
Using NLP to Detect Requirements Defects: an
Industrial Experience in the Railway Domain

Benedetta Rosadini1, Alessio Ferrari3, Gloria Gori2, Alessandro Fantechi2,
Stefania Gnesi3, Iacopo Trotta1, and Stefano Bacherini1

1 Alstom Ferroviaria s.p.a., Florence, Italy,
<name>.<surname>@transport.alstom.com

2 University of Florence, DINFO, Florence, Italy, <name>.<surname>@unifi.it
3 ISTI-CNR, Pisa, Italy, <name>.<surname>@isti.cnr.it

Abstract. [Context and Motivation] In the railway safety-critical
domain requirements documents have to abide to strict quality crite-
ria. Rule-based natural language processing (NLP) techniques have been
developed to automatically identify quality defects in natural language
requirements. However, the literature is lacking empirical studies on the
application of these techniques in industrial settings. [Question/prob-
lem] Our goal is to investigate to which extent NLP can be practically
applied to detect defects in the requirements documents of a railway sig-
nalling manufacturer. [Principal idea/results] To address this goal,
we first identified a set of typical defects classes, and, for each class, an
engineer of the company implemented a set of defect-detection patterns
by means of the GATE tool for text processing. After a preliminary
analysis, we applied the patterns to a large set of 1866 requirements pre-
viously annotated for defects. The output of the patterns was further
inspected by two domain experts to check the false positive cases. [Con-
tribution] This is one of the first works in which defect detection NLP
techniques are applied on a very large set of industrial requirements an-
notated by domain experts. We contribute with a comparison between
traditional manual techniques used in industry for requirements analy-
sis, and analysis performed with NLP. Our experience tells that several
discrepancies can be observed between the two approaches. The analysis
of the discrepancies offers hints to improve the capabilities of NLP tech-
niques with company specific solutions, and suggests that also company
practices need to be modified to effectively exploit NLP tools.

Keywords: NLP, Requirements, Ambiguity, Defect Detection, Quality.

1 Introduction

The CENELEC norms provide standards for the development of railway safety-
critical systems in Europe. The CENELEC EN 50128:2011 [6], specific for soft-
ware, asks requirements documents for railway systems to be complete, clear, pre-
cise, unequivocal, verifiable, testable, maintainable, and feasible. To ensure that

these quality attributes are met, companies developing railway products have a
Verification Engineer (VE) who reviews for defects any requirements document
produced along the development process. This review activity is time consuming
and error prone, and an automated review assistant might help VEs in their task.
As well known, requirements are normally edited in natural language (NL) [19],
and the railway domain makes no exception. Several natural language processing
(NLP) approaches have been developed to assist requirements review. Part of
these works focuses on the identification of typical defective terms and construc-
tions [4, 15, 14, 20, 2, 11], while other focus on artificial intelligence techniques [7,
21, 13]. However, the literature is lacking large-scale case studies concerning in-
dustrial applications of NLP approaches for defect detection [11]. This papers
aims at filling this research gap, by providing the experience done within a col-
laboration between a world-leading railway signalling company, the University
of Florence, and ISTI-CNR to investigate the feasibility of using NLP for defect
identification in the requirements documents of the company. This experience,
which involved three professional VEs and a large-scale experimentation on 1866
requirements, shows that NLP technologies can be used to develop in-house tools
for defect identification. The internal development of the tools can enable the
VEs of the company to tune the tools to account for part of the discrepancies
that occur between manual reviews and automated ones.

The remainder of the paper is structured as follows. Sect. 2 summarises
related works. In Sect. 3, we provide an overview of the current work. In Sect. 4
we describe the patterns adopted for defect detection. Sect. 5 and 6 provide the
results of a preliminary and a large-scale study, respectively, on the application
of the patterns. In Sect. 7 we provide an analysis of the false positive cases
performed on the large-scale study. Sect. 8 highlights the lessons learned.

2 Related Works

The literature counts several contributions concerning the application of NLP
techniques to detect defects in NL requirements. These works can be categorised
into those that use rule-based approaches [4, 15, 14, 20, 2, 11] and those that lever-
age artificial intelligence approaches [7, 21, 13]. Our contribution falls into the
first category, which collects all the works in which defects are identified based
on linguistic patterns. Hence, we briefly discuss relevant works in this category.

