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Abstract Long term sleep quality assessment is essential to diagnose sleep disorders
and to continuously monitor the health status. However, traditional polysomnogra-
phy techniques are not suitable for long—term monitoring, whereas, methods able
to continuously monitor the sleep pattern in an unobtrusive way are needed. In this
paper, we present a general purpose sleep monitoring system that can be used for the
pressure ulcer risk assessment, to monitor bed exits, and to observe the influence of
medication on the sleep behaviour. Moreover, we compare several supervised learn-
ing algorithms in order to determine the most suitable in this context. Experimental
results obtained by comparing the selected supervised algorithms show that we can
accurately infer sleep duration, sleep positions, and routines with a completely un-
obtrusive approach.

1 Introduction

Recently, sleep assessment and evaluation has gained considerable attention and
prominence among sleep—related researchers and clinicians [1]. The goal of obtain-
ing sleep data on large—scale studies is a challenging task and has witnessed an
increasing interest over the last few years [2]. These studies demonstrate that it is
possible to identify sleep disorders by means of a fine—grained sleep history log,
including timing and regularity of bed time, onset of sleep, night time awakenings,
time of waking up in the morning, day time naps, and day time sleepiness [3].

Sleep disorders can be categorized into two broad groups: primary and sec-
ondary sleep disorders. Primary sleep disorders include: Sleep Disordered Breathing
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(SDB), REM sleep Behaviour Disorder (RBD), Restless Leg Syndrome (RLS), and
Periodic Limb Movement in Sleep (PLMS). Secondary sleep disorders are due to
diseases with chronic pain and discomfort, frequent micturition during night, dysp-
noea and / or medications interfering with sleep [4]. Psychiatric disorders also have
a close link with insomnia. It is also known that elderly subjects with persistent
insomnia are at a greater risk for the development of depression [5]. Furthermore,
changes in the user’s life—style due to retirement, bereavement, reduced social inter-
actions, or environmental changes, such as moving into a new house or to a elderly
home placement, can result in a change in the sleep patterns [6].

The above mentioned clinician challenges can be faced adopting emerging ICT
solutions. In fact, “Humans and ICT interaction”, as shown in [7, 8], can lead to
important goals, such as to understand how cognitive processes can evolve with ar-
tificial devices. Finally, this knowledge can be useful for extending human brain
capabilities through such devices and for studying the interaction with the capabili-
ties of any artificial cognitive system.

In this paper, we propose a system able to capture the movement of the patient, as
well as the bed posture, in an unobtrusive way. The proposed system is composed by
a grid of forty—eight Force Sensing Resistor (FSR) sensor nodes, placed on the slats
of the bed. This grid is physically connected to a single—board computer, which is
able to send the collected data, using a middleware layer, to a main server. It is worth
noting that this solution is able to overcome the weakness of classic actigraphy—
based systems, using an actimetry sensor usually embedded in a wrist—-watch—like
package and worn on the wrist by the user, since it is extremely easier to deploy and
it is based on inexpensive technology. With respect to actigraphy—based systems, the
proposed system is also able to detect the bed posture, that is crucial to support pres-
sure ulcer prevention (i.e. bedsores). In particular, elderly people are often unable to
make the desirable bodily movements and repositioning, that are critical for blood
circulation and relieving of prolonged pressure over the body. This critical condi-
tion, namely bedsores [9], commonly occurs among elderly persons due to the lack
of desirable nursing care and immediate attention. Therefore, a continuous obser-
vation of the patients is necessary in order to prevent the above mentioned adverse
effects. Position recognition for elderly people can support pressure ulcer preven-
tion in two ways. Firstly, self-movements can be monitored in order to support risk
assessment, which may be useful to make prognostications for bedsores. Secondly,
it can help the caregiver to decide the care program for the elderly patients since,
choosing the right frequency for the posture changes, and assessing the need of the
care accurately, decreases the burden of the caregiver in preventing bedsores [10].
This work analyses several machine learning techniques and their potentialities in
inferring users’ sleep positions, without an a priori model of the user (e.g., vital and
physiological parameters).

The rest of the paper is organized as follows. Section 2 presents the state of the
art on long—term sleep monitoring systems. In Section 3, the proposed monitoring
system is illustrated. Section 4 describes the methodology adopted to recognize the
bed postures, while Section 5 presents the experimental results obtained by testing
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the proposed solution with different classification algorithms. Finally, in Section 6,
we discuss the results and draw some conclusions.

2 Related Work

In 1995, the Standards of Practice Committee of the American Sleep Disorders As-
sociation (ASDA) commissioned a task force to evaluate the role of actigraphy in
sleep medicine. The term actigraphy refers to methods using wristband—like devices
to monitor and collect data generated by movements. Some devices exploit a piezo—
electric mechanism to detect movements, along two or three axes, and to digitally
count the accumulated movements across pre—designed epoch intervals (e.g. 1 min),
storing them in an internal memory.

