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ABSTRACT 

 

Knowledge gaps in the optical properties of carbonaceous aerosols account for a significant fraction of the uncertainty of 

aerosol - light interactions in climate models. Both black carbon (BC) and brown carbon (BrC) can display a range of optical 

properties in ambient aerosol due to different sources and chemical transformation pathways. This study investigates the 

optical absorption properties of BC and BrC at an urban and a rural site in the Po Valley (Italy), a known European pollution 

hot spot. We observed spatial and seasonal variability of aerosol absorption coefficients, with the highest values measured 

in winter at the urban site of Milan (12 Mm–1 on average) and the lowest values in summer at the rural site of Motta Visconti 

(3 Mm–1 on average). The average aerosol Absorption Å ngström Exponent (AAE) measured during the two experiments 

across the 370–880 nm wavelength range was 1.1 and 1.2 at the urban and the rural site, respectively. The observed AAE 

values in winter (the average AAE during the two winter campaigns was 1.2) are consistent with the contribution of wood 

burning BrC, as confirmed by macro-tracer analysis. The BC mass absorption cross section (MACBC) did not show a specific 

seasonal or spatial variability across the two sites and maintained an average value of 10 ± 5 m2 g–1 at 880 nm. The optical 

properties of BrC, investigated off-line after extraction of organic aerosol (OA) indicate that wood burning was the dominant 

BrC source in winter, while secondary organic aerosol (SOA) from other anthropogenic emissions was the main source of 

BrC in summer. 
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INTRODUCTION 

 

Carbonaceous aerosol accounts for more than half of fine 

atmospheric aerosol mass in urban, rural, and remote 

locations (Zhang et al., 2007; Bond et al., 2013). An accurate 

determination of the optical properties (absorption and 

scattering) and atmospheric concentrations of carbonaceous 

aerosol is necessary to improve the ability of climate models 

to describe the interactions of solar radiation with aerosol 
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particles, and thus reduce the uncertainties in climate 

predictions (IPCC, 2013). Light absorbing carbonaceous 

aerosol components are identified as black carbon (BC) and 

brown carbon (BrC) (Andreae and Gelencser, 2006). BC is 

a known key atmospheric pollutant whose reduction is 

necessary in order to limit global warming (IPCC, 2018). BC 

has unique properties due to its refractory nature: it strongly 

absorbs visible light, is insoluble in water and organic 

solvents, and is made of aggregates of small carbon spherules 

with a high carbon to hydrogen ratio (Chakrabarty et al., 

2006; Bond et al., 2013; Buseck et al., 2014). The absorption 

of BC per unit mass, also called the mass absorption cross 

section (MACBC), is the highest among all the light absorbing 

aerosol species, with values larger than 5 m2 g–1 at 550 nm 

and centered around 7.5 ± 1.2 m2 g–1 (Bond and Bergstrom 

2006; Cross et al., 2010; Bond et al., 2013; Forestieri et al., 

2018; Li et al., 2020). BC radiative forcing values used in 

https://creativecommons.org/licenses/by/4.0/
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models range between +0.05 and +0.8 W m–2, while satellite 

and ground-based observations point towards higher values 

(+0.7 to +0.9 W m–2) (Bond et al., 2013). Part of the 

discrepancy between the radiative forcing estimated by 

models and observations is attributed to the variability of 

MACBC, which depends on intra-particle BC mixing state 

and particle morphology (China et al., 2013; China et al., 

2015; Bhandari et al., 2019). The intra-particle mixing of 

BC particles with other material can lead to the enhancement 

of the BC absorption cross section and therefore of MACBC 

(Lack et al., 2009). MACBC enhancements observed in 

laboratory experiments vary from 2 to 3.5 ( Zhang et al., 2008; 

Cross et al., 2010; Shiraiwa et al., 2010; Bond et al., 2013; 

Saliba et al., 2016), while field observations are characterized 

by a larger variability that is difficult to incorporate in 

models (Gustafsson and Ramanathan, 2016). Cappa et al. 

(2012) observed that aerosol aging in two California regions 

increased MACBC by only about 6%, while Moffet and 

Prather (2009) determined a MACBC enhancement for aged 

soot in Mexico of 60%. Peng et al. (2016) observed that 

MACBC can be enhanced by 2.4 times, over timescales that 

differ significantly from clean to polluted environments, 

potentially explaining the field observation variability. Liu 

et al. (2015) reported lower enhancement factors (up to 1.5) 

consistent with Cappa et al. (2012). Discrepancies among 

laboratory and field observations are also due to the 

heterogeneity of particle ensemble composition (particle-to-

particle differences) and the inaccurate assumption of spherical 

concentric core-shell structure (Fierce et al., 2020). Limited 

comparability among measurement techniques contributes 

to the variability of observed BC optical properties as well 

(Subramanian et al., 2007; Lack et al., 2008; Moosmuller et 

al., 2009). 

More recently, part of the discrepancy between modeled 

and observed aerosol radiative forcing has been attributed to 

the presence of BrC in aerosols (Park et al., 2010; Feng et 

al., 2013; Jo et al., 2016; Chakrabarty et al., 2018). BrC is a 

mixture of organic species with different chemical identities, 

able to absorb both UV and visible light but with a stronger 

wavelength dependency than BC, although characterized by 

a lower MAC (Bond et al., 2013). Unlike BC, BrC is mostly 

soluble in organic solvents (Chen and Bond, 2010). BrC 

contributes to primary and secondary organic aerosol (POA 

and SOA, respectively) originating from a variety of sources 

and chemical transformation pathways (Laskin et al., 2015; 

Moise et al., 2015). For example, recent studies indicate that 

tar balls from biomass burning contribute to atmospheric 

BrC through atmospheric aging (Chakrabarty et al., 2010; 

Sedlacek et al., 2018; Bhandari et al., 2019b). Despite the 

radiative forcing of BrC is highly uncertain, the impact of 

BrC on climate will likely increase in the future due to increase 

of wildfire frequency (Brown et al., 2018; Saturno et al., 

2018; Jia et al., 2019). 

