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Abstract. We present the design of a meta-programming system for hy-
brid AI, integrating spatial model checking and machine learning. The
proposed system architecture blends together different programming lan-
guages and execution technologies using a simplified, declarative meta-
language. The design features a global-model-checking-alike execution
model, backed up by a microservices architecture. The system is meant
to be a follow up to the spatial model checker VoxLogicA currently used
for research on declarative medical image analysis, aimed at explainable
by construction artificial intelligence.
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1 Introduction

This work stems from a simple consideration: in the age of Artificial Intelligence,
the procedures which we depend upon should be accountable, in a way that
humans can understand, study, debate, defend, and improve them.

Clearly, not all aspects of a procedure can be explainable in a formal way.
Some features of reasoning are very difficult, if not impossible, to formalise.
However, reasoning should be as transparent as possible and, in the cases where
explainable rules are present, these must be taken into account. Rules can be
used at least for three major purposes: to instruct training of the machines, for
instance, by augmenting the ground truth with the output of pre-computed rules;
to monitor the results by verifying to which extent known protocols and guide-
lines are respected, and to compose pipelines consisting of several independent
machine learning modules, in a way that makes sense, intuitively, and breaks
down a complex problem into clearly defined smaller tasks.

Such activities have been formally structured way before the introduction
of modern Artificial Intelligence. Human intelligence alone can be very efficient
at performing a variety of tasks. But measurements, indicators, and, broadly
⋆ Diego Latella has contributed to the research presented in this paper when he was

still Senior Researcher with CNR. Since Sep. 1, 2024 he has retired.

http://orcid.org/0000-0002-7087-8914
http://orcid.org/0000-0003-1292-4086
http://orcid.org/0000-0003-1314-0574
http://orcid.org/0000-0002-3257-9059
http://orcid.org/0000-0001-5089-002X


2 Belmonte et al.

speaking, technological aids, are typically used to inform human activities. This
is akin to the process of dataset augmentation: both are meant to provide artifi-
cially, mechanically derived features that are not naturally present in the input
data, in order to facilitate understanding of the structure of inputs. It is also true
that, when coordinating human activities, protocols are often formalised (think
for instance of business process modelling or clinical protocols), so that smaller
independent tasks concur to the realisation of the final objective. Finally, quality
assurance verifies the outcome of a human activity against known metrics. It is
quite reasonable to expect that similarly, also Artificial Intelligence should make
use of technological aids to augment its inputs, to break down tasks, and to
verify the quality of the results against known indicators.

In Formal Methods, planning, monitoring, and measuring, are frequently per-
formed using declarative programming paradigms, employing concise, unambigu-
ous, mathematically specified languages such as modal logics or process calculi.
In particular, model checking enables fully automated verification of properties
specified using modal logics.

In this work, we maintain that deep learning training and prediction can,
and should, be hybridised with declarative programming and model checking, in
order to achieve the three stated goals of declarative data augmentation, declar-
ative monitoring of machine learning predictions, and declarative composition of
machine learning models.

The obtained methodology is explainable by construction, and it makes use of
declarative programming as much as possible, even if it does not strictly require
interpretability of all components of a pipeline, staying open towards state-of-
the-art models that do not (yet?) possess this feature, but can be incorporated
in a hybrid specification to monitor and assess the quality of their results.

Image analysis provides a near-to-perfect setting for experimentation in this
research line, as in this application domain, classical declarative programming
paradigms, and black-box approaches, can happily coexist. On the one hand,
many features of an image (think e.g. of: “lesions in a magnetic resonance scan
of a human brain”) are very well recognised using machine learning. For the
purpose of our work, such type of tasks could be handled by a fully automated
pipeline such as nnU-Net [29,30], which does not require manual tuning of hyper-
parameters in the training phase, and is widely recognised as the state-of-the-
art for medical image segmentation. On the other hand, there are purely formal
aspects of an image that cannot be specified using nnU-Net alone, without spe-
cialising the training process, and creating additional ground truth which is not
available. For instance, consider the task of identifying, in a large dataset of
photos of human faces, images with a specified “defect”, such as those show-
ing only one eye, or people wearing glasses, or with / without hair, and so on.
The formulation of such problems combine black-box concepts (such as “eye”
or “glasses”) and declarative specification (the number of eyes, the presence or
absence of a feature, the colour of hair, etc.).

