERY
hloken INTRGLR
%token REAL
Ftoken SIRIHG

%start query
%Tleft OR
Ileft AND
Rleft Nor
Alaft oxr
sleft ¢,

35
: \
query : find version FCope type whare_condition
H %
finad : FL8D
| /% null *,
H
vecrsion : VERSLON PIRsT L
I VERSLON LAST v,
I VERSIOU ALL B, 0 ,
I /% null */ f
9

Append. A

=~ The Quecy Language Grammar

49




scone

3
s
L
14

collection_id_1is

o == g0 I}

collection_id

ws 9o

type

W9 wme po

type_i1l

wvhere_condition

@e e

condition

I
|
|
|
!
|
!

singval_coundition

WO o e e omma gy

t

multival_condition

B e wom e wme wem g

text_condition

Bo wum gg

with_coundition

@o og

SCOPE COLLECTLON collection_id_list ese
/* null =/

collection_id . )
collection_id_list ¢, v collection_id

IDENTIFLER

LYPE type_id 9,0
/¥ null */

IDEATLIPLIER
WIERE condition o0

'{* condition #)¢

NOTI condition

comlition AND condition
condition OR condition
singval_condition
multival_condition
text_condition
with_condition

combonent numeric_predicate
component striny_predicate
component date_predicato
component time_predicate
conponent component_predicate

quantifier component nameric_predicate
gJuantifier component striny_predicate
quantifier conponent date_proedicate
quantifier component time_predicate
quantifier conponent component_predicate
component IS IN set

cumponent CONTALNS string_list °[ % (istance b ]e
compounent CONTAINS string_list

WITH component

Append. A - rhe Query Language Gramnmar




component

component_halfl

component _list

Component_nane

@9 won wme 5o

we eme g9

Bo eow oo gg

-
'S
°
¥

nuneric_predicate

string_predicate

-

date_predicate

time_predicate’.

PO eom gp

We woo g

.
.
.
’

component_halt
"% component_hal€
conponent_half *!® componen t_half

'¥? component_list
component_list

component_list %! component_list
component_list o, ¢ Component_list
component_name

LDRATLIFLER

operator numecic_value
0PER_BE numeric_value numeric_value

operator string_value
LIKE string_value

oberator date_value
OPTR_BE date_value date_value

operator time_value
OPER_BE time_value time_value

component_predicate

operator

quantifier

Append. A - The

BO oo wme = o wome g g wo

Ve wom go

@0 e o wew g0

oberator component

OPER_LDO
OPRR_NE

OPER_LT

OPER_LE

OPRR_GT , \
OPEBR_GT ' ‘

EVERY
SuME

nmneric_list
string_list
date_list
time_list

Query Languaye Grammarc

(911




numeric_Llist

striny_list

date_list

time_list

numeric_valne

string_value
date_value

time_value

distance

Append. A

WO wmm go WO wmm po ®0 wm pg we e gg

B emm gy

®e = pg

@®e g

numeric_value

nuaeric_list ¢, ¢ numeric_value

string_value
string_list v, ¢ string_value

date_value

date_list 9, date_value

time_value

time_list o, time_value

INTRGER

REAL

SIRING

/% INILGER '/® INTEGEN '/ 1NPEGER
P2 INIEGER 90 LHATEGUR v LUTEGER
2% INTEGUR vsv INTEGLR vg¢

{ATEGER

= The Query Languagye Grammar

'/I

b

&




APPEND. B_—- SELECTIVITY OF PREDICATES ON_ATTRIBUTES

The selectivity of a predicate on  an attribute is evaluated as
follows depending on the type of restriction [SELL79]:

- comp = value st(p) = 1/HA(conmp)
- conp > valun
if comp is a numeric attribnte then the
selectivity is computed by mean

of linear intecpolation

st(p)=(HV(comp)—vaLUe))/(HV(comp)—LV(comp))
iE LV < value< uv

st(p) = 1 if value<=LvV
st(p) = 0 if valued>=HV
1f comp is any other type of altribute then
st(p) = 1/3
There is  really no significance in this number, except
tnat it is less  that /2. 1In fact, as pointed out in
[38L179], it can be expected that few queries use predi-
cates that are satisfied by wore than half the tuples.
- comp < value

if comp is a numeric attribute then:

st(p)=(value—LV(comp))/(HV(comp)*LV(comp)g
i€ LV < value< Hy

st(p) = 1 if value>=4v
st(p) =0 if value<=Ly
if comp}is any other type ol attribute then:
st(p) = /3 \
- comp BETWEEN (valued, value2)
il comp is a numeric attribute then:

st(p)=(valuel—valu92))/(nv(comp)-LV(compJ)

if LV < valuet< 1V and
LV < value2< HY

st(p)=(HV(comp)—valueZ))/(uV(comp)—LV(comp})
if valuet> nv o i

Append. 3 - Selectivity of Predicates on Attributes ‘ 53




- st{pl

- st{pl

Append.