ASDA’s effort on actigraphy led to a review paper on the topic [11] and a set of
guidelines [12]. The acknowledge for actigraphy as a valid tool by ASDA was an im-
portant landmark in its acceptance by sleep—related researchers and clinicians. The
use of actigraphy is continuously rising in sleep research and medicine, as demon-
strated by the increasing number of publications over the years [13].

Despite the main strength of actigraphy lies in the ability of monitoring sleep be-
haviour and inferring sleepwake patterns over long periods of time at home, actig-
raphy also has several weaknesses. In [14], the authors report that up to 28% of
weekly recordings of children and adolescents were insufficient for the sleep anal-
ysis. The main reasons for data loss included patient non—compliance to the pre—
defined protocol (inability to complete the diary or log and misplacement of the
wearable actigraph device), illness, and technical problems. Indeed, detailed patient
logs are essential for accurate scoring of records. Showers (with the actigraph off),
just before bedtime or after risetime, can be easily confused with sleep activity.
Conversely, activity of co—sleeping of bed partners or sleep during car rides may be
scored as waking. For these reasons, the log should contain information about bed-
times, risetimes, times when the actigraph is not worn, and times of external motion
or unusual events. When the actigraph data are retrieved, patients should be queried
about moments when the log and the actigraph records are incoherent. Moreover,
children and adolescents are remarkably capable of bending metal parts, dislodging
event buttons and otherwise damaging the instruments. Data loss may also occur
when curious wearers of any age remove the battery cover to see what’s inside.
Finally, instruments may lose calibration and fail in many other ways. Unlike lab-
oratory studies, where technical problems and artefacts are recognized quickly and
either resolved or thoroughly documented, problems occurring over long periods of
home recording often lead to a complete loss of data.

In [9, 15], the use of wearable general purpose sensor technologies to monitor the
bed posture of patients is proposed. In [16], an unobtrusive system able to infer the
bed posture and the breathing signal is presented. The system is based on an expen-
sive technology which employs a sensor, called Kinotex, that was developed by the
Canadian Space Agency for tactile robotic sensing. Finally, in [17], an inexpensive
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system based on placing above the mattress a capacity textile sensing technology
is described. However, the authors noticed problems on the reproducibility of the
experiments, due to the movement of the textile system, which necessitates a new
calibration phase each time.

Vice versa, the proposed system is able to merge the inexpensive feature of [16]
and the unobtrusive feature of [17], just placing, under the mattress, several force
sensor resistors (FSRs), able to report the force pressure generated by the patient
over the mattress.

3 The Sleep Monitoring System

In this section, we describe the developed platform in terms of needed hardware
and software artefacts. The proposed system has been designed in order to provide
an effective solution both from a cost and deployment point of view. It allows to
unobtrusively provide data to the application layer and to be easily integrated in
different pervasive computing scenarios, exploiting the presence of an open source
middleware infrastructure.

3.1 Hardware components

DAVIDE The proposed hardware system is based on the widespread Raspberry Pi
(Figure 1.a) single—board computer, equipped with a 700 Mhz ARMv6 processor,
512MB of RAM and several I/O peripherals. The board is running Raspbian OS, a
platform—optimized Linux distribution. On the top of the board, additional shields
can be mounted through the 26—pin expansion header. The sensors used to collect

(@) (b)

Fig. 1: The Raspberry Pi board (a) and the used ADC shield with a Force Sensing
Resistor (b).
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the bed pressure distribution are called Force Sensing Resistors (FSRs) and con-
sist of a conductive polymer which changes its resistance proportionally with the
force applied on the sensor surface. These sensors have a very low profile (less than
0.5mm), low cost and good shock resistance. In order to acquire and manipulate the
weight pressure values, it is necessary to convert the analog resistance, seen as a
voltage drop between the pressure sensor and a partition resistor, to a digital format.
For this reason, we used several ADC shields (Figure 1.b), mounted on the top of
the Raspberry Pi, to convert the raw voltage value coming from the sensors. Each
of the ADC shield mounts a pair of Microchip MCP3424 Analog—to—Digital con-
verters. The MCP3424 device features 18-bit, four channels delta—sigma ADC with
differential inputs, self calibration of internal offset and gain on each conversion.
It also mounts an on-board programmable gain amplifier (1x, 2x, 4x and 8x), to
amplify the signal before its conversion. Each shield is therefore able to sample 8
channels (sensors). The I2C bus is used to communicate with the ADCs and their
address is set by placing proper jumpers on the shields. A maximum of 4 shields can
be stacked on the same Raspberry Pi board, limiting to 32 the maximum number of
deployable pressure sensors.