Ground-based measurements indicate that BrC can account 

for up to 20% of carbonaceous aerosol light absorption 

between 400 and 600 nm (Chung et al., 2012b), although the 

larger concentrations of BrC at higher altitude can further 

increase BrC relative absorption (Feng et al., 2013; Zhang 

et al., 2017). Barnard et al. (2008) indeed estimated that BrC 

contributes up to 40% of top of the atmosphere aerosol 

absorption at wavelengths below 500 nm. A limited number 

of studies using modeling and vertical profile observations 

indicate that BrC radiative forcing is equal to +0.25 W m–2, 

thus partially offsetting the cooling effect of non-absorbing 

OA (Chung et al., 2012b; Feng et al., 2013). Nevertheless, 

the scarcity of ambient BrC optical property measurements 

make its representation in most chemistry and climate 

models difficult (Forrister et al., 2015; Sumlin et al., 2017; 

Tsigaridis and Kanakidou, 2018; Browne et al., 2019).  

This study investigates the optical properties of BC and 

BrC in the Po Valley (Italy), one of the European pollution 

hot-spots. Bordered by the Alps to the north and by the 

Apennines to the south, the Po Valley is often subject to 

stagnant atmospheric conditions that favor the accumulation 

of atmospheric pollutants (Larsen et al., 2012). Across the 

Po Valley, wood burning for residential heating accounts for 

up to 50% of primary and secondary carbonaceous aerosol in 

wintertime (Gilardoni et al., 2011, 2014, 2016). In summer, 

the intense photochemical activity increases the concentration 

of SOA over freshly-emitted POA and BC (Saarikoski et al., 

2012). Therefore, we can expect different concentrations of 

BC and BrC across the seasons. These conditions make the 

area an ideal site to extract the optical properties of BC and 

BrC and to investigate the effects of atmospheric aging on 

the optical properties of carbonaceous aerosol in the region. 

 

METHODS 

 

Sampling Sites 

Aerosol optical properties and chemical composition 

were investigated at an urban site in Milan (MI, 45°28’43”N 

9°13’56”E) and at a rural site in the village of Motta Visconti 

(MV, 45°16’55’’N 8°59’19’’E), about 30 km south-west of 

Milan. Milan has a population of about 1.3 million people 

and the sampling site, located inside the university campus, 

is representative of urban background conditions. Motta 

Visconti is a small village (population less than 10.000 

inhabitants) surrounded by rice and corn fields. Both sites are 

in the greater Milan metropolitan area and are part of the air 

quality monitoring network of the Lombardy Environmental 

Protection Agency (ARPA Lombardia).  

The historical emission inventory of the Milan 

metropolitan area shows that the main sources of BC and OA 

are road transport (76% of BC and 23% of primary organic 

carbon, OC) and residential heating (12% of BC and 49% of 

primary OC) (Inemar, 2014). Diesel cars account for 92% of 

BC emissions from the road transport sector (Inemar, 2014). 

Table 1 reports the sampling periods at each site, covering 

winter and summer. Meteorological parameters measured 

during the four experiments are reported in Fig. S1. Wind 

speed was below 2 m s–1 most of the time, indicating low 

horizontal dispersion. Average temperature was 7 °C during 

winter and 19°C in summer. Relative humidity (RH) was 

generally high with mean values above 70% both during 

summer and winter.  

 

On-line Optical Measurements 

Table 1 lists the instruments used for monitoring the  
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Table 1. List of aerosol optical properties instruments used during the four experiments. 

Site Season Start Stop Instruments Properties 

Milan (urban) Winter 02/05/16 02/19/16 Nephelometer M9003 (545nm) Scattering 

Aethalometer AE22 2 (370, 880 nm) Attenuation 

MAAP (670 nm) Absorption 

Motta Visconti 

(rural) 

Winter 02/23/16 03/06/16 Nephelometer AURORA 3000 (450, 535, 

635 nm) 

Scattering 

Aethalometer AE22 2 (370, 880 nm) Attenuation 

Milan (urban) Summer 06/01/16 06/24/16 Nephelometer M9003 (545nm) Scattering 

Aethalometer AE22 2 (370, 880 nm) Attenuation 

MAAP (670 nm) Absorption 

CAPS (630 nm) Scattering and extinction 

Motta Visconti 

(rural) 

Summer 05/16/16 05/30/16 Nephelometer M9003 (545nm) Scattering 

Aethalometer AE22 2 (370 nm , 880 nm) Attenuation 

 

aerosol optical properties during the field observations at 

both sites. Throughout the four experiments, the aerosol light 

attenuation coefficient was measured at 880 nm and 370 nm 

with a 5-minute time resolution using an aethalometer AE22 

(Magee Scientific) equipped with a PM10 head. The 

aethalometer operated at a flow rate of 4 L min–1 and filter 

tape advanced when absorbance at 370 nm reached the limit 

of 0.65.  

Aerosol light scattering was measured at 1-minute time 

resolution, using a 532 nm integrating nephelometer Ecotech 

M9003, with the exception of the rural winter experiment, 

when we employed a Ecotech AURORA 3000 operating at 

three wavelengths (450 nm, 535 nm, 635 nm). Nephelometers 

were calibrated using filtered air as zero span and CO2 as 

high span, in order to derive the calibration curve applied for 

scattering coefficient calculated by the instruments. The 

nephelometers sampled without any size cut. However, 

previous measurements indicate that the majority of aerosols 

at both sites is in the submicron fraction (Lonati et al., 2011 and 

Fig. S4). Although the presence of a small number of larger 

particles could have a significant impact on nephelometer 

observations, scattering coefficient data were employed 

mainly for attenuation measurement correction, with 

negligible effect on particle absorption in this study.  

The M9003 measurements were not corrected for truncation 

error, in accordance with the manufacturer’s indications. 

Indeed, Müller et al. (2009) demonstrated that, due to a 

fortuitous interaction of truncation and non-ideal angular 

illumination, the truncation correction is considered negligible 

for the typical urban particle size distribution. Concerning the 

Ecotech AURORA 3000, we applied a truncation correction 

coefficient for total scattering ranging between 1.006 and 

1.106 (mean value 1.050) using the Scattering Å ngström 

Exponent (SAE) and the algorithm developed by Müller et 

al. (2011). The correction coefficient close to one is consistent 

with the particle number size distribution being dominated 

by submicron particles. 