st(p)=(valua1-LV(comp)))/(HV(comp)-LV(comp))

il value2< Ly

st(p) = 1 if valuel>=UvV apd
valuel<=LvV

O il valwnel2<=LV or
value [>=1y

]

st(v)

if comp is auy other type of attribute then:
st(p) = 1/4
Ayain there is no significance in this number exce
is more selective of a range predicate.
OR p2) = st(p1) + st{p2) - st(pl) *st(p2)

AND p2) = st(pi)xst {(p2)

SE{I0L (p)) = 1-st (p)

B - Selectivity of Predicates on Attributes

pt that

5

4




APPEND. C_ - PROQOPS OF ASSERTIONS _IN SECTION 7o

In vhat follows we denote by:

SK seek time; SK=0SK if the storage is optical else Sh=M5kK;

IR transfer time; TR=0TR if the storage is optical else
TR=UTR;

ALFPA it is a constant for Jiven clusters
ALPA=(NDB(S)*|F/8|)/(NIS#OEB) if the storage is optical
else

ALFAz(NDB(S)*l?/B[)/(NIS*HPR} if the storage is magnetic.

In addition we assume that the cost of sot intetsection, union,
and differcence is negligible compared to L/70 costs.

C.% Proof of Assertion A.1.

The cost associated to the combined strateygy ty?e-z is as follows:
Cost(CSI-2) = SKENSK + ALFi*card (D) + CADOR (card (b)) (1)

whoere K5X=mincard (D) ,NE

The cost associated to the serial strateyies is as follows:

Cost(55T~) STENSK *ALF\*carcd (D) + CADDR (=2ard (D))

SE¥AZRCI> + ALPAtcard (D<1>) + CADDR (card (D<1>))
SKENSKS=-1> + ALFA*CdEd(U(n-?)) + CADDR(C&td(D(ﬂ*!)) {2)
where card(b<ij>) = lcard(D<j*l>*s(C<i(j*1)>)|

LAk R Y

{ s({C<i(j-1)>)) represents the selectivity of the {j-1) th conjunct)
cacd (b<0>) = cacd (D)
and  H5K<j> = min{card(u<j)),NE} | j=%,....n~1

From the expressions (1) anl (2) it can be concluded that

cozt(CSTr-2) = cost (SSI) for whatever'selectivity of the teat
restrictions.

Append. C - proofs of Assertions in Section 7.

(82
[92]




C.2 Proof Assertion Cole

T e it i s s e e s s e e o oD O B

The cost assaciated to the combined strataeqgy type-2 is as follows:
Cost(C5I-2) = SK*NS|
+ Cost

U # ALPA%card (D) + CADDR (card (D))
(p<1>) {1

where NSsziu{card(D),NEj
The cost assuciated to the serial strateqgy typve-1 is as followse
Cost (S5ST-1) = SKANSK + ALFA*card (D) + CADDR (card (D))
+ cost (p<1)
+ SHUEHSKCI> + ALFA*C&rd(D(J)) + CADDR(carJ(D<3))) (2)
where:
card(d<3>) = fcacd (b) Fs (t<1>) + S{p<t>) - S(E<T>) *s (p<1>) |
N38<3> = min iz, card (D<3>)}
Compacing the expression (2) with etpression (1) it can be seen

that cost(SSI-l))cost(CSI~2) always.

The cost associated to the serial strategyy type-2 is as follows:
cost(Ssr-2) = cost (p<i>) ‘

+ OSRENSHC2> + ALFA*card(D<2>) + CADDR(CﬂIJ(D(E)))

* SKENSK<HY> + ALFA*card(D<4>) + CADDR(catd(D<4>)) {3)

whece:

cari(n<2>) fcard (D} * (1~ S{p<tr) )

card (0<4>)

fcacd (L) =* (s(t<) + s(p<i>) =3 (L<1D) *s (p<i) |
BUR<2> = minqng, cacd (D<2>) }
N58<8> = ningun, card {D<U>) )

Substituting the values for card (D<2>) . and card (D<Y>) in the
expression (3) we obtain the followiny:

Cost(SST-2) cost (n<1>)

ALFA* cacd (D) * (1 + S(E<1>) # (1-5(p<i>))
CADDR (card (D<2>)) + CADDR (card (d<4>) )
SR * ( NSK<2> + HSK<y>) (4)