So how are we going to implement a system that permits arbitrary combi-
nations of training, prediction, and declarative rules? In recent work, starting
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from [17] and the extended version [18], together with several coauthors, we in-
vestigated a novel variant of the model checking problem moving from checking
temporal logic properties to spatial logic properties (and, in fact, also to the
combination of reasoning on time and space in spatio-temporal model check-
ing [15,20,16,21]). The proposed spatial logic for image analysis, SLCS, encom-
passes several domain oriented operators to accommodate the level of abstract
spatial reasoning by domain experts [7,2,5]. The combination of basic logical
operators, spatial operators and domain oriented operators provides powerful
building blocks to develop concise, human readable and explainable image seg-
mentation methods. In the spatial model checker VoxLogicA (see [19]), efficient
execution is backed by the implementation of most logical primitives via state-
of-the-art imaging libraries, and more recently, by using the GPU [11].

In this work, we propose the design of a novel system devoted to Hybrid Ar-
tificial Intelligence (HAI) for image analysis, encompassing the technology which
lies at the grounds of VoxLogicA3, merging it with two new language primitives
that correspond to training and prediction of a black-box segmentation module,
implemented using nnU-Net.

Such design is prominently based on a microservices architecture [23]. This
choice is driven by the necessity of decoupling very different run-time architec-
tures (for instance, the training and prediction modules that are implemented
in python, and the on-GPU primitives, whose natural implementation language
is C++), but also since independent deployment paves the way to a privacy-first
and local-first approach, where datasets are “as open as possible and as closed
as necessary” and therefore, modules that have access to full datasets, such as
the training nodes, ought to be placed close to the data, which should not be
transferred to sites which are only elaborating anonymised results and statistics.

We emphasize that, to the best of our knowledge, current image analysis
systems are not based upon declarative programming, but rather on classical
programming paradigms. On the one hand, traditional programming (e.g., using
the python programming language), is a difficult skill to master. In contrast, the
approach we propose is aimed at simple specifications that are easy to interpret,
share, maintain and improve. On the other hand, just like in many other fields of
Computer Science (consider e.g. relational database systems or query languages
for semi-structured data), a declarative approach is amenable to fully automated
optimization (e.g. parallel execution) and is therefore amenable of performance
improvements that are difficult or impossible to obtain in more classical ways.

We envision that such fully-automated hybrid AI paradigm will be used to
perform, among other tasks, image segmentation, ground truth augmentation,
monitoring, and quality assurance, and will enhance accountability. This will be
achieved by providing users with a form of explainability of the results which is
“permissive”, in that it does not force an impossible-to-grasp intuition on the
inner working of non-rule-based features, but on the other hand, it permits to
coordinate such features in unambiguous, human readable, automatically exe-

3 In particular, the model checking core featuring memoization and parallel execution
of imaging primitives, and the GPU-accelerated implementation of some of them.
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cutable specification language which can be as transparent as the whole process
can be.

Related work. In [17,18] the Spatial Logic for Closure Spaces (SLCS), and re-
lated efficient model checking algorithms, have been proposed that use closure
spaces [24,25,34,26], a generalisation of topological spaces, as the underlying
model. In [16] a temporal extension of spatial model checking was introduced,
combining Computation Tree Logic with the spatial operators of SLCS. Spatio-
temporal model checking has recently been applied in a variety of domains, rang-
ing from Collective Adaptive Systems and the Internet-of-Things [15,20,21,38,37]
to signals [32]. Spatial model checking has been used for the analysis of medical
images [2,3,4,6,7].