The Ambiguity Handbook of Berry and Kamsties [4] includes one of the
most influential classification of ambiguity-related defects in requirements, and
provides a large set of examples of typically dangerous words and constructions.
Gnesi et al. [15] present QuARS, a tool for defect detection based on a quality
model developed by the authors. Similarly, Gleich et al. [14] implemented a grep-
like, pattern-based technique to detect defects, supported by statistical NLP
techniques such as POS tagging. Tjong and Berry [20] developed SREE, a tool
that identifies defects based on a pre-defined list of dangerous terms. Arora et
al. [2] use patterns of linguistic defects as the other works, and, in addition,
checks the conformance of the requirements to a given template. All these works

were used as fundamental references to define the defect detection patterns of
our study. On the other hand, all the listed works provide limited validation
in real industrial contexts, as noted also by Femmer et al. [11]. In some cases,
e.g., Gleich et al. [14], validation datasets are limited, while in other cases, e.g.,
Tjong and Berry [20], datasets are annotated for defects by one of the authors
instead of domain experts. Large data-sets annotated by experts were considered
by Falessi et al. [10]. However, their focus is solely on redundancy defects (i.e.,
equivalent requirements), detected by means of information retrieval techniques.
The task of finding couples of equivalent requirements is radically different from
the one we are dealing with in our study, in which multiple linguistic defects
occurring in single requirements are considered. To our knowledge, the more
general industrial work on defect detection is the one presented by Femmer et
al. [11], who experimented their tool named Smella on several datasets belonging
to three companies. Although domain experts were interviewed to assess the
effectiveness of the tool, analysis of the results was performed by two researchers.

Compared to these studies, in the current work the validation of the approach
is performed on a large set of industrial requirements annotated by domain ex-
perts. Another novelty is that defect detection NLP techniques are implemented
in-house by a domain expert.

3 Overview

To experiment the feasibility of using defect detection NLP techniques, the com-
pany allocated one VE (VE1, 1st author) dedicated to the task, ISTI-CNR pro-
vided an Expert in defect detection through NLP (NLP-E, 2nd author), and the
University of Florence provided a second VE (VE2, 3rd author), who worked at
the company as VE, and then moved to the academia. NLP-E considered that
assessing the effectiveness of a domain-generic tool for defect detection (e.g.,
QuARS [15]) would have required a strong expertise in the domain of the re-
quirements documents. In addition, he considered that, if the tool would have
provided too many false positive cases, e.g., innocuous ambiguities [7], the com-
pany would not have considered the tool as appropriate for its needs. Hence, it
was decided to let VE1 develop the tool in-house, with the support of NLP-E.
VE1 was initially required to study the papers of Berry and Kamsties [4], Gnesi
et al. [15], Gleich et al. [14], Tjong and Berry [20] and Arora et al. [2]. Then, she
was required to perform the tutorials provided by GATE (General Architecture
for Text Engineering [8]), which was the generic NLP tool selected to be tailored
to support defect detection. The tool was chosen since it was considered suffi-
ciently easy to use for an engineer, and sufficiently powerful for the task. After
this autonomous training, VE1 and NLP-E met to define the defect classes on
which to focus (Sect. 4). Priority was given to those defect classes that were con-
sidered more relevant from the point of view of VE1, and whose identification was
considered feasible by NLP-E. For each defect class, VE1 used GATE to define
a set of patterns for identification of defects. The patterns were experimented on
a dataset annotated by VE1 herself, with the objective of maximizing recall, as

suggested by Berry et al. [3] (Sect. 5). After the first encouraging results, a large-
scale experiment was conducted on 1866 requirements, previously annotated by
another VE of the company (VE3, 6th author) (Sect. 6). In this case, the results
appeared particularly poor in terms of precision. Hence, VE1 and VE2 decided
to analyse the false positive cases (Sect. 7). This analysis showed that many
true linguistics defects were not considered in the validation performed by VE3.
After marking these cases as true positives, several false positive cases remained,
which could be in principle addressed by further tailoring the patterns to the
specific language of the company. At the end of the experience, all the authors
discussed about the lessons learned from the case study (Sect. 8).