3.2 Software architecture

DAVIDE The proposed hardware and software architecture, composing the data
sensing and processing system, aims at providing high flexibility and scalability.
From the software point of view, a middleware layer able to dispatch data among
generic entities, called services, has been used. This interoperability layer allows
the components, which are realized either as hardware devices and software mod-
ules, to interoperate seamlessly with each other by using a shared representation and
communication model [18].

Home

Gateway Internet backend

Sensor Data

Collection
Application

TLSSSLV3

contextBus

Fig. 2: The middleware architecture.
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The concrete middleware architecture (Figure 2) consists of two layers: a core
middleware API layer and a communication layer, that includes a publish/subscribe
connector. A generic service built upon the middleware can discover both the sen-
sors present in the environment and the other services, together with their function-
alities, using methods from the middleware API layer. The underlying layer fulfils
these requests exploiting the available connectors. In the communication layer, an
MQTT connector is present. By means of these connectors, the middleware realizes,
transparently to the services, a publish/subscribe pattern and a method description
and invocation mechanism. Two buses form the heart of the proposed middleware:
a context bus and a service bus. All communications between applications can hap-
pen in a round—about way via one of them, even if physically the applications are
located on the same hardware node. Each of the buses handles a specific type of mes-
sage/request and is realized by different kinds of topics. The aim of the middleware
is to provide a publish/subscribe mechanism for accessing the context information
about the physical environment. This information will be exposed as different top-
ics: topics for device discovery and description and services that form the service
bus; topics for publishing and retrieving data from devices and services that form
the context bus. The middleware is in charge of presenting the available sensors and
services in the system, implementing the announce mechanism on the service bus.

4 The Proposed Solution

The goal of this work is to provide a sleep monitoring system able to recognize the
sleeping stages and to infer the patient’s position in the bed. The proposed solution
is based on an unobtrusive system, completely transparent to the user. Indeed, we
suppose that the patient does not wear any wireless device able to monitor and to
communicate data with a medical server.

From a technological point of view, the proposed system is composed by a grid
of forty—eight Force Sensing Resistor (FSR) sensor nodes placed on the slats of the
bed as shown in Figure 3. This virtual grid does not cover the entire area of the bed
but, instead, it is placed at the level of the patient’s chest, back, and knees.

From an algorithmic point of view, the proposed solution is based on the ob-
servation that, when a movement occurs, the pressure values change in amplitude,
whereas, when the patient maintains the same position, the values of the FSRs are
almost constant. The algorithm consists in two different tasks: first, the different
sleep stages (begin, end, movement, limited muscle activity) are detected; then, the
sleep position (supine, prone, right lateral, left lateral), corresponding to each stage,
is recognized.
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Fig. 3: Experimental setup: A grid of Force Sensing Resistor (FSR) sensor nodes
placed on the slats.

4.1 Stage detection

In order to better explain how we defined the stage detection algorithm, Figure 4
shows a typical behaviour of six different FSR time series, together with the ground—
truth of the sleep stages, that have been collected by a video camera inside the room.
When the user get in the bed, the status of the pressed sensors drastically changes
and it stabilizes at a new high pressure value, whereas, when the user changes his/her
position in the bed, after a period of time, the pressure value stabilize at the origi-
nal value. Summing all the pressure values, of every FSR sensor, can lead to false
positives and false negatives, as shown in Figure 5.

In order to overcome this issue, a stage detection algorithm must take into ac-
count only the variation of the most stressed FSR sensors. Based on Figure 5, only
if the red zone changes, the algorithm must detect a movement. Moreover, the algo-
rithm can consider as movements also external events (for example someone who
makes the bed), therefore the presence of a detection filter is needed to avoid possi-
ble misclassifications.

Relying on these considerations we propose the stage detection algorithm de-
scribed in the following:

1. For each FSR pressure value p;, where j € N (being N the set of the installed

FSRs), if Zy:1 pﬁ.w) > v, where 7 is the average pressure, the presence of the
patient is ascertained.
2. Only when the patient is detected, for each FSR sensor j, the mean over a W

window P) = - ¥V_, p; is evaluated.
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Fig. 4: An example of six FSR time series.
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Fig. 5: An example of a false positive considering a subset of sixteen FSRs.

3. The difference between two consecutive pressure values V; = abs(PJW — PJW*I)
is calculated to find significant variations.

4. The variation values are sorted and filtered with a linear weighted filter. The
obtained output is a set of sorted and weighted values V; of significant variations
in terms of pressure amplitude.

5. If le\,/zl Vi < o (where « is defined as the minimum value for which the pressure
variation can be considered as a real movement), the patient is not moving. The
a parameter could be defined by leveraging the pressure trace of the day before
or by an ad-hoc calibration procedure during the installation of the proposed
system.