During the summer experiment at the Milan urban site, we 

employed a Cavity Attenuated Phase Shift (CAPS) PM SSA 

monitor (Aerodyne Inc., Billerica) that provides a fast-response 

measurement of both optical extinction and scattering 

coefficients of aerosol particles at 630 nm (Onasch et al., 

2015). The aerosol was sampled through a line equipped 

with PM10 size cut. The ratio of scattering to total extinction, 

i.e., the single scattering albedo (SSA), was calculated at 1-

second time resolution. The scattering channel, which derives 

its data from a reverse nephelometer incorporated into the 

extinction measurement cell, was calibrated using polystyrene 

latex spheres at the beginning of the experiment, and filtered 

air baseline values were recorded for 45 seconds every 

10 minutes for zeroing purposes. The extinction coefficients 

measured by the monitor are estimated to have an accuracy 

of ±5%. In the small particle limit (< 250 nm diameter), the 

SSA values are accurate within ±0.01; however, particle size 

distributions previously collected at the same location 

indicate that the accumulation particle mode at the Milan 

urban site has a geometric mean diameter of about 250 nm 

and a geometric standard deviation of about 2 (Lonati et al., 

2011), corresponding to a CAPS truncation error of 1.04 

(Onasch et al., 2015) which was applied to the CAPS data. 

After applying the truncation error correction, the absorption 

values were calculated by multiplying the measured 

extinction by the co-albedo (1-SSA).  

In addition, particle light absorption at 670 nm was 

measured at 15-minute time resolution with a Multi-Angle 

Absorption Photometer (MAAP 5012 Thermo Fisher) 

equipped with a PM10 sampling head at the urban site, both 

in winter and summer. 

 

Aethalometer-based Absorption Coefficients 

The aethalometer attenuation coefficients (bATN) and the 

nephelometer scattering coefficient (bscat) were combined to 

calculate the absorption coefficient (babs) according to the 

correction algorithm developed by Collaud-Coen et al. (2010). 

 

 
   

R 

ATN scat
abs

ref

b b
b

C

  



  (1) 

 

babs is the absorption coefficient at a given wavelength (λ, 

while α, R, and Cref are correction coefficients considering 

light scattered by particles on the aethalometer filter tape, 

filter loading, and multiple scattering, respectively.  

It is known that particles deposited on the aethalometer 

filter tape and able to scatter the instrument beam light 

decrease the intensity of light reaching the detector, leading 
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to an overestimation of aerosol light absorption (Arnot et al., 

2005) The scattering artifact is quantified by the α, which 

depends on the particle scattering coefficient. During the 

experiment, α was on the order of 10–5, and the overestimation 

of babs due to scattering was negligible (below 0.01%).  

At the same time, the accumulation of absorbing particles 

on the filter tape might prevent some particles from absorbing 

incident light beam, underestimating the actual aerosol 

absorption. The filter loading correction is introduced by the 

term R, which depends on the filter attenuation (ATN) and 

on the particle’s SSA. For the n-th measurement over the s-th 

filter spot, Rn,s is given by: 

 

 
,

0 ,

1
1 1

0.74 1 50

n
n s

n s

ATN
R



 
    

 (2) 

 

where ATNn is the percentage attenuation, and ω̅0 n.s is the 

mean SSA measured over the s-th filter spot. A first estimate 

of ω̅0 n.s is calculated by combining the scattering coefficient 

measured by the nephelometer and the attenuation coefficient. 

During the experiments, R ranged between 1 and 0.7, 

indicating that the filter loading effect was significant. If 

neglected, this could have led to an underestimation of the 

absorption coefficient by up to 40% over a 15-minute time 

period (Supplementary material Fig. S2).  

The Cref coefficient corrects multiple light scattering 

artifacts occurring on the filter tape fibers that can lead to an 

absorption enhancement. We estimated Cref by comparing 

the MAAP babs at 670 nm with the attenuation coefficient 

corrected for the loading effect and extrapolated at 670 nm 

using the aethalometer Absorption Å ngström Exponent 

(AAE), which describes the wavelength dependence of light 

absorption. The resulting Cref was 2.5 in summer and 3.0 in 

winter, and compared well with the values reported in 

Collaud-Coen et al. (2010) for aerosol samples with SSA 

larger than 0.8 (2.5–3.6), as well as with the average of 3.5 

observed at several European ACTRIS sites (Muller, personal 

communication). Cref is affected by the aerosol type. For 

example, liquid organic phase, which redistributes on filter 

fibers, modifies the Cref value (Lack et al., 2008). In addition, 

Cref depends on aerosol single scattering albedo (SSA) and 

on wavelength (Weingartner et al., 2003; Collaud-Coen et 

al., 2010). The lack of reference absorption measurements 

at different wavelengths did not allow a determination of Cref 

wavelength dependence, and the same Cref was used at 880 

nm and 370 nm. In addition, since no MAAP measurements 

were available at Motta Visconti, we used the Cref calculated 

at the urban location. This was an acceptable compromise 

given the similar seasonal SSA values observed at the two 

sites, as reported in Table 2. 

 

Off-line Optical and Chemical Measurements 

PM1 aerosol samples were collected daily during the four 

field experiments (from 00:00 to 23:59 local time) using an 

automated Tecora aerosol sampler operating at 1.15 m3 h–1. 

Samples were stored at 4°C prior to analysis. For each filter, 

a 1.5 cm2 punch was analysed to quantify organic carbon 

(OC) and elemental carbon (EC) concentration, by thermo-

optical technique, using NIOSH-Like heating protocol 

(Peterson and Richards, 2002). A second punch (1 cm2) was 

extracted with water and the solution was analysed by ion 

chromatography to quantify levoglucosan, a proxy for biomass 

burning. In addition, daily PM10 aerosol samples were 

collected routinely at the urban site to measure PM10 mass 

concentration and its chemical composition. OC and EC 

concentration were quantified with the same procedure 

employed for the analysis of PM1 carbonaceous fraction. 