4 A Rule-based Approach to Predict Defects

4.1 NLP Technologies

Before describing the patterns that we defined to identify the defects, it is useful
to list the natural language processing (NLP) technologies included in the tool
GATE [8] that was adopted to define the patterns:

– Tokenization: this technology partitions a document into separate tokens,
e.g., words, numbers, spaces, and punctuation.

– Part-of-Speech (POS) Tagging: this technology associates to each token
a Part-of-Speech, e.g., noun (NN), verb (VB), adjective (JJ), etc. Common
POS taggers are statistical in nature, i.e., they are trained to predict the
POS of a token based on a manually annotated corpus.

– Shallow Parsing: this technology identifies noun phrases (NP) – in this case
we speak about Noun Chunking – and verb phrases (VP) – in this case we
speak about Verb Chunking – in sentences. For example, given the sentence
Messages are received by the system, a shallow parser identifies {Messages,
the system} as NP, and {are received} as VP.

– Gazetteer: this technology searches for occurrences of terms defined in a
list of terms. In our case, we used it to check the presence of vague terms.

– JAPE Rules: this technology allows defining rules (i.e., high-level regular
expressions) over tokens and other elements in a text [8]. A rule identifies
sequences of elements that match the rule. Rules are expressed in the in-
tuitive JAPE grammar, which is similar to regular expressions. JAPE rules
can be rather long to report. In this paper, for the sake of space, to describe
JAPE rules we will use a more concise and intuitive pseudo-code inspired to
the JAPE grammar. In JAPE, and in our rules, the following symbols are
used: “|” indicates logical or; “,” indicates logical and; “!” indicates logical
not; “< expr > +” indicates one or more elements matching the preceding
expression expr; “< expr > ∗” indicates zero or more elements; “< expr >?”
indicates zero or one elements. When we use a term in capital letters, this
indicates a form of macro that identifies terms of the specific type, e.g.,
NUMBER identifies numbers, while ELSE identifies the term else in its var-
ious orthographic forms. Although these macros differ in terms of semantics,
we expect that the reader can infer their meaning.

Table 1: Pattern adopted for each defect class.
Defect Class Pattern

Anaphoric ambiguity
PANA = (NP)(NP)+
(Split)[0,1]
(Token.POS == PP | Token.POS =∼ PR*)

Coordination
ambiguity

PCO1
= ((Token)+ (Token.string == AND | OR)) [2]

PCO2
= (Token.POS == JJ) (Token.POS == NN | NNS)

(Token.string == AND | OR) (Token.POS == NN | NNS)
Vague terms PV AG = (Token.string ∈ Vague)

Modal adverbs
PADV = (Token.POS == RB | RBR),
(Token.string =∼ ”[.]*ly$”)

Passive voice
PPV = (AUXVERB)(NOT)?(Token.POS == RB | RBR)?
(Token.POS ==VBN)

Excessive length PLEN = Sentence.len > 60

Missing condition
PMC = (IF)(Token, !Token.kind == punctuation)*
(Token.kind == punctuation)(!(ELSE | OTHERWISE))

Missing unit
of measurement

PMU1
= (NUMBER)((Token)[0, 1](NUMBER))?(!MEASUREMENT)

PMU2
= (NUMBER)((Token)[0, 1](NUMBER))?(!PERCENT)

Missing reference
PMR = (Token.string == “Ref”)(Token.string == “.”)
(SpaceToken)?(NUMBER)

Undefined term PUT = (Token.kind == word, Token.orth == mixedCaps)

4.2 Patterns for Defect Prediction

This section lists the classes of language defects considered, together with the
patterns (i.e., JAPE rules) defined to identify them. Patterns are defined in terms
of sequences of tokens to be matched within a requirement. Hence, the output
produced by one pattern when applied to a requirement is zero or n requirement
fragments (i.e., contiguous sequences of tokens in the requirement) that match
the pattern. The patterns were defined by VE1 with the idea of identifying the
defects that she perceived as more relevant for her job, and taking into account
the defect classes provided by Berry and Kamsties [4], and by the other papers
she had studied [2, 14, 15, 20]. In Table 1 we report the patterns in a compact
version. The JAPE implementation of the patterns is available in our public
repository4. Below, we describe the defect classes addressed by each pattern.