6. When ):’}’:1 V; > o, the movement is detected and the algorithm goes back to
step 1.

In particular, y has been chosen as twice the pressure value of the empty bed, while
o was fixed to the 30% percent of le\':l V; (i.e. a significant variation).
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4.2 Sleep position detection

A classification task consists in assigning a class (within a set) to a given object. In
the general case, an object is defined by many characteristics (features), providing
information about the object class. The information associated to a single character-
istic is usually not sufficient to solve the classification problem, so that the correct
class can be only inferred by combining all the features. In our case, the objects
to be classified are the patient positions, the feature are the FSR signals, and four
classes are considered, namely, supine, prone, right lateral, and left lateral.

Machine learning provides several techniques to solve complex classification
problems [19]. In this case, a classifier model is trained on a set of examples, called
the training set. After training, the classifier is able to combine the characteristics
and to generalize the learned behaviour, by correctly assigning a class to unseen
objects. The performance of the classifier can be evaluated by applying the trained
model on a test set.

In this paper, in order to validate our system, seven different machine learning
models have been applied and compared on the task of classifying FSR signals.
The goal is to verify that an automatic classification of the patient bed positions is
possible and to carry out a preliminary study in order to chose the best algorithm.

The considered models include statistical learning systems (Naive Bayes, Lo-
gistic Regression, IbK), ensemble methods (Bagging, HyperPipes) and rule-based
learning systems (Decision trees, Decision table), . Table 1 shows the algorithms
used in this work, along with a raw and short summary of their strengths and weak-
nesses. Some basic characteristics are investigated for each method: problem type
— the method is able to face classification and/or regression tasks — training speed,
prediction speed, automatically feature learning property, and if the classifier is
parametric or not.

The automatic feature learning property is based on the assumption that not all
the features are equal. Some features can be irrelevant and, for example, lead the
algorithm to misclassification. On the other hand, some features should be much
important than others. A learner can be able to perform automatically the feature
selection task, using a scoring method to rank and select the features and, also, to
find correlations between them.

Considering parametric models, we can identify a finite number of parameters.
For example, linear models such as linear regressors have a finite number of weight
coefficients. Vice versa, in non—parametric models, the complexity of the model
grows with the number of training data, because the model has not a fixed structure.

In the following, the used classification algorithms are shortly introduced. In our
experiments, machine learning methods used are obtained from the WEKA [20]
package.

Decision tables

Decision tables are one of the simplest machine learning techniques [21]. Basically,
a decision table consists of a hierarchical table in which each entry in the higher
level table gets broken down by the values of a pair of additional features to form
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Algorithm Problem Type |Training speed|Prediction speed| Automatically |Parametric
feature
learning
Decision Table | Classification Slow Fast No No
G. Naive Bayes| Classification Fast Fast No Yes
Simple Logistic| Classification Fast Fast No Yes
IBk Lazy  |Class. and Regr. Fast Depends on n No No
Hyper Pipes | Classification Slow Fast No No
Bagging Class. and Regr. Slow Fast Yes No
Random Forest |Class. and Regr. Slow Moderate Yes No

another table. Creating a decision table might involve selecting some of the features.
The problem is, of course, to decide which features to leave out without affecting the
final decision. In our case, we have no a priori information about which FSR must
be considered or not. In fact, each sensor, and consequently each feature, can be
useful in order to identify a particular user position. Thus, a Decision table approach
uses the simplest method of attribute selection: Best First. It searches the space of
attributes by greedy hillclimbing, augmented with a backtracking facility.

Naive Bayes

Naive Bayes classifiers are a family of simple probabilistic tools based on apply-
ing Bayes’ theorem. Naive Bayes classifiers employ the class posterior probabilities
given a feature vector [22] as the discriminant function. Therefore, approximations
are commonly used, such as using the simplifying assumption that features are in-
dependent given the class. This assumption of independence is certainly simplistic.
However, it is largely adopted in real scenarios and it works very well in many
cases, particularly when datasets are filtered with an a priori data selection, in order
to avoid redundant records. The Naive Bayes method might not be the best for our
scenario because it does not work when an attribute may not occur in the training
set in conjunction with every class value.

Logistic regression

Logistic regression is a well-known technique based on linear regression. The idea
of logistic regression is to make linear regression produce probabilities [23]. When
using linear regression for binary classification, we calculate a linear function em-
ploying regression and then we apply a threshold to decide whether itis a O or a 1
response. Similarly, if we want to generalize to more than two classes, we can use
a separate regression for each class. We set the output to 1 for instances that belong
to that class, and O for instances belonging to all the others, thus obtaining a differ-
ent regression line for each class. Given an unknown test example, the class with
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the largest output must be chosen. That would give us n regressions for a problem
where there are n different classes.