Finally, we quantified daily water-soluble and methanol-

soluble BrC concentrations in PM1 aerosol samples. Two 

1 cm2 punches were extracted in 5 mL of mQ water and 

5 mL of HPLC grade methanol, respectively, by 30-minute 

ultrasonication. Solutions were then filtered, and the UV-

visible light absorption spectra were recorded using a 

TIDAS E UV/visible light spectrometer (J&M Analitik AG, 

Germany), equipped with a liquid waveguide capillary cell 

(LWCC-3050, 0.5 m long, World Precision Instruments, 

Sarasota, FL) in the range 300 nm–720 nm. The absorption 

coefficient was then calculated according to the following 

equation: 

 

Table 2. Average optical properties of carbonaceous aerosol observed during the four experiments; standard deviations are 

reported in brackets. 

Site Milan Urban Motta Visconti Rural Milan Urban Motta Visconti Rural 

Season Winter Winter Summer Summer 

Aerosol 

babs 880 (Mm–1) 12.1 (8.5) 7.6 (7.1) 6.2 (4.1) 3.3 (2.4) 

babs 370 (Mm–1) 38.8 (27.6) 28.7 (30.1) 18.1 (13.9) 9.6 (6.3) 

AAE370-880 1.1 (0.2) 1.2 (0.3) 1.0 (0.4) 1.1 (0.5) 

MACEC 880 (m2 g–1) 9.8 (2.2) 10.5 (1.1) 9.5 (1.6) 9.0 (2.0) 

SSA 0.72(0.15) 0.76(0.12) 0.67(0.15) 0.68(0.17) 

Methanol-soluble BrC 

Babs 370 (Mm–1) 6.0 (2.7) 5.3 (3.0) 1.4 (0.4) 1.0 (0.5) 

AAE330-500 3.3 (0.3) 3.6 (0.4) 2.7 (0.2) 3.1 (0.5) 

MACBrC370 (m2 g–1) 1.2 (0.2) 1.2 (0.3) 0.5 (0.1) 0.3 (0.1) 

Water-soluble BrC 

babs 370 (Mm–1) 3.0 (1.3) 2.4 (1.0) 0.5 (0.2) 0.5 (0.2) 

AAE 330-500 4.6 (0.4) 6.0 (0.6) 6.1 (1.3) 6.1 (1.2) 
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a
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where Absλ – Abs700 is the absorbance at λ corrected for any 

drift using as reference the absorbance at 700 nm, Va is the 

volume of sampled air, Vl is the extraction solvent volume, 

and l is the optical length of the LWCC cell (Hecobian et al., 

2010).  

 

RESULTS AND DISCUSSION 

 

Aerosol Optical Properties 

Fig. 1(a) compares the hourly averaged babs values at 

630 nm obtained from the MAAP (adjusted to 630 nm using 

the aethalometer AAE) and from the CAPS PMssa (obtained 

by difference of extinction and scattering). The data points 

are color coded by SSA. While the technical principles of 

the two techniques differ substantially (the CAPS PMSSA 

measures optical properties of particles suspended in the air, 

while the MAAP measurements are filter-based) the correlation 

coefficient between the datasets is equal to 0.97 and the 

slope is 0.95 ± 0.01. In addition, when isolating data points 

corresponding to SSA larger than 0.8 (a condition that can 

lead to sizeable errors in the babs values obtained by difference), 

we do not observe a statistically significant bias relative to 

the 1:1 line. Furthermore, the good agreement between the 

CAPS PMSSA and MAAP babs values suggests that the effects 

related to the absorption of gas-phase species on the filter 

and subsequent coating of the filter fibers (Lack et al., 2007; 

Subramanian et al., 2007), as well as multiple scattering 

artifacts (Nakayama et al., 2010), can be considered negligible 

during the present study. 

Fig. 1(b) compares the babs estimated from aethalometer 

measurements at the urban site with the babs from the MAAP, 

both in summer and winter. Data are adjusted to 880 nm 

using the aethalometer AAE. We observed a good agreement 

between the data obtained from the two techniques, with 

residuals centered around zero and a standard deviation smaller 

than 20%. The results confirm the validity of the procedure 

used in this study to derive the absorption coefficient from 

aethalometer attenuation measurements, and suggest that the 

aethalometer correction algorithm is precise. 

The box-whisker plots in Fig. 2 show the aethalometer 

babs at 880 nm (panel a) and 370 nm (panel b) measured during 

the four experiments in Milan (MI) and Motta Visconti (MV), 

grouped by season (winter in blue and summer in red). The 

plots report the babs, while average absorption coefficients at 

880 nm and 370 nm, together with their standard deviations, 

are reported in Table 2. Higher babs values were observed in 

winter at both sampling sites, likely due to the combined 

effect of higher emissions of light-absorbing species from 

residential heating and accumulation of pollutants near the 

surface due to the frequent atmospheric inversion conditions. 

In addition, during that particular winter, low wind speed and a 

small number of rain events limit pollutant dispersion and wet 

removal. Overall, higher babs values were observed at the urban 

site of Milan independently on the season, indicating a stronger 

contribution of BC to the urban light-absorbing aerosols.  

Fig. 2(c) shows the AAE during the four experiments. 

The AAE in the UV – IR range is calculated from the babs 

coefficients at 370 and 880 nm: 

 

880
ln

370

880
ln

370

abs

abs

b

b
AAE    (4) 

 

The average AAE was 1.1 and 1.0 at the urban site and 1.2 

and 1.1 at the rural site, in winter and summer, respectively. 

Assuming that 1.1 is an upper bound for AAEBC (see section 

“Brown carbon measurements”), our observations of AAE 

values larger than 1.1 in most of the winter data (58% and 

71% of data points in Milan and Motta Visconti, respectively) 

indicate a consistent presence of BrC in the air samples, 

especially at the rural site, where AAE values are higher. 