In [2] a first feasibility study of the application of spatial model checking
on the segmentation of brain lesions is described. That study has been per-
formed with a predecessor of VoxLogicA for SLCS, namely the general purpose
spatio-temporal model checker topochecker. The analysis concerned several 2D
and 3D MR images of patients with high-grade glioma, a serious form of brain
cancer. In [7] the work on spatial model-checking has been taken further with
the development of the domain specific, and much more efficient, spatial model
checker VoxLogicA and its application on the BraTS 2017 dataset [36], a dataset
for brain tumour segmentation challenges. The obtained results are in line with
best-in-class machine learning methods, and human manual segmentation. In [6]
a feasibility study of the segmentation of tissues present in the normal brain was
undertaken, restricted to the analysis of the first 2 of the 20 patients provided
by the BrainWeb dataset4.

2 Background

Spatial Logic is a classical branch of Modal Logic [1] and at the same time,
has been a leading research topic in AI and Robotics [22]. Spatial model check-
ing [17,18,2,7], instead, is a novel variant of model checking in which local image
features (intensity, colour, texture) and spatial/topological characteristics (rela-
tive distance, contact, connectedness), expressed as formulas of a spatial logic,
can be checked automatically for a spatial model. Typical spatial models may be
represented as graphs. Digital images can be seen as particular forms of regular
graphs, or grids, where each node in the graph represents a pixel or voxel. Pixels
or voxels can have particular features (e.g. their luminosity or intensity or their
colour). These basic features can be used in the logical properties.

Essentially, a spatial model checker takes as input a digital image and a logic
property (for example, a query involving some aspects of the pixels, such as their
intensity, and aspects of those in their direct neighbourhood), and it gives as an
output a resulting image where all the pixels of the input image that satisfy the
property are shown in a user-specified way, e.g. in a certain colour. The resulting
4 See http://www.bic.mni.mcgill.ca/brainweb/.

http://www.bic.mni.mcgill.ca/brainweb/ 
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images are meant to be visualised as (semi-transparent) coloured layers on top
of the original images.

The recently developed spatial model checker VoxLogicA5 together with its
specification language ImgQL (“image query language”), a customisation of
SLCS for medical images, has been optimised for operating on such images,
e.g. MRI or Computer Tomography (CT) scans (see [19] for a tutorial). Com-
mon similarity indexes, such as Dice-Sorensen, can be directly defined and used
in ImgQL; both the resulting layers and the indexes of interest can be saved on
the local file system where the user runs the analysis (see e.g. Alg. 1 lines 16-17).

Algorithm 1: ImgQL specification of a tumour segmentation method.

1 // Normalisation through percentiles
2 let pflair = percentiles (flair ,brain ,0)
3 // High and low thresholds
4 let hI = pflair >. 0.95
5 let vI = pflair >. 0.86
6 // Remove noise (holes) in hI and vI
7 let hyperIntense = flt (5.0 , hI)
8 let veryIntense = flt (2.0 , vI)
9

10 // Region growing procedure
11 let growTum = grow( hyperIntense , veryIntense )
12 // Statistical texture similarity
13 let tumSim = similarFLAIRTo ( growTum )
14 let tumStatCC = smoothen (2.0 , tumSim >. 0.6)
15 // Final tumour segmentation
16 let gtv = grow(growTum , tumStatCC )
17 save "gtv.nii.gz" gtv
18 print "00 _dice_gtv " diceM(gtv)

Figure 1 shows some of the intermediate phases of the procedure presented
in Algorithm 1. The obtained results are well in line with the state of the art in
segmentation of high-grade brain tumours (glioma), both in terms of accuracy of
the segmentation and in terms of computational efficiency, reaching on average
an 85% coincidence between the gold standard and the segmentation procedure
shown in Figure 1, for the gross tumour volume (and 91% on average for the
clinical tumour volume) [7]. Note that these results have been reached using the
same ImgQL specification on all the relevant cases in the BraTS 2017 dataset
(193 cases in total). This was partially made possible also due to the simple,
but effective, normalisation procedure using percentiles, shown in the first lines
of the ImgQL specification. Moreover, the method supports explainability, easy
replicability and exchange of analysis methods between professionals.
5 VoxLogicA is available at https://github.com/vincenzoml/VoxLogicA

https://github.com/vincenzoml/VoxLogicA
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MRI scan (flair) hI (line 4)

vI (line 5) gtv (line 16) & GT

Fig. 1. Resulting example segmentation of a slice of the axial plane of the 3D image
Brats17_2013_7_1: Overlays hI (hyper intense voxels), vI (very intense voxels) and
gtv (gross tumour volume, in pink) and ground truth (GT) (in blue).