Coming back to the binary classification case, it is absolutely tempting to imagine
that we can interpret the values produced by the linear regressor as probabilities,
but this is actually incorrect. Such values are not probabilities, since the values are
sometimes negative or greater than one. In order to get better probability estimates,
a slightly more sophisticated technique is used. In linear regression, a linear sum
is calculated. Instead, in logistic regression, we have the same linear sum, but we
embed it in an exponential formula:

Pr{l|ay,az,...,a) = 1/(1+exp(—wo —wia; — ... —wray)),

where ay,...,a; are real input features, and wy,...,w; are the model parame-
ters. This is called a “logit” transform. Considering the one—dimensional problem,
Pr[1]a] is an S—shaped curve with respect to a, that applies a softer function, i.e. a
soft version of a step function that never gets below 0, never gets above 1, and has
a smooth transition in between. The parameters wy, ..., w; are defined by minimiz-
ing an ad-hoc error function on the training set. Working with a logit transform,
instead of minimizing the squared error, it is better to choose weights to maximize
a probabilistic function, called the log—likelihood function:

L= Z(l —x)log(1 —Pr[l\agi)7a<2i),...,a,(:)])—i—
i=1
%0 log(Pr1 \agi),aéﬁ, . 7a]((i)]) ,
where x() and a§i>, . ,a,(j) are the actual class and the features of the i—th pattern of

the training set, respectively. We can extend this idea also to multiple classes, but
in this case, a multi—response regression does not work well, because we need the
probabilities to sum to 1 over the various different classes. Such a constraint intro-
duces more computational complexity and needs to be tackled as a joint optimiza-
tion problem. The result is logistic regression [24], a popular and powerful machine
learning method that uses the logit transform to directly predict probabilities.

Lazy learners

Exploring different supervised approaches, it is enticing to apply a completely dif-
ferent point of view, using Lazy learners, also known as prototype methods. The
peculiarity of this class of methods is that they are memory—based and no model
is required to be fit [25]. Specifically, we consider the k—nearest neighbours(k—NN)
algorithm, a classical non—parametric approach where the function is only locally
approximated, whereas all the computations are deferred until classification. The
principle behind k—NN is to discover the k (we consider k = 1) closest training ex-
amples in the feature space with respect to the new sample. The training phase of the
k-NN algorithm consists in storing the features and the class label of the training
objects. In the classification phase, an unlabelled object is classified by assigning
the most frequent label among those of the k training samples nearest to it. During
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test, new objects are classified based on a voting criteria: the k nearest objects from
the training set are considered, and the new object is assigned to the class most com-
mon amongst its k nearest neighbours. A variable of this method is represented by
the choice of the distance function, used to identify the nearest neighbours. Various
distance metrics can be used, the Euclidean distance being the most common. In
this work, considering that data were uniformly gathered, we used the most basic
settings for the algorithm: Euclidean distance and k set to 1. This means that the
class label chosen was the same as the one of the closest training object.

Using k—NN, the target function is approximated locally for each query to the
system. These learning systems can simultaneously solve multiple problems, which
constitutes, at the same time, their strength and weakness, since for a large input
space, they are computationally expensive. These methods usually allow good re-
sults when there are not regular separation of the decision boundaries. Our case
seems to fit perfectly with this definition.

HyperPipe

A HyperPipe is a fast classifier that is based on simple counts. During the train-
ing phase, an n—dimensional (parallel-)pipe is constructed for each class [26]. The
pipe will contain all the feature values associated with its class. Test instances are
classified according to the category that "most contains the instance”. In this way,
for each class, a pipe works as a boundary hyper—solid for each numeric feature.
At prediction time, the predicted class is the one for which the greatest number of
attribute values of the test instance fall within the corresponding bounds.

Bagging

Bagging is a meta—algorithm, that allows to combine and improve the results ob-
tained by other methods. Actually, having a dataset composed by few classes and
many samples for each class, classification algorithms may be affected by classical
over—fitting problems. The bagging method is known for its capability of avoiding
this problem [27]. Basically, the idea is that of creating a set of different training
sets, by sampling them from the whole dataset, and combining the different out-
puts by averaging them or, in our case, voting. As a meta—algorithm, the Bagging
method is based on a classification model for the classification phase. In our case,
we chose a fast decision tree learner, namely REPTree. This base learner builds a
decision and/ or regression tree using information gain or variance and prunes it
using reduced—error pruning (with backfitting).

Considering our data, even taking into account a high number of decision trees,
this approach can lead us to a bad overall accuracy. This is due to an intrinsic prop-
erty of the algorithm that choose, in order to make decision trees, which variable to
split in order to minimize the error. In this way, decision trees have a high correlation
and a low bias in their own predictions.