Using the average AAE and Eq. (4), we adjusted the babs 

measured during this study to different wavelengths to 

compare with literature values. Both the absorption coefficient 

values measured in Milan and their seasonal variation are 

comparable to those observed at other southern European 

 

 

Fig. 1. Comparison of absorption coefficients at 630 nm from CAPS PMSSA and MAAP measurements (panel a); markers 

are color-coded as a function of SSA measured by the CAPS PMSSA. Panel b compares absorption coefficients estimated 

form aethalometer through the described correction algorithm with the MAAP absorption data, adjusted at 880 nm in summer 

(triangles) and winter (circles). Measurements here reported were performed at the urban site. 
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Fig. 2. Box-whisker plots showing the variability of absorption coefficients at 880 nm (panel a), at 370 nm (panel b) and 

Absorption Å ngström Exponent (AAE panel c) derived from aethalometer measurements in Milan in winter and summer 

(MIw and MIs, respectively) and in Motta Visconti in winter and summer (MVw and MVs, respectively). 

 

urban sites. For example, the average babs at 637 nm in Rome 

in winter was 19 Mm–1 (Costabile et al., 2017), while in 

Barcelona the monthly babs averages varied between 10 Mm–1 

(in summer) and 20 Mm–1 (in winter) (Ealo et al., 2018). These 

values compare well with the seasonal averages observed in 

Milan when adjusted to 637 nm, i.e., 11 and 20 Mm–1. 

Conversely, the average babs at Motta Visconti at 637 nm (7 

and 14 Mm–1 in summer and winter, respectively) are higher 

than typical southern European rural coefficients (2–4 Mm–1) 

(Zanatta et al., 2016; Ealo et al., 2018). These results 

confirm the conclusions of a previous study reporting small 

differences between urban and rural sites in the Po Valley, 

and indicating that air masses are well-mixed in the basin 

(Sandrini et al., 2014).  

 

Black Carbon Optical Properties 

In order to characterize BC optical properties, this study 

uses EC from thermal-optical measurements as a proxy, 

even if EC and BC are not equivalent. In fact, BC typically 

refers to both refractory and non-refractory carbonaceous 

aerosol strongly absorbing across a wide part of the visible 

spectrum, while EC indicates only the refractory component 

of the carbonaceous aerosol (Bond and Bergstrom, 2006). In 

the PM1 size fraction, EC concentrations in Milan averaged 

1.52 and 0.80 g m–3, while in Motta Visconti averaged 0.92 

and 0.48 g m–3 in winter and summer, respectively. Higher 

EC concentrations were observed at the urban site, due to a 

larger contribution of anthropogenic combustion emissions 

from vehicular traffic both in winter and summer.  

MACEC (proxy for MACBC) is defined as the ratio 

between the daily average light absorption coefficient and 

the EC concentration from thermal-optical analysis of PM1 

daily samples: 
 

 880abs
EC

b
MAC

EC
  (5) 

 
where the babs coefficients and EC measurements are 

obtained from instrument with two different size cuts (PM10 

and PM1 respectively). However, comparison between PM10 

and PM1 EC measurements at the urban site indicates that, 

on average, at least 90% of EC is contained in submicron 

particles (Fig. S3). In conclusion, the error introduced by 

neglecting the 10% mass fraction of EC larger than 1 m is 

likely within the uncertainty of EC measurements, typically 

estimated to be around 30% (Karanasiou et al., 2015). 

Further, we use the babs coefficients measured at 880 nm to 

remove potential interference from the BrC absorption at 

shorter wavelengths, and only days characterized by babs data 

availability larger than 70% are considered for this analysis. 

The average MACEC values for the four measurement 

periods and their confidence intervals, (± standard deviation) 

obtained from Eq. (5) are reported in Table 2. MACEC values 

were comparable across sites and seasons. Despite the short 

duration of the experiments, this result is consistent with 

previous observations that did not report any seasonal 

variation of EC optical properties in rural Europe across 

longer periods (Zanatta et al., 2016). 

Furthermore, the MACEC measured at Motta Visconti 

during this study falls in the range of values reported for 

other European rural background sites adjusted to 880 nm, 

i.e., 5.7–16.4 m2 g–1 (Genberg et al., 2013, Zanatta et al., 2016). 
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Similarly, the average MACEC observed in Milan compares 

well with measurements in European urban sites, including 

Barcelona (6.7 m2 g–1) (Reche et al., 2011) and Paris (8–

10 m2 g–1 at 950 nm) (Sciare et al., 2011). 

Given that the MAC of freshly generated soot ranges 

between 6.3 and 8.7 m2 g–1 at 550 nm, or to 3.9 and 5.4 m2 g–1 

at 880 nm (Bond and Bergstrom 2006), the higher MAC values 

observed during this and other ambient experiments are likely 

due to changes in BC optical properties with atmospheric 

aging, and possibly to intra-particle mixing configuration.  

We investigated the effect of intra-particle mixing state 

on BC optical properties by looking at the variability of 

MACEC as a function of the non-refractory PM1 to EC ratio 

(PM1nr/EC). The PM1nr/EC ratio can be used as a proxy for 

BC coating thickness. Zanatta et al. (2016) observed that, in 

most European sites reporting long term BC and EC 

measurements, MACEC increases with the PM1nr/EC ratio, 

with different slopes depending on the location. Fig. 3 

reports the measurements performed at the Milan urban site 

(Fig. 3, panel a) and at the Motta Visconti rural site (Fig. 3, 

panel b). In Milan, the PM1nr/EC ratio varies between 5 and 

30, while MACEC varied by a factor of two, with values ranging 

from 6 and 12 m2 g–1. The lowest MACEC was 6.6 m2 g–1 and 

was observed on June 21. During that day, the site sampled 

BC particles emitted from a nearby fire clearly visible from 

the measurement site as a black smoke plume. It is reasonable 

to assume that BC particles sampled during such episode 

were fresh and not internally mixed, explaining the relatively 

low MACEC compared to the PM1nr/EC ratio of 12. The 

black dotted lines in Fig. 3 identify orthogonal regression 

lines of the measured data after removing the June 21 point. 