ER—

It should be pointed out that:

card(Dp<2>) + cacd (D<y>) = cacd (D) *x (1 + s(t<l>)*(1—s(p<l>)) >= card (D)
the previous inequality holds because S{pl<i>)<=1,

From expressions (1) and (4) it can be sern that

COSL(SSC-2) >= cost(Cc5T-2) . S

Append. C - Proofs of Assertions in Section 7. : 56




in face:

- ALFA*card(D)*(l+s(t<1>)*(1-S(p<1>)) >= ALFA%card (D)
(this holds because S {p<1>)<=1)

—  CADDR (card (D<2>)) + CADDR (carid (D<U2)) >= CADOR (card (b))
(this holds because (cacd (D<2>) + carl(<y>)y) >= card (D))

= SE* (YSKC2> 4+ NSKE<A>) >= .37 * sk
(this holds because {(card (D<2>) + cacl(p<iy) >= carcd (D))

The cost associated to the serial strateyy type-3 is as follows:
cost (55T-3) = cost (p<1>)

b OSRENSKCD> + ALPA*cacd (D<2>) + CADDR (carcd (L<2>) )

t OSKENSKCU> + ALPA*cacd (D<4>) + CADDR (card (D<4>))  (5)

where:

"

card (D<2>) jcard (1) = sS{p<1>) )i
card (b<y>) = lcard (p) * (1 =S (L<2>) £5 (p< 1) |
H5K<2> = min (iR, card (D<2>)}

N5K<y>

]

min {Ni, card (D<4>) }

Substituting the values For card (n<2>) and card (b<4>) in the
expression (%) we obtain the foilowing:

il

cost{Ss3T~3) cost (p< 1>y

ALFA*% card(Dy* (1 + s(p(]))*(i—n(t<2>))
CADDR (card (h<2>)) + CADOR (cacd (1<4>))
38 % ( NSK<2> + N3K<U>) {6)

b v P

It should be pointed out that:

card(N<2>) + catd(b(ﬂ)) = card(D)* (1 + S(PL<I2) * (1= (E<2>)) »= card (D)
the previous ihequality holls because s (L<2>) <=1.

Prom expressions (1) and (b) it can be seen as in the previous case
that

cost(Ssr-3) >= cost (C5T-2) .

Cs3 Proof of Assertion C.2.

To demonstrate the assertion we observe that there are three basic
types of serial strategies. :

In the [irst type, all the t-con juncts are evaluated on  set D
with one siqnature Scial, obtaining a set DY, then the i-t-conjuncts
are evaluated on set pr, pFor evaluating the i-t-conjuncts one of

SN

Append. C - Provfs of Assertions in Section 7. ¥ 57




the strategies described for quaries of Case B can be applied (com=-
bined or serial) In this case the total cost of signature scans for
the serial Strateyy is as follows:
total-cost(signature) = cost(signature scan Cor document in D)

+ Cost (sijynature scans for docuiment in D®) {1

The cost of signature scan for the combined strateyy, however,
is as follows:

cost(signature) = cost(signature scan Cor document in D) {2)

Since the costs of indeg predicate evaluation is equal in both
cases, the combined strateqgy always pecfocms better than the first
type of saerial strateqgy. .

In the second type of =soerial slratery, first the i-t-conjuncts
atae evaluated for documents in s2t D (by asing strategins dafined
for querios of case B) , obtaining a set D%, taen the t~con juncts
are evaluated on set Dt with one signature scan (Lthis because of
Assertion A.1). If the strategy used for evaluating the i-t-con-
juncts is the combined then the total cost of sigynature scan is as
follows:
total—cosL(siqnnture) = cost(signature =zcan [or document in n)

+ cost(siynature scan for document iu p9)

As in the previous case this cost 1s greater Lhan cost (2).

If the stratejy used for evaluating the i-t-conjuncts is the serial
one then several scans are pertormed to evaluate these conjuncts.
Let®s suppose  Lhat i-t-conjuncts are the ficst m (this does not
lead tane dgencrality of the demonstration becanse of the comnntative
property of the overator AUD) , then total cost is 45 follows:
tutal—COSL(slguatu:e) = Sl cost(signatuce scan for conjunct C<ir )

j=1,m

t cost(siynature scan for document jp by {3)

To show Lhat expression (3) is ygreater than eapression (2), we show
that:

STUM (eard (<j>))  + card (D) > card () (1)
j=im '

SUL (card(D<j>))  + card(p') =

J=1,m :