– Anaphoric ambiguity Anaphora occurs in a text whenever a pronoun
(e.g., he, it, that, this, which, etc.) refers to a previous part of the text.
The referred part of the text is normally called antecedent. An anaphoric
ambiguity occurs if the text offers more than one antecedent options [21],
either in the same sentence (e.g., The system shall send a message to the
receiver, and it provides an acknowledge message - it = system or receiver?)
or in previous sentences. The potential antecedents for the pronouns are
noun phrases (NP), which can be detected by means of a shallow parser.
The pattern PANA matches any sequence of two or more noun phrases (NP),
followed by zero or one sentence separators (Split), followed by a personal
pronoun (PP), or other types of pronouns (PR*).

– Coordination ambiguity Coordination ambiguity occurs when the use
of coordinating conjunctions (e.g., and or or) leads to multiple potential

4 https://github.com/BenedettaRosadini/QuARS-/tree/master/jape

interpretations of a sentence [7]. Two types of coordination ambiguity are
considered here. The first type includes sentences in which more than one
coordinating conjunction is used in the same sentence (e.g., There is a 90◦

phase shift between sensor 1 and sensor 2 and sensor 3 shall have a 45◦

phase shift). The second type includes sentences in which a coordinating con-
junction is used with a modifier (e.g., Structured approaches and platforms
– Structured can refer to approaches only, or also to platforms). The VE de-
fined two patterns, one for each type. PCO1

matches exactly two occurrences
(notation “[2]”) of one or more Tokens followed by a coordinating conjunc-
tion. PCO2 matches cases in which an adjective (JJ) precedes a couple of
singular (NN) or plural nouns (NNS), joined by and or or.

– Vague terms Vagueness occurs whenever a sentence admits borderline
cases, i.e., cases in which the truth value of the sentence cannot be de-
cided [4]. Vagueness is associated with the usage of terms without a precise
semantics, such as minimal, as much as possible, later, taking into account,
based on, appropriate, etc. In our context, we use the list of 446 vague terms
provided by the QuARS tool [15]. The list includes single-word and multi-
word terms that were collected as source of vagueness in requirements. PV AG

matches any term included in the set Vague of vague terms.

– Modal adverbs Modal adverbs (e.g., positively, permanently, clearly) are
modifiers that express a quality associated to a predicate. As noted by Gleich
et al. [14], adverbs are discouraged in requirements as potential source of
ambiguity. VE1 noticed that, in the requirements of the company, most of the
adverbs causing ambiguity were modal adverbs ending with the suffix -ly. For
this reason, PADV matches adverbs in normal form (RB) or in comparative
form (RBR) that terminate ($ indicates string termination) with -ly.

– Passive voice The use of passive voice is a defect of clarity in requirements,
and can lead to ambiguous interpretations in those cases in which the passive
verb is not followed by the subject that performs the action expressed by the
verb (e.g., The system shall be shut down – by which actor?). Passive voice
detection is also considered by Gelich et al. [14] and by Femmer et al. [12].
To identify passive voice expressions, PPV matches auxiliary verbs followed
by a verb in past participle (VBN), possibly with negations and adverbs.

– Excessive length Longer sentences are typically harder to process than
short sentences, and can be source of unclarity. The VE decided to identify
all the sentences that are longer than 60 tokens. Although this is a rather
weak threshold – for generic English texts, Cutts recommends not to exceed
40 tokens [9] –, the VE considered this value appropriate for the length of
the sentences in her domain.

– Missing condition To be considered complete, each requirement expressing
a condition through the if clause, shall have a corresponding else or otherwise
clause. PMC checks whether an if clause is followed by an else/otherwise
clause in the same sentence.

– Missing unit of measurement Each number is required to have an as-
sociated unit of measurement, unless the number represents a reference (see

below). Hence, the patterns check whether a number has an associated unit,
or a percentage value associated to it.

– Missing reference This defect occurs when a reference that appears in
the text in the form Ref. <X> does not appear in the list of references of the
requirements document. To detect this defect we leverage the pattern PMR

to extract references in the text, and then – through Java code not reported
here – we check whether each number found appears in the list of references.