After excluding the local fire episode, the linear correlation 

agrees with observations reported at most European sites 

and indicates that the PM1nr/EC ratio explains 75% of the 

MACEC variability observed in Milan. On the contrary, the 

correlation between PM1nr/EC and MACEC at Motta Visconti 

was not statistically significant, with a Pearson coefficient 

of –0.02. The difference in slope and correlation might be 

related to different intra-particle mixing configurations and 

the source variability. The variability of fuel type might 

affect morphology and mixing state of combustion-generated 

particles, which in turn modify their MAC (Bond et al., 

2006), The variability of fuel type can also introduce a bias 

in the EC thermal-optical measurements (Cavalli et al., 2010), 

hampering the dependency of MAC on PM1nr/EC especially 

in a short lasting experiment. The rural measurement site is 

in an area characterized by intensive agricultural activities 

(rice fields) and we cannot exclude the impact of local 

combustion activities such as agricultural waste burning, 

mixing with urban outflow. Consistently, there was a larger 

variability range of the levoglucosan to EC ratio in winter 

(0.04–0.30) at Motta Visconti than in Milan (0.02–0.06) 

(levoglucosan concentration in summer was below detection 

limit during the investigated periods). 

 

Brown Carbon (BrC) Measurements 

BrC light absorption at 370 nm (babs BrC 370) is determined 

from the aethalometer measurements, by subtracting the BC 

contributions according to the following equation: 

 
_

  370  370  880

880

370

AAE BC

abs Brc abs absb b b
 

   
 

 (6) 

 

This equation implies that the main species contributing 

to the absorption at 370 nm are BC and BrC.  

The use of Eq. (6) to obtain babs BrC 370 requires an 

assumption about the choice of the AAEBC values, which are 

known to depend on BC particle size and their mixing state 

and to span a wide range. Based on the Mie-theory core-shell 

model (spherical particles), Lack and Cappa (2010) concluded 

that BC can show AAE values as high as 1.6, and that AAE 

smaller than 1.6 cannot exclude a BrC presence. Li et al. 

(2016) used numerical simulations to calculate the AAEBC 

variability range and reported values of 0.9–1.5 for fractal 

aggregates, and 0.6–1.5 for spheres and spheroids. Conversely, 

ambient measurements of AAEBC performed with various 

methods point towards a narrower range. Chung et al. (2012b) 

estimated an AAE of 0.7–1 for BC and 1.6–1.8 for BrC 

between 350 and 970 nm. Zotter et al. (2017) estimated the 

AAE of BC and wood burning particles (containing both BC 

and BrC) comparing aethalometer data and radiocarbon  

 

 

Fig. 3. Dependence of elemental carbon mass absorption cross section (MACEC) on the non-refractory PM1 to elemental 

carbon ratio (PM1nr/EC), used as a proxy of soot particle coating, during the experiments in Milan (urban site, panel a) and 

Motta Visconti (rural site, panel b). 
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measurements and concluded that the best estimate for AAEBC 

was 0.9 in the 470–950 nm range. Similarly, Martinsson et 

al. (2017) validated the assumption of AAEBC equal to unity 

using radiocarbon measurements. Laboratory experiment 

reported AAEBC of fresh fossil fuel burning emission between 

0.8 and 1.1 (Kirchstetter 2004; Sharma et al., 2013; Yuan et 

al., 2016; Blanco-Alegre et al., 2020). Therefore, we used a 

range of AAEBC values collected during field and laboratory 

experiments (0.7–1.1) and calculated a center value of 

babs BrC 370 using AAEBC equal to 0.9. Using literature AAEBC 

ambient and laboratory measurement range (Chung et al., 

2012a; Martinsson et al., 2017; Zotter et al., 2017), we also 

calculated the upper and lower bounds of babs BrC 370 using 

AAEBC equal to 0.7 and 1.1, respectively. 

Although Mie theory calculation might indicate that AAEBC 

can be larger than 1.1, it is worth noting that an AAEBC of 

1.1 in this study would lead to many negative AbsBrC370 

values, especially in summer (83% and 98% of hourly data 

at Milan and Motta Visconti, respectively). This result would 

not be consistent with the off-line measurements indicating 

BrC presence during the summertime and wintertime 

experiments (Fig. 5). Therefore, an AAEBC equal to or higher 

than 1.1 is unlikely to represent the optical properties of BC 

in the Po valley.  

Figs. 4(a) and 4(b) report the daily variation of the BrC 

light absorption coefficient at 370 nm at the urban and rural 

site, respectively. The shadowed areas indicate the upper 

and lower bounds of babs BrC 370 based on the different AAEBC 

assumptions. The babs BrC 370 coefficient in winter shows 

maxima during evening and night-time, in agreement with 

the typical diurnal trend of wood burning for residential 

heating, previously identified as one of the main sources of 

OA in the Po Valley (Gilardoni et al., 2014, 2016). Several 

studies indicate that primary and secondary wood burning 

OA contribute to aerosol light absorption in the UV and 

visible range (Habib et al., 2008; Hecobian et al., 2010; Saleh 

et al., 2014). Even though wood burning emissions are higher 

during the evening when stoves and fireplaces are used for 

residential heating, biomass burning OA remains high 

during the night and decreases during day-time due to the 

evolution of boundary layer height. Interestingly, the diurnal 

variation of the babs BrC 370 coefficient in winter was similar 

at the urban and rural sites due to the similar evolution of the 

mixing layer, although the rural site showed higher BrC 

signals in the evening. Consistently, regional inventories in 

the urban settings (Inemar, 2014). 

The rural site in summer was characterized by an increase 

in the babs BrC 370 during the central part of the day, when solar 

radiation was higher and the highest concentration of 

secondary OA is expected (Saarikoski et al., 2012). Ambient 

 

 

Fig. 4. Diurnal trends of BrC absorption coefficients at 370 nm (babs BrC 370) from aethalometer data at the urban site (panel 

a) and the rural site (panel b), dependence of daily average babs BrC 370 from aethalometer on levoglucosan concentration, a 

marker of wood burning emissions (panel c), and correlation of babs BrC 370 from aethalometer with methanol soluble BrC 

absorption coefficient (babs BrC 370-MeOH) measured off-line with daily resolution (panel d). The shaded areas in panels a and 

b and the error bars in panels c and d indicate the variability ranges derived from assuming AAEBC equal to 0.7 and 1.1, 

while the central values are estimated assuming AAEBC equal to 0.9. 