Random forest
A natural step over the bagging approach is represented by the random forest (RF)
algorithm. It is also based on decision trees and it is considered as an improvement
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of the bagging model. Moreover, it allows a decorrelation between trees and, conse-
quently, between their predictions [28]. The idea behind the decision tree methods
is quite simple: to make a tree in which each internal node is labelled with an input
feature. The arcs from a node representing a particular feature are labelled with each
of the possible values of that feature. Each leaf of the tree is labelled with a class or
a probability distribution over the classes.

In practice, random forest seems to fit well in our case. In fact, the random forest
model is a non—parametric model and, consequently, it does not need any a priori
assumption; it is able to face complex input—output relations; it is robust to errors in
labels and outliers. This last property is very useful in our case since data are labelled
even considering some transition phases from a position to another, in order to make
a realistic training set, in comparison with a data acquisition campaign performed
throughout the whole night.

5 Results

In order to evaluate the performance of the proposed unobtrusive system, two pre-
liminary experimentations have been carried out. The former experiment aims at
validating the stage detection method, and the latter is designed to asses the sleep
position classification algorithm.

5.1 Experimental Setup

For the experiments on stage detection, we collected data by the proposed unob-
trusive sleep monitoring system using a single bed and a 1.80 m height and 70 kg
weight male. In order to have a ground-truth, we installed a video recorder with a
night vision in the bedroom (Figure 6) and we synchronized it with the proposed
unobtrusive system. We monitored the user for three nights.

The sampling frequency has to be set considering the computing constraints and
networking overhead, which are both directly responsible for power consumption
within the sensors. In this work, we have chosen a sampling rate of 10 Hz.

For the experiments on sleep position classification, a larger benchmark dataset
has been constructed. A small dataset may lead to an ill posed—problem to be ap-
proached with machine learning techniques. For this reason, we prepared an ad hoc
test site located in our office, with a single bed.

In particular, we carried out two hours of sleep simulation for three different
users, with three different mattress thickness, in six different days. Every two days,
we changed the mattress and we repeated the experiment. It is worth mentioning
that the test users, inside a five minute window, permuted their postures in order to
retrieve, for each class, data with small differences. More precisely, the experiment
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Fig. 6: The ground—truth: video recorder with a night vision synchronized with the
proposed system.

consisted in the repetition of five minute simulated sleeping, for each different class
(supine, prone, left, right).

At the end of the data collection campaign, the dataset was composed by 72000
pressure samples for each user, each one labelled with the corresponding sleep po-
sition class. This approach allowed us to obtain a well-balanced benchmark. Fur-
thermore, the three users, different by weight and height, allowed us to gather het-
erogeneous data in order to test the system adaptability to different users in terms of
vital and physiological parameters.

5.2 Experimental Results

FILIPPO Figure 7 shows the stage detection algorithm output during an entire night.
The presence of the above—described mattress filter is particularly useful to prevent
a movement detection when the user was not laid down on the mattress. The figure
shows that the movements are correctly detected: the pink square dots represent the
time instances when the time series (sum of FSR pressures gathered) is strongly
variable. Figure 7 further illustrates the mattress filter relevance. In fact, the pro-
posed algorithm detects, approximately between 8:00 AM and 8:30 AM, that the
user got out of the bed, coming back after few minutes. Moreover, at the beginning
of the experiment, the user was asked to put under stress the algorithm, with fre-
quent getting in and out of the bed. Nevertheless, all the movements were correctly
detected, assessing the strong robustness of the algorithm over the three different
test nights.
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In order to support bedsore risk assessment, the false positive analysis is essen-
tial. In fact, if the system recognizes the immobility of the user while the user has
moved, the number of the needed caregiver interventions will be overestimated. On
the contrary, if the system recognizes a motion of the patient while he/she was mo-
tionless, the number of the caregiver interventions will be underestimated. The pro-
posed algorithm shows no false positives, which is a useful result for a successive
real deployment.

01/20 21:00 01/21 00:00 01/21 03:00 01/21 06:00 01/21 09:00

Fig. 7: The stage detection algorithm output during an entire night. No movements
are detected when the bold yellow line, which represents the presence of a person
on the bed, is zero. Otherwise, movements are precisely detected (represented with
pink square dots).

The performance of the sleep position classification algorithms are assessed by
the correctly classified instances and by confusion matrices. A confusion matrix is a
compact representation describing the results of a classifier: each row of the matrix
corresponds to a class and counts the patterns assigned to such class by the classi-
fier (predicted class), while each column represents the number of pattern actually
belonging to the corresponding class. A perfect classification method correctly clas-
sifies all the patterns, so that in the confusion matrix only the diagonal elements
are not null. In general, the larger the diagonal elements, the better the classifier.
The experimentation has also been designed to asses whether the classifier can be
constructed offline, without adapting its parameters to the user under test.