= cacd(D) * [ 1-s(p<1>) + 5Un ((1=s(2<j2))* 11 (3(p<h-1>)
j=1,m \ =2,

*S{IKh=1>) = s(e<h=-1>) 25 (I<h-13)) )

+ TT (5(P<j>) + s(i<j>) - S(P<J) 25 (1<j>)) ] =

j=1,n
=card(D) * [ 1 + S{I<>* (1-5(P<1))

+OSUR (S (I<j>)* (1-5(0<j>) ) * TT(S(P<h~1>)*s(f(h-]))-s(?(h—?))*S(P<h~i>)))
J=2,n h=2,3

tS(T<>* (1-s (2<m>) ) + T (8(2<J>) +.5(1<>) - S (P<j>) 25 (1<j>)) |
J“—'ﬂ'(m~4) |

Append. C = Proovfs of Assertions in Section 7. 58




= card (D) * [ 1 + BETA] (4)

in the previous cxpression T<j> is a nredicate defined as the OR
of all the text predicates in conjunct C<y2e PLJ> 15 defined in the
same way as  the OR ol all the index predicates in conjunct C<j>.
BETA is the espression in squacte brackets and it is a numbec great—
er than zero, since it is obtained as sumns and proJducts of numbers
greater than zero. therefore we have that

card (h) * [ 1 + BETA] > card (D)
Therefore the (i) is demonstrated.

In the third type of serial strategy, first some of the i-t-con-
juncts are evaluated for documents in  set D (by using stratejies
defined for queries of case 8), obtaining a set D®, then the t-con-—
Juncts are evaluated on set D® with one sigynature scan, ovtaining a
set D™, then the remaining i-t-conjuncts  are’ evaluated on pw.,
However, from the previous two cases, ikt can be 2asily deduced that
also in this case, the combined strateyy is better than this type
of serial.

Append. C - Proofs of Assertions in Section 7. . a 59




9.0 _REFERENCES

>

t

[ASTR76 ] Astrahan M.H. et Al., "“Systewm RN: Relational Approach to
Database HManagement™, ACM Trans. on Database Systens, ¥ol.t,
de2, June 1975, pp.97-137.

[A;TRSOJ Astrahan #., Kin Wo, Schkolnick M., “2valuation of the
System R Acces:s Path Selection Hechanism”, I8M Reseacch Report
RJ)797 San Jose (Calif.), April 19850.

{BEARDADS ] Rarbic P. and Rnbitti'?.; "The Type Concopt ian Office
bpocument Retriecval™, in Proc. VLD3  Conference, Stockholwm,
lugust 21-23, 1945, \ : ‘

[PAYE72] Rajer R., MeCreight B., "Organization an-d faintenance of
Larvge orderei Indexes™, jpcta Informatica, Vol.l, 1472,

[ BBRTS5 ] Rertino, T., Gibbs, 5., Rabitti, F., thanos, C., tsichrit-
zis, D., "Architecture of a Multinelia bocument Server Proc.
2nd ESPRIT Technical Jeek, RBrussels, Septe 1945.
. ' :
[ 5ERTH6 ] Rertino R., Gibbs 5., Rabitti ¥., Thanos Cep and Tsichrit-
7is Doy "™d MHultimedia Document Server", Proc. Advanceld Pata-
base Symposium, Japan, August 29-30, 1936.

[CARDIS ] cacienas, A. Fop ‘"Analysis and  performance of inverted
database structures™. Comm. AC1, Jol.18, N.5, (May 1979y,
pPpPp.253-273,

[CHRIAL] Christodonlakis S.p "Inplications of Cortain Assumptions
in Database “pxrormanCL Evaluation™, ACH Trans- oa Database
Systems, Vol.Y, N.2, (June 1984) , pp.153-106.

[ CHRINYA ) Christodoulaxis, S. anad 7alontsos, C., "pesign
considerations for a message [ile server,™ IRgR Trans. on
Software Lhgineering Vol. SE=-10(2) , vp.201-210 (Tarch 1I84) ..

[CIRIBS ] cChristodoulakis Sey "Hultimedit Data pase Hanagyement:
Applications ana Problems", position paper, proc. ACI-S5LGHOD
Conference, Austin TA, May 28 =31, 14945,

[conpis] Computer, special Issue on ilultimedia Communications,
Vol. 18, ¥.10, October 1985,

[DEPP36 ] Deppisch 0., ng- ~Tree: A Dynamic Balanced Signature Indog
for Oftice Retrieval®, to appear in Proc. AC1 Conference on
Information Retrieval, Pisa (Ltaly), September 8-10, 1986.

[ecnaBss ] Ecna TC-29, "nffice Document Architeclure™, Standard
ECNA=101 (Sept. 1985).