 
 

 

Gilardoni et al., Aerosol and Air Quality Research, 20: 2624–2639, 2020 

 

2632 

and laboratory observations confirm that secondary OA can 

contribute to aerosol light absorption ( Shapiro et al., 2009; 

Chang and Thompson, 2010, Hecobian et al., 2010), and 

therefore can be considered as a form of BrC. Updyke et al. 

(2012) observed the formation of light-absorbing secondary 

OA from the reaction of biogenic and anthropogenic precursors 

with ammonia in the laboratory, suggesting that the significant 

emission of ammonia from agricultural activities in the Po 

Valley can contribute to BrC summertime loadings in rural 

areas, which are significantly impacted by agricultural 

emissions. At the urban site, babs BrC 370 diurnal trend is less 

clear. Previous studies reported high night-time BrC in 

urban areas due to dark-chemistry secondary OA or primary 

OA accumulating near the surface at night (Hecobian et al., 

2010). Still, the low babs BrC 370 coefficients and the lack of 

specific organic tracers make difficult to reach a definitive 

conclusion about the specific sources of BrC in summer at 

both urban and rural sites at different times of the day. 

To test the attribution of winter BrC to biomass burning, 

Fig. 4(c) shows the correlation between the 24-hr wintertime 

average BrC light absorption at 370 nm (from Eq. (6)) and 

PM1 daily concentration of levoglucosan, a wood burning 

tracer. The data are best fitted by an AAEBC = 0.9 (R2 = 0.70, 

the solid line), suggesting that BrC in winter in the Po Valley 

was strongly related to wood burning from residential 

heating. The linear fitting functions for the lower and upper 

bounds of AAEBC are indicated by the dashed gray and green 

lines in Fig. 4(c). The corresponding correlation coefficient 

between babs BrC 370 and levoglucosan were 0.68 (assuming 

AAEBC = 1.1) and 0.54 (assuming AAEBC = 0.7). 

 

BrC Optical Properties 

To investigate the optical properties of BrC, PM1 OA 

collected daily on quartz filters was extracted with methanol 

and water, and the UV-VIS light absorption spectra were 

measured. Table 2 reports the average absorption coefficients 

of methanol-soluble and water-soluble BrC, and the 

corresponding AAEBrC over the range 330–500 nm. Previous 

studies show that water extracts less than 70% of the total 

light-absorbing OA, while methanol extracts more than 90% 

(Chen and Bond 2010; Laskin et al., 2015; Kumar et al., 2018). 

The absorption coefficients measured in this study confirm that 

methanol extracts BrC more efficiently than water, and AAE 

values indicate that the two solvents extract BrC with different 

optical properties, and likely different chemical composition.  

Fig. 4(d) compares methanol soluble BrC absorption 

coefficients (babs BrC 370-MeOH) with aethalometer 

measurements (babs BrC 370) averaged over 24-hour sampling 

period at both rural and urban site, in summer and winter. 

As in previous graphs, the babs BrC 370 from aethalometer data 

is calculated using Eq. (6) and assuming AAEBC = 0.9. The 

error bars in Fig. 4(d) are calculated using the upper and 

lower bound of babs BrC 370 assuming AAEBC equal to 0.7 and 

1.1, respectively. Although aethalometer data refer to PM10 

aerosol and methanol BrC measurements were performed on 

PM1 size fraction, the comparison shows a good correlation 

between the two parameters for all datasets with an average 

R2 = 0.74 and intercept close to zero (0.7 ± 0.6). However, 

the orthogonal fit with a slope of 1.8 indicates that a much 

higher absorption coefficient is measured by the aethalometer. 

Indeed, particle absorption is expected to be about 1.5–2 

times larger than bulk solution absorption for ambient BrC 

particles in the accumulation mode, due to size effect (Liu et 

al., 2013). We can exclude the presence of mineral dust as 

non-carbonaceous light absorbing material, since iron 

oxides, responsible for dust light absorption, would not be 

extracted by methanol and would affect exclusively on-line 

data, leading to a positive line intercept. The corresponding 

plot showing the water soluble BrC absorption is reported in 

Supplementary material (Fig. S5). 

Assuming that the totality of BrC is extracted by methanol, 

we calculated the MAC of BrC (MACBrC) by dividing the 

babs BrC-MeOH at each wavelength by OC concentration 

(Fig. 5). Averaged MACBrC at 370 nm for each site and over 

each season are reported in Table 2 and vary between 0.3 

and 1.2 m2 g–1.  

During summer, MACBrC was in agreement with values 

reported for urban and rural sites in summer in the United 

States (Liu et al., 2013, Zhang et al., 2013) and with MAC 

of secondary OA from anthropogenic and biogenic 

emissions (Laskin et al., 2015; Liu et al., 2016). The slightly 

higher MACBrC observed at the urban site in summer might 

confirm laboratory observations indicating that SOA from 

anthropogenic aromatic precursors absorbs light more 

efficiently than SOA from a mixture of anthropogenic and 

biogenic mixed sources, that might be more characteristic of 

rural areas (Laskin et al., 2015; Liu et al., 2016). 

In winter MACBrC was two to four times higher than summer 

values (1.2 m2 g–1). Chen and Bond (2010) measured a 

MACBrC at 370 nm for laboratory wood burning experiments 

between 1.5 and 2 m2 g–1. BrC from prescribed fires shows 

a MAC at 365 nm of 1.3 m2 g–1 (Xie et al., 2017). Finally, 

MACBrC of ambient aerosol in areas strongly impacted by 

residential wood burning emissions ranges between 1.5 and 

1.8 (Cheng et al., 2016; Shen et al., 2017). The MACBrC 

reported for this study using the offline measurements is 

comparable to the lower bound of the literature range of 

MACBrC from wood burning emissions. This result confirms 

the impact of biomass combustion as a source of BrC in the 

Po valley during the cold season. 

To verify the consistency of on-line and off-line 

measurements, Fig. 6(a) compares the campaign average 

AAE of methanol-soluble BrC with the variability range of 

the AAEBrC from aethalometer data. We calculated the 

aethalometer AAEBrC by subtracting the BC absorption from 

the total aerosol absorption at 370 nm and at 550 nm, and 

assuming AAEBC equal to 0.9 (lower and upper bounds are 

calculated with AAEBC equal to 1.1 and 0.7, respectively). 