The segmentation procedure is concise, explainable and user-centric because
its high-level steps fit the abstraction level at which clinicians are assessing an
image. One of the phases in the method is based on the region-growing tech-
nique [27]. This is a well-established segmentation technique that is still further
improved and refined (see for instance [28]).

3 A Microservice Architecture for Hybrid AI

The Microservices architecture [23] is an architectural pattern where large ap-
plications are not implemented in a monolithic way, but rather as collections of
isolated services. This choice aims at good performance, resilience and scalability
properties. The distinguishing features of a microservice architecture are:

– each service is developed, deployed and maintained independently;
– services are loosely coupled, that is, changes to one service do not propagate,

or impose minimal changes, to the others;
– services communicate via lightweight protocols.

3.1 Microservices: Motivations

The current stable version of VoxLogicA is a monolithic application. It entirely
runs on CPU, exploiting memoization and parallel execution on CPU cores, and
relies on the state-of-the-art imaging library SimpleITK [39]. The core model
checking code is written in F#. The application basically provides a single service,
which is a global model checker for the language ImgQL, that is, the spatial
logic SLCS enriched with imaging primitives, thresholds, texture analysis, and
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other non-logical operators. Such a core is extensible, and therefore the parallel,
memoizing engine has been reused in the experimental on-GPU variant of [11]
and in the model checker for polyhedral structures (in particular, 3D meshes)
of [8]. The lesson learned, especially from the on-GPU implementation, is that
a monolithic architecture is not extensible enough to accommodate the needs of
efficient, fully automated, declarative analysis.

To understand the issues we encountered, just a little bit of technical detail
will suffice. For instance, the implementation of CPU and GPU primitives in
[11] are tightly coupled, and ultimately, in order to implement garbage collection
of GPU memory, and reuse a memory block in a subsequent operation, it is
required to call a lock primitive on the central data-structure of the on-GPU
implementation, and a wait instruction on the GPU in the critical section, at
the same time, which is both a performance bottleneck and a source of subtle
bugs which are very difficult to analyse.

In the design we propose, VoxLogicA becomes a collection of services, com-
municating via unix sockets or HTTP using a simple json [9] description of
the portion of the computation that has to be executed on the specific service.
Indeed, such an architecture cannot be as efficient as the monolithic core, which
communicates over shared memory in different threads of the same system pro-
cess, when operating on a single image, since the communication costs dominate
the processing. However, most of the applications of VoxLogicA operate on a
dataset consisting of hundreds or thousands of images, which are processed inde-
pendently (e.g. for segmentation purposes) or anyway in a pipeline (for instance
to analyse a video, frame by frame, as done in [12]). In that case, each service,
when executing a logical primitive, can operate on streams of data, with size pro-
portional to that of the dataset. Such streams are either the dataset itself, or the
result of previous primitives which in turn operate on the full dataset. In other
words, services are expected to operate on whole datasets and not single items
(possibly processing them in chunks due to limited computational resources).
This feature is intended to be combined with a per-site caching strategy, ensur-
ing minimization of data transfers. In this setting, the overhead due to the use of
inter-process or inter-machine communication is expected to be negligible, with
respect to the time needed to process the payload.

3.2 System design

In this section we discuss the proposed system design (see Figure 2). The public
interface of the system is represented by the controller. The controller takes
as an input a declarative specification of an image analysis procedure, which
also references a dataset of images to be analysed. The model checking engine of
the controller transforms the specification into a directed acyclic graph (DAG)
of tasks and dependencies (just like it is currently done in VoxLogicA). The
controller is also responsible for splitting the DAG into separated, connected
fragments, according to the service(s) that provide the primitives present in
each component. If certain logical primitives are implemented by more than one
service, the splitting phase can be informed by non-functional properties such



8 Belmonte et al.

as availability, efficiency, computation cost, and last but not least, privacy and
intellectual property matters that may require sensitive primitives (for instance,
training) to be executed in the same sites where the data resides. Each fragment
is then sent to one of the services, according to the plan. Each service is thus
enabled to prepare a computation pipeline for each fragment, which can be
reused to process each element of the input data (be it the dataset itself, or the
result of other language primitives).