In order to guarantee an unbiased estimate, training set and test set should ideally
be kept separated during the model construction procedure. Successively, the test set
can be used to evaluate the obtained model. In our case, the whole dataset was split
into three sub—datasets, each of which is related to a single user acquisition for two
hours. Then, two experiments were carried out: in the former experiment, a single
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user dataset is exploited for training and another single user dataset for testing; in
the latter, a single user dataset is adopted for training and the other two (merged
together) for the test phase.

Tables 3,4,5,7,6,2 and 8 show the overall average percentage score for each al-
gorithm, considering the two above mentioned configurations for training and test.

Table 2: Performance evaluation of Decision Table method.

Userl — User2 Userl — User3 Userl — User2-3
Position predicted Acc. Position predicted Acc. Position predicted Acc.
GT position| S | P | R |L | % S P|R|L | % S P|R|L|%
supine (3172|371 6 | O 12100{ 0 | 1 0 15272371 | 7 0
prone  [2635|858| O | O 443 7430 |1354(2826| 219 416 10065(1212(2826] 219 99
right  [1599] 0 [1955] 0 | | 5738 [348[5631] 0 | | 73373487586 0 |
left 1759|726| 785 |281 9189 (942 470 (1265 10948|1668|1255|1546
Table 3: Performance evaluation of Naive Bayes method.
Userl — User2 Userl — User3 Userl — User2-3
Position predicted Acc. Position predicted Acc. Position predicted Ace.
GT position| S P R L | % S P R L % S P R L %
supine [2964| 0 | 2 |583 12070| 0 | 18 | 13 15034| 0 | 20 | 596
prone 0 [2945|540| 8 920 0 |6867[1127| 2835 822 0 |9812] 1667 | 2843 845
right 0 | 0 |3554]| O 6 |1834]9285| 592 6 |1834]12839| 592
left 0 0 0 3551 0 |1203] 630 {10033 0 |1203] 630 [13584
Table 4: Performance evaluation of Logistic Regression method.
Userl — User2 Userl — User3 Userl — User2-3
Position predicted Acc. Position predicted Acc. Position predicted Acc.
GT position| S P R L | % S P R L % S P R L %
supine |2955| 277 | 317 | O 10889 0 | 1212 O 13844 277 | 1529 | O
prone 0 [3493| 0 0 5.8 1719|9110 O 0 38.4 1719 |12603| 0O 0 902
right 0 0 (3554 O 4 8 |11113| 592 4 8 [14667| 592
left 0 0 0 |3551 592 | 602 | 644 |10028 592 | 602 | 644 |13579

As expected, different methods led us to different performances in terms of global
accuracy. All the three statistical learning (SL) methods perform well on the tree dif-
ferent scenarios. Tables 3,4, and 5 show the performance obtained by the algorithms
in the SL group with accuracies between 82.2% (worst case) and 95.9% (best case)
with classes, in some cases, which are perfectly predicted. The results are promising
and suggest that such methods are able to correctly classify the user’s postures.
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Table 5: Performance evaluation of IbK method.
Userl — User2 Userl — User3 Userl — User2-3
Position predicted Ac. Position predicted Acc Position predicted Acc.
GT position| S P R L | % S P R % S P R L %
supine  |2966| 396 | 0 | 187 12101 O 0 0 15067| 396 0 187
pfone 0 |3493] 0 | O 95.9 1109 [9624| 3 93 933 1109 13117 3 93 93.4
right 0 0 (3554 O 2 654 [10469| 592 2 650 |14027| 592
left 0|0 1 {3550 8 0 | 634 |11224 8 0 635 (14774
Table 6: Performance evaluation of HyperPipes method.
Userl — User2 Userl — User3 Userl — User2-3
Position predicted Acc. Position predicted Acc. Position predicted Acc.
GT position| S P|R|L|% S P R L | % S P R L %
supine |2487[1062| 0 0 10187| 481 | 1433 | 0 12674| 1543 | 1433 | 0
plrone 0 [3493| 0 0 83.7 1 |6755]| 4060 | 13 773 1 [10248| 4060 | 13 78.8
right 4 0 |3550( 0 0 4 [11120] 593 4 4 |14670| 593
left 642 | 265 | 330 (2314 2849 0 |[1102 (7915 3491 | 265 | 1432 {10229
Table 7: Performance evaluation of Bagging method.
Userl — User2 Userl — User3 Userl — User2-3
Position predicted Acc. Position predicted Acc. Position predicted Acc.
GT position| S P R L o S P R L o S P R L lo
supine 2604|571 | 71 | 303 10691 783 | 18 | 609 13295| 1354 | 89 | 912
pfone 0 [3493| O 0 725 3 |7616]| 666 |2544 68.4 3 |11109| 666 (2544 69.3
right 604 [1186(1764 5 (19199201 592 609 | 3105 |10965| 592
left 369 (792 | 0 (2390 5619 |1329 620 {4298 5988 | 2121 | 620 |6688

Table 8: Performance evaluation of RF method using 100 trees and no-replacement.