[FALOO4 ] Faloutsos C., Christodoulakis S.p, "Signature Filess An
Access  ilethod for VDocuments and  its Analytical Perlornmance

RRFFRTNCES 60




LTvaluation™, Acﬁ Trans. on Office Information Systems, Vol.Z2,
NolU, np.267-283, Oct. 1984,

[GEHA%2 ] Gehani, H., "lhe potential of forms in office auto-
miation,"® IEEE Trans. on Commun. VJol. Com=30(1), pp.i20-125
{Jan. 1932).

[GIBRA3 ] Gsibbs S,., and Tsichritzis D., A Data Holdelling Apvroach
for Office InEormation Systewms"™, ACH Irans. on Office Informa-
tion Systems, 1993,

[GIBR3S6 ] Gibhs S., "vocwment OQuery Simplation and Procuessing
Heuristics", L.u.l.-C.N.R. Working Paper, March 1946.

[ HORABD ] Horak H., "Office Document Architeclire and Oftice Docu-
ment  Interchange fPormats: Current Status of International
Standardization", Computer, Vol.13, 1.10, pp.50-62, October
1945,

[IECE8S ] ILvk Vatavase LBngineerciny,

Special Issue on Hultimedia
bata Management, vol.7, N.3, Septen

iy

wner 1938,

[Loosuu L3, L50/TC 97/5C 18/4G 3 N 283, "0{l[ice bocument Acrchitec—
ture™, 1934,

S [nuRrel3 Muagph J., "Tuntegyrated Jifiwce~Automation Systens®,
3] wuEphy J Y
ini-iticro Systems, Vol. 16, d.5, day 1983,

[20STH2] Postel J., "luternet Multimedia Hall Document Format®,
Tachnical Report RFC 767, DAReA Netvwork dorking Group (Hlarch
1932) .

[RABISN ] Rabiiti, F. and 6izka, Jda, "Dyvaluation of access
mothods to text documents in office sysilems,” Proc. 3vd Joint
AC-2CS Symposium on Researu& and developemant in Information
Letrieval (19“4).

[RADIBLA] Babitti, F., Stanchev, P., "dhat can wae do with Imajges in
a Multi-dedia Docuament ~ Filing Systea?” pProc. ol the ALCA-UY
Annual Conference, ILtaly, (1984).

[RASINT ] Rabittl F., "A Nodel for NMultimedia Documents™, in "0ffice
Avtomation: Coucepts and Tools", Db.lsichritzis ed., Sprinyer-
Verlag, 1935.

- ‘ :

[RABIBA] Rabitti #., "JULTOS Projéct: Documenct Hodel™, ITSPRLIL

Project 28, Report DH-[ LKI ]-36-UZ, ilarch 1986,

[ BOBE79 ] kobuerts C.S.,"Partial-match Retcieval via the #Hethod of
Syperimposed Codes"™, Proc. IEEE, Vol.07, 8N.12, pp.63-6Y,
becenber 1979. '

[ 5ALIB3 ) salton, G. and nc6ill, #.d., Introduction Lo Hodern Infor-
mation Retrieval, McGraw-ill (1943) . v

[’"LI7QJ quLHUPL Polia, A“tLahan MeMe, Chanberlin D.D., Lorie R.A.,
Price T, "iccess Path Selection in a Relational batabase

{

RIFLCRENCES ‘ 61




Nanadement Systen", inn Research Report RJI2429, San Jose {Cal-~
if.),«danuary 1979.

[5V0BB4 ] Svobodova L.,"File Servers for Hetwork-based distributed
Systems"™,  AcH Conp., Surveys, Vol.16, Helh, PPr.353-344,
bec. 1984,

pE

[THONBS ] Thomas ReHop, et Al., "pianond: AN Multimedia flessage Systen
Built on a Distributed ALChitecturan, Computer, Vol.1d, N.12,
DPec, 1985, L

{ ISICR3) Tsichritizis D., and Chriétoﬂonlnkis 5., "Hdessage Pilesw,
ACH Irans. on Office Information syste, Vol. (1), pp.99-9y
(dJan. 1yn3), \ ‘ ! .

[#HANB3) ¥hany, K.v., Wiederhold, G., Sajalowicz, D., "Rstimating
Llock iccess in Lhatabase Organizations: A Closed Honilerative
Formmla™, Comw. ACH, Vol .2s, N.11, Fov. 1983

fA079 % tao n.s5. "Optimization of Omery  Evaluation Algorithmse,
J . I B4

ACHT  Trans.. .on Database Systems, Vol.y, N.2, Jnne 1979,
Pp.134-155,

REFERTNCRS | 62