As shown in Figure 2, intermediate results are not sent directly to other ser-
vices, but rather to a data manager, that takes care to store them in a shared
database. The data manager is responsible for monitoring data protection poli-
cies (also coming from IP and privacy agreements and regulations), and for
returning final results to the controller. By using a data manager, the failure of
an arbitrary number of services, or runtime errors in the execution of a language
primitive, still allow intermediate results, that are independent from the failure,
to be computed and returned to the user.

Some further discussion is due on the data storage service. The implementa-
tion is intended to be local-first [31], that is, the system should run on locally
stored data independently from availability of the data in a wider network or
in cloud storage, but in a way that is open to such possibility and can even-
tually take advantage of it. This is in order to comply with regulations that
may even forbid a computing machine to be connected to the internet, if such
a machine operates on clinical data, and at the same time, to permit collabora-
tive development among different, federates sites, when this is possible. Indeed,
such design aims at a privacy by design [13] and privacy by default6 approach,
where implementation of our system is directly responsible for making sure that
language primitives that may be harmful to the privacy of individuals can only
be executed according to regulations. In the first version of the proposed design,
such analysis is implemented at system deployment time. Each microservice is
replicated and deployed to different locations, both to exploit, for example, mul-
tiple cores or multiple GPUs to perform several operations in parallel, and for
privacy and IP concerns. In fact, data transfer from a location to another must
be authorised by the data manager, which is responsible for guaranteeing the
privacy-by-default approach at run-time. Investigation on static analysis of the
specification language, to provide guarantees directly from the controller and
signal inconsistencies and violations at compile-time are left for future work.

3.3 Four Fundamental Services

The architecture we propose is meant to be extensible, so that adding a new set
of language primitives is just a matter of implementing the primitives themselves
inside a microservice, in a programming language of choice, and registering the
provided operation names, arity and types within the system so that user re-
quests involving the new primitives can be fulfilled. Therefore, we envisage that,
6 See EuropeanUnion.(2016)."GeneralDataProtectionRegulation(GDPR)

-Regulation(EU)2016/679."OfficialJournaloftheEuropeanUnion.

European Union. (2016). "General Data Protection Regulation (GDPR) - Regulation (EU) 2016/679." Official Journal of the European Union.
European Union. (2016). "General Data Protection Regulation (GDPR) - Regulation (EU) 2016/679." Official Journal of the European Union.
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Fig. 2. The microservices architecture of VoxLogicA. In this example instance, there
are 4 services (“predict”, “training”, “CPU imaging”, and “GPU imaging”), that im-
plement language primitives; indeed, there could be more. The controller is the public
interface of VoxLogicA, and takes care of splitting operations and distribute them over
different services. The data manager takes care of storing intermediate and final results,
and returning them to the user. The data store is intended to be privacy-aware and
local-first. Note that this diagram intentionally does not illustrate the spatial distribu-
tion and replication of services, that are needed both to accommodate boundaries due
to privacy and IPR regulations, and to guarantee availability.

alongside deployment of the system, a plethora of services dedicated to differ-
ent activities could be deployed. Think, for example, of data-gathering services
connected to a PACS (“Picture Archiving and Communication System”) [14],
or of generative-AI primitives that can create artificial ground truth, for exam-
ple by fine-tuning and invoking diffusion models [35]. However, four services are
already quite prominent in the envisaged architecture, and can be described in
more detail already in this work.

The training service. The training service is implemented in Python, as this
is by far the most used language for machine learning, and the one in which
nnU-Net is implemented. The training service is separated from prediction, be-
cause they share different features. Training primitives are long-running, as an
invocation can last several days. Therefore, training requires batch execution,
and saves intermediate data to disk to avoid restarting from scratch in case of
failure. Furthermore, by its own nature, training must access entire datasets,
therefore in a privacy-by-default scenario, it is preferably run in the same site
where the training data resides. Indeed, since dataset augmentation by means
of logical specifications is one of our stated goals, the need to move the training
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service close to the data also implies that logic-based modules must be replicated
to such sites. The output of training are the weights of a deep-learning based
module.