Userl — User2 Userl — User3 Userl — User2-3
Position predicted Ac. Position predicted Ac. Position predicted Acc.
GT position| S P|R|L|% N P R L | % S P R L %
supine  [2963| 579 | 0 0 11960f 0 141 | 0 14924| 579 | 147 0
p-rone 0 [3493| 0 0 95.7 610 [10218] 1 0 9.6 610 [13711] 1 0 91.0
right 0 0 (3554 0 2 8 |I11115|592 2 8 |14669| 592
left 0 0 | 23 |3528 2844 | 9 635 [8378 2844 | 9 658 (11906

Slightly worse results are obtained when considering methods of the ensemble
group. In fact, as shown in Tables 7 and 6, accuracies are between 68.4% and 83.7%.
The worst performance was achieved using the Decision Table method, whose accu-
racy ranges between 41.6 and 44.3 (see Table 2 ). Actually, such a result is expected,
since the main advantage of approaches based on decision tables lies in their sim-
plicity and low computational cost, whereas the classification performance is usually
lower with respect to other machine learning methods.



18 A. Crivello, F. Palumbo, P. Barsocchi, D. La Rosa, F. Scarselli, M. Bianchini

The Random Forest (RF) method, instead, can be considered the best method in
our application as shown in Table 8. In terms of global performance, it shows an
accuracy between 89.6% and 95.7%.

In order to justify such a result, we need to recall some notions about random
forests. The Random forest approach belongs to the class of ensemble methods,
based on a combination of tree predictors. Each tree is composed using a sub—
sampling of the training set. Combining outputs from each tree the algorithm is
able to improve the generalization performance and avoid the over—fitting problem.
Eventually, when the number of trees goes to infinity, the Strong Law of Large
Numbers always guarantees that the RF accuracy converge to that of the optimal
predictor.

Table 9 shows the global accuracy values, obtained by Random Forest, running
the algorithm with different number of trees, and seeds fixed to 1.

Table 9: Performance evaluation of Random Forest according to different number
of trees.

Userl — User2-3 — 200 Trees Userl — User2-3 — 500 Trees Userl — User2-3 800 Trees
Position predicted Acc. Position predicted Acc. Position predicted Acc.
GT position| S P R L S P R L N P R L
supine [14696| 583 | 371 0 14875| 583 | 192 0 14742| 583 | 325 0
prone 0 [14322| 0O 0 05.4 0 [14322| 0 0 05.7 0 [14322| 0 0 05.4
right 0 11 |14668| 592 0 11 |14668| 592 0 11 |14668| 592
left 0 14 | 1222 14181 0 1 1226 {14190 39 0 | 1230 (14148

The Random Forest algorithm reaches an accuracy of 95.4% for User1-User2—
User3 case, better than all the other methods previously shown. Table 10 shows how
a different percentage of the original dataset, with no—replacement and fixed number
of trees equal to 500, impacts in terms of accuracies. Random Forest, considering the
number of features involved in our scenario, needs approximately 100 seconds for
the learning phase. Instead, a real-time prediction can be performed. A downsam-
pling strategy can be useful in the case in which the model construction is performed
on—board at microcontroller-level or on some other resource—constrained device.
Indeed, the overall complexity of RF, in terms of computational speed, depends on
several factors, such as the number of trees, features, and instances. RF, trying to
find an optimal predictor scanning several levels of possibilities, can require a good
deal of computing power and memory available.

6 Conclusions

This paper presents an unobtrusive sleep monitoring system, suitable for long term
monitoring, that exploits a sensing technique based on pressure sensors. The system
is able to detect movements and sleep patterns.
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Table 10: Classification performance of Random Forest with 500 trees, after down-
sampling with no—replacement.

Sample Size % |Userl-User2 |Userl-User3 |User1-User2-3
20% 95.8 94.9 95.1%
10% 95.8 91.2 92.3%

5% 91.9 89.5 90.1%

The high versatility of the proposed system allows its use in several application
scenarios, such as to assess the risk of pressure ulcer, to monitor bed exits or to
observe the influence of medication on sleep behaviour.

In this paper, we have compared several supervised learning algorithms, in order
to obtain the most suitable solution in this context. Comparative experimental results
from seven different approaches show that we can accurately infer sleep duration,
user positions, and routines in a completely unobtrusive setting by using the IbK
method. Indeed, the IbK method achieves about 95 % of accuracy. A similar per-
formance has been obtained by the Random Forest technique. However, since the
Random Forest is a non—parametric model, characterised by an automatic feature
learning technique, it should be preferred to detect the user’s positions.
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