– Undefined term This pattern searches all the terms that follow the textual
form used in the company for defining glossary terms (e.g., restrictiveAspect),
which are expressed in camelCase format. As for the missing reference case,
we leverage the PUT pattern to search for terms expressed in camelCase (i.e,
mixedcap orthography), and then we automatically search the glossary to
check whether the term is present or not.

5 Preliminary Study

After the definition and implementation of the patterns, we performed a first
assessment of the patterns on a real-world dataset of the company. In this phase,
the goal was to establish whether the patterns were able to achieve a value of
recall close to 100%. As noted by Berry et al. [3], defect detection techniques
shall favor recall over precision since the cost of undetected true defects is much
higher than the cost of manually discarding false positive cases. To perform
the evaluation, the dataset was first manually annotated by VE1, and then she
compared the output of the patterns with her annotations. In the following,
we describe the annotation process, the evaluation measures adopted, and the
observation on the results obtained.

5.1 Dataset and Annotation

For the analysis, a dataset of 241 system requirements was considered. This
dataset was randomly selected from the requirements document of a wayside
Automatic Train Protection (ATP) system and from the requirements docu-
ment of an interlocking system. VE1 annotated the dataset. The requirement
was labeled as accepted if it appeared to fulfill the criteria normally adopted by
the company. These criteria are derived from the more general guidelines pro-
vided by the CENELEC EN 50128:2011 norm [6]. In particular a requirement
was labeled as accepted if it was: (a) feasible: what is required is physically and
technologically possible, can be done with available resources and is not against
laws and regulations; (b) testable: can be demonstrated through repeatable tests
or is at least verifiable through inspection; (c) complete: stand-alone, no missing
references, undefined terms, to-be-defined parts, or missing conditions; (d) clear
and unambiguous; (e) uniquely identifiable; (f) consistent : no internal contradic-
tion and no contradiction with other requirements. The requirement was labeled
as rejected in case it did not fulfill one of the criteria. In case the requirement
was marked as rejected for criterion (c) or criterion (d), VE1 stated whether

the rejection was due to one or more linguistic defect classes associated to the
patterns listed in Sect. 4.2. In this case, VE1 labelled as defective(i) each re-
quirement fragment that included the i -th defect. After this annotation activity,
120 requirements were marked as rejected, while 121 were marked as accepted5.

5.2 Evaluation Measures

Evaluation Measures by Defect To measure the effectiveness of the patterns, we
first provide a set of measures that focus on single defective fragments identified
by the patterns. Given the pattern associated to the i -th defect, we consider the
amount of true positive tpD as the number of requirements fragments labeled as
defective(i) and correctly identified by the pattern; the amount of false positive
fpD as the number of requirements fragments wrongly identified as defective by
the pattern; the amount of false negative fnD as the number of requirements
fragments labeled as defective(i) that are not discovered by the pattern. Based
on these definitions, we define the measure of precision (pD) and recall (rD) as:

pD =
tpD

tpD + fpD
rD =

tpD

tpD + fnD

The precision pD is negatively influenced by the amount of defects wrongly
identified (fpD). The recall rD is negatively influenced by the amount of unde-
tected defects (fnD).

Evaluation Measures by Requirement To have a view of the effectiveness of the
patterns applied together, we provide a set of measures that focus on the number
of requirements, instead of on the number of defective fragments.

Here, we consider the amount of true positive tpR as the number of require-
ments labeled as rejected for which at least one of the patterns correctly iden-
tified a defective requirement fragment; the amount of false positive fpR as the
number of requirements wrongly identified as defective (i.e., at least one of the
patterns triggered a defect while the requirement was marked as accepted); the
amount of false negative fnR as the number of requirements marked as rejected
for which none of the patterns triggered a defect. The measures of precision pR

and recall rR are defined as for pD and rD, but considering tpR, fpR, and fnR.