The predict service. The predict service is also implemented in Python, for
basically the same reasons as the training service. Prediction is a slow proce-
dure, but still online/interactive. This service needs to use the weights of the
chosen network, which usually come from a training primitive. Predict alone can
be quite precise, but for accountability reasons, we advocate combining predict
with logic-based monitoring.

The on-GPU primitives service. The on-GPU primitives encompasses logical
operators as described in [11], and some imaging functionalities that can be easily
parallelised (e.g. thresholding). The service is designed to be very fast (usually
real-time). The on-GPU analysis includes a limited set of primitives, designed to
exploit massive parallelisation on GPU, and it is particularly effective on large
datasets, where the cost of setting up a computing pipeline and loading data does
not dominate the computation time. This service is implemented using low-level
data-parallel programming languages inspired by C7.

The on-CPU primitives service. On-CPU primitives are slower than those run-
ning on GPU, but the range of available operators is much wider, and it includes
the use of large state-of-the-art imaging libraries such as SimpleITK, and the
possibility of using statistical methods e.g. for texture analysis (see [2]). Also the
choice of implementation languages is much less constrained.

By implementing these four services, we envisage the possibility of build-
ing efficient, scalable hybrid-AI pipelines that exploit the available computing
resources to their best. In the next section we will discuss an example of this
kind.

4 Example

In Algorithm 2, we show the specification of an example application scenario,
which can be considered an extension of [7] in the direction of hybrid AI (see
Algorithm 1 in Section 2). The specification uses the syntax of VoxLogicA, but it
also assumes that the input to imaging and logical primitives is a whole dataset,
not a single image.

The idea is that, instead of just using thresholds, two neural networks are
used to learn the concepts of oedema and tumour, separately, also exploiting
data augmentation, and then combined using logics as before. The results are
then compared to the standard method that just learns the gross tumour volume
(the combination of tumour and oedema) in a single training step, without data
augmentation.
7 Such as OpenCL (see https://www.khronos.org/opencl/) and CUDA (see https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html).

https://www.khronos.org/opencl/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Algorithm 2: Brain tumour segmentation using hybrid-AI primitives.

1 // data augmentation
2 let augment (dataset , thresholdValue ) =
3 merge (dataset , threshold ( thresholdValue , dataset ))
4 let tumourCoreDatasetAugmented =
5 augment ( tumourCoreTrainingDataset , tumourThreshold )
6 let oedemaDatasetAugmented =
7 augment ( oedemaTrainingDataset , oedemaThreshold )
8
9 // training

10 let tumourCoreModel = train ( tumourCoreDatasetAugmented )
11 let oedemaModel = train ( oedemaDatasetAugmented )
12 let nnGtvModel = train ( originalTrainingDataset )
13
14 // prediction
15 let inputTumourAugmented =
16 augment ( inputDataset , tumourThreshold )
17 let inputOedemaAugmented =
18 augment ( inputDataset , oedemaThreshold )
19 let mlTumourCore =
20 predict ( tumourCoreModel , inputTumourAugmented )
21 let mlOedema =
22 predict ( oedemaModel , inputOedemaAugmented )
23 let nnGtv = predict (nnGtvModel , inputDataset )
24
25 // Logic -based pipeline , results and comparison
26 let oedema = touch (mlOedema , mlTumourCore )
27 let gtv = union( mlTumourCore , oedema )
28 let overlap = diceScore (gtv ,nnGtv)