The aethalometer absorption coefficient at 550 nm was 

extrapolated based on the measured aerosol AAE in the 

range 370–880 nm. The average AAEBrC values obtained 

from off-line and on-line measurements agree well. Over the 

four experiments AAE of methanol soluble BrC ranged 

between 2.2 and 4.4, in agreement with the lower bound of 

values reported in literature (from 2 up to 11) (Zhang et al., 

2013; Laskin et al., 2015). The AAE variability is due to the 

complexity of BrC chemical constituents, which depend on 

sources and atmospheric processes. 
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Fig. 5. Brown carbon mass absorption cross section (MACBrC) versus wavelength and date in Milan in winter (panel a), 

Milan in summer (panel b), Motta Visconti in winter (panel c), and Motta Visconti in summer (panel d). 

 

Figs. 6(b) and 6(c) investigate the AAE of methanol-

soluble BrC as a function of the EC to OC ratio. For ambient 

measurements, the EC/OC ratio is an indicator of primary 

versus secondary carbonaceous aerosol, and in winter is also 

related to the different contribution of wood burning and 

fossil fuel burning to carbonaceous aerosol loading (Sandrini 

et al., 2014). In winter (Fig. 6(b)) the AAE increased with 

the decreasing of the EC/OC ratio, reflecting the change 

between the urban to the rural sites (with rural sites having 

lower EC/OC ratio). The overall trend is consistent with 

laboratory experiments showing an increase of the AAEBrC 

associated with aging of wood burning emissions (Saleh et 

al., 2014, Xie et al., 2017, Kumar et al., 2018), suggesting that 

during the cold season the variability of AAE is controlled by 

wood burning aerosol loading and its atmospheric evolutions. 

Similarly, in summer (Fig. 6(c)) the highest AAEBrC (~4) is 

observed for the lowest EC/OC ratios (0.1), in agreement 

with a larger contribution of secondary organic aerosol. At 

the urban site, AAE displays smaller variability and lower 

values compared with the rural data. As already suggested 

by the higher MAC, urban BrC in summer was likely 

dominated by anthropogenic SOA from aromatic precursors, 

whose absorption extends over a larger region of the UV-

Vis spectra than aliphatic molecules, leading to a lower AAE 

compared to biogenic SOA (Zhang et al., 2013). The higher 

AAE and the lower MAC at the rural location in summer 

agree with a larger contribution of biogenic SOA. 

 

CONCLUSIONS 

 

We investigated the seasonal and spatial variability of BC 

and BrC absorption across the Po Valley. Ambient 

measurements of BC optical properties and a better 

quantification of BrC light absorption are necessary to 

reduce model uncertainty in describing aerosol-radiation 

interaction, and to improve model ability to predict the 

short-term and long-term effects of climate policies.  

Light absorption measurements performed during this 

study indicate that BC concentrations in the urban area are 

comparable to those observed in other southern European 

cities; conversely, rural BC concentrations are higher than 

expected indicating that BC impacts in the Po Valley are not 

limited to urban agglomerates and urban population. 

Aggressive measures should be implemented to reduce BC 

emissions from both traffic and wood combustion, as well 

as agricultural waste burning.  

BC mass absorption cross section was investigated using 

thermal-optical EC measurements. MACEC showed little 

seasonl and spatial variability, with an average value of 10.0 

m2 g–1 at 880 nm. Despite the limited dataset investigated, the 

analysis of MACEC variability suggests that the ratio 

between non-refractory PM1 and EC can be used in certain 

locations as a proxy for BC coating thickness, to describe 

BC optical properties variability. Nevertheless, such 

parameterization relies on assumptions (such as intra-

particle mixing configuration) that might limit its general 

application on short time scales, thus caution is recommended 

when this kind of approach is applied. 

Although characterized by lower absorption efficiency, 

BrC contributes together to wavelength absorption. In the Po 

Valley, BrC is directly emitted by wood combustion during 

winter, while it is found in secondary organic aerosol during 

summer. BrC extraction with methanol and water shows that 

more than 50% of light absorbing organic aerosol is water 
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Fig. 6. Panel a: comparison between campaign averages of 

AAEBrC from off-line methanol-soluble BrC measurements 

(blue circles) and the AAEBrC ranges estimated from on-line 

aethalometer measurements (gray rectangles); aethalometer-

based AAE ranges are calculated assuming AAEBC equal to 

0.7 and 1.1, while central value is calculated assuming 

AAEBC equal to 0.9 (open black circles). Panels b and c: 

dependence of methanol-soluble BrC Absorption Å ngström 

Exponent (AAEBrC) on the elemental to organic carbon ratio 

(EC/OC) during the four experiments, in winter and 

summer, respectively. 

 

insoluble. The water-insoluble fraction is likely dominated 

by aromatic organic moieties during both seasons, as 

suggested by the higher AAE of methanol soluble BrC. 

MACBrC differs significantly depending on the sources, 

with values for secondary organic aerosol (SOA) that are 

about two times lower than those for biomass combustion. The 

accurate determination of MAC for specific organic aerosol 

sources requires coupling source apportionment analysis with 

optical property measurements, but such analysis is behind 

the scope of this study.  

Ambient observations collected in this study confirm 

laboratory measurements indicating that the contribution of 

SOA to light absorption is not negligible. This has significant 

climate implications. In fact, the radiative impact of BrC, at 

wavelength larger than 400 nm, is significant over bright 

surfaces (Chen et al., 2010) such as clouds or snow. The 

mechanism of formation of BrC through atmospheric 

processing of aerosol precursors increases the probability of 

light absorbing aerosol formation in the upper part of the 

troposphere, including above clouds, potentially leading to 

a positive radiative forcing (Zhang et al., 2017). Deposition 

of BrC on snow and ice can promote their melting and 

albedo change (Zhang et al., 2019; Beres et al., 2020). In 

addition, BrC absorption at short wavelength (below 400 nm) 

reduces atmospheric actinic flux, impacting atmospheric 

photochemistry and ozone production (Mok et al., 2016). In 

conclusions, a better knowledge of SOA formation, 

microphysical, and optical properties is needed to improve 

the ability of climate models to describe the effect of short-

lived climate forcers. 
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