5.3 Results and Observations

In Table 2 we report the different evaluation measures. We see that, although
the patterns for anaphoric ambiguity and coordination ambiguity are both based
on shallow parsing, which normally has an accuracy of 90-95% [16], we achieve
the objective of 100% recall. Similarly, for modal adverbs and passive voice, we
achieve 100% recall, although these patterns employ POS tagging, which has an
accuracy around 97% [18]. Two of the patterns that employ only lexical-based

5 The dataset appears balanced since VE1 continued to select requirements until a
balanced number of accepted and rejected requirements was obtained.

pattern matching, namely missing reference and undefined term, also achieve
100% recall. Lower values of recall are instead achieved for the patterns as-
sociated to vague terms (67.74%), excessive length (60.06%), missing unit of
measurement (50%) and missing condition (97.05%).

Table 2: Preliminary study results for single defects and requirements.
Defect Class tpD fpD fnD pD rD

Anaphoric ambiguity 22 8 0 73.33% 100%

Coordination ambiguity 16 8 0 66.66% 100%

Vague terms 21 16 10 56.75% 67.74%

Modal adverbs 28 14 0 66.66% 100%

Passive voice 343 60 0 85.11% 100%

Excessive length 200 30 133 86.95% 60.06%

Missing condition 66 14 2 82.5% 97.05%

Missing unit of measurement 2 2 2 50% 50%

Missing reference 10 0 0 100% 100%

Undefined term 208 76 0 73.23% 100%

Requirements tpR fpR fnR pR rR

106 59 14 64.24% 88.33%

- Vague terms By inspecting the ten false negative defects for vague terms, VE1
found that they were all due to the absence of the quantifier some in the list
of vague terms provided by QuARS. Hence, requirements such as the following
were not marked as defective by the pattern: In case the boolean logic evaluates
the permissive state, the system shall activate some redundant output – which
output shall be activated? VE1 resolved the problem by simply adding the term
some to the list of vague terms. Since also pD was particularly low (56.75%),
VE1 inspected the false positives and saw that they were due to domain-specific
terms, namely raw data, hard disk, short-circuit, logical or, logical and, green
LED. These terms were added to a stop-list to discard false positives in future
analysis.
- Excessive length By inspecting the false negative cases for excessive length, VE1
saw that they were due to a limitation of the GATE Tokenizer. For nested bullet
point lists, the Tokenizer considers each item as a separate sentence. Hence, very
long and deeply nested bullet point lists were not considered as sentences of ex-
cessive length. However, VE1 also argued that the length of a sentence, and the
hard readability due to complex nested lists are different kinds of defects. Hence,
she decided not to change the pattern for excessive length, and to consider the
problem of nested lists as a defect that, at the moment, was left uncovered.
- Missing unit of measurement Concerning the two false negative cases for miss-
ing unit of measurement, VE1 observed that these were due to the presence of
ranges of numerical values, e.g., [4,20], without the specification of the unit of
measurement. To address these cases, the pattern was adjusted.

- Missing condition The two false negative cases for missing condition appeared
to be due to the presence of multiple if statements in the same sentence, with
one else statement only, as in the following case: If the initialization starts, if
the board is plugged in and if the operator has sent the running command the
system shall start, else it shall go in failure mode. For requirements as the one
presented, it is difficult to understand which specific if is covered by the else
statement. Since the majority of missing condition defects were identified (66
out of 68), and considering that a VE has to manually review the requirements
anyway, as required by the norm [6], VE1 decided not to add additional rules
for this defect class.

False negative requirements It is also useful to look at the values of false negative
cases fnR and recall rR for the requirements. These 14 false negative cases not
only include those already discussed, but also cases of defective requirements
that could not be identified with our patterns – but which were annotated by
VE1 following the guidelines of the company. In particular, interesting cases are
those in which we have inconsistent requirements (e.g., 1: The system shall accept
only read access to file X ; 2: The system shall accept read and write access to file
X.) that violate guideline (f), which asks requirements to be consistent. Other
cases are those for which we have problems of testability (guideline (b)), as in
the case of under-specified statements (e.g., The system shall go in error mode
when an internal asynchronism has been detected ; asynchronism among which
components?), or incomplete statements (e.g., The system shall make available
its internal status; through which interface?). Finally, other cases are those as-
sociated to other defects of completeness of the requirements document, as in
the case of requirements for which it is expressed only the best-case scenario,
and not the worst-case (e.g., The system shall go at runtime state from power
off state in 3 minutes in the best case.; which is the requirement for the worst
case?). Although some false negative cases were found, the evaluation of the
patterns was considered successful