Dataset augmentation and training are performed in lines 1-12. The “aug-
ment” function is defined in lines 1-2, in order to enrich the dataset with addi-
tional input for each case8 (the merge function is meant to take two datasets of
the same length, and merge them case by case). The original dataset includes
the ground truth relative to the tumour and oedema, respectively. The augmen-
tation is run twice, with two different thresholds for each of the two training
processes. Note that the images provided for augmentation purposes correspond
to hyperIntense and veryIntense of Algorithm 1, except that, for simplic-
ity, we have omitted the filtering step, which can as well be added if needed.
Augmenting the dataset aims at conditioning the training process so that the
8 Frequently, dataset augmentation is aimed at adding cases to the dataset (e.g., ro-

tations, rescaling, deformations of existing data points). This can certainly be done
with the envisaged architecture, but in this particular example, instead, the dataset
is augmented to add derived information to each case. It is noteworty that nnU-Net
can be trained on an arbitrary number of input images per case in a multimodal way.
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concept of “hyperIntense” and “veryIntense” are used in predictions based on
the model (also the predict primitive will need augmented inputs). Note that
this process does not force the output of prediction to be exactly the hyper-
intense or veryintense areas of Algorithm 1, but rather, the details are left to
the machine learning core. Also note that three models are trained, two using
dataset augmentation (tumourCoreModel and oedemaModel) and one just using
the original dataset to learn the gross tumour volume (nnGtvModel).

After training, using the resulting model weights, the predict primitive is
employed in lines 15-23. Then, the tumour and oedema as predicted by the neural
networks are combined using the touch primitive as in Algorithm 1 (done in line
26). The gross tumour volume is then computed in line 27 as the union of tumour
and oedema, and compared with the gross tumour volume as obtained directly
from the neural network, by calculating the Dice-Sorensen index of the two
images, in line 28. The results in nnGTV, gtv, and the numeric value of overlap
are intended to be returned to the user.

In Figure 3, a DAG is shown, corresponding to the specification of Algo-
rithm 2. The DAG has actually been generated using a freshly implemented
prototype of the controller depicted in Figure 2, although colours representing
the service to which each task is assigned, and the output nodes, have been
manually inserted for clarity. Note that the DAG is actually a semantic inter-
pretation of the specification. For instance, let bindings and in particular the
function augment are completely eliminated by the compiler.

5 Discussion

We have presented the design of a first-of-its kind instrument for fully automated
image analysis based on a hybrid-AI approach, where topology-based spatial-
logical primitives coexist with machine-learning based training and prediction.

Indeed, a similar approach could be pursued by programming directly in
a traditional programming language such as python. However, our proposal is
that of a meta-language, whose execution semantics is distributed across several
different microservices. The aim is to empower domain experts who are not
programmers, to use the heterogeneous landscape of Artificial-Intelligence-based
tools and methods available for Image Analysis. Furthermore, fully automated
parallelization and the GPU-based acceleration are points in favour of adopting
a more high-level approach, with respect to manual programming of such hard
and error-prone tasks.

Validation of the proposed methodology will be based on the current brain-
imaging related case studies, and on further case studies such as identification
of lung diseases.

In future work, also Human-Computer interaction issues should be tackled.
In [10] a study has been conducted on the design of a graphical user interface
(GUI) prototype that supports the analysis procedure using VoxLogicA with
minimal impact on the focus and the memory load of domain experts. Such
work should be complemented to provide to the user also an overview of the
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Fig. 3. Directed acyclic graph obtained from Algorithm 2 using a prototype imple-
mentation of the new tool. Cyan nodes run on the GPU service, orange nodes on the
train service, pink nodes on the predict service and green nodes on the CPU service.
White nodes represent inputs and outputs.

data distribution across the services, in order to gather a visual feedback about
IP and privacy-related errors.
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The scope of this work shares motivations with the approach of Intersym-
bolic Artificial Intelligence proposed by A. Platzer in [33]. Therein, a combined
symbolic / subsymbolic approach is advocated to encompass both logic-based,
exact reasoning and approximate, training-based analysis, by combining build-
ing blocks of symbolic programs and subsymbolic algorithms / networks. Indeed,
the declarative language of the tool we propose is based on a very similar idea,
pairing logical primitives with training and prediction based on subsymbolic
methods, and could also be considered an intersymbolic programming language.

Summing up, we envisage that a tool for hybrid-AI based imaging may be a
valuable addition for the research community, with its unique added-value to be
able to encode domain expertise in logic-based form, for the analysis of small and
large datasets, and that future research in this line will lead to a fully-distributed,
privacy-by-default toolchain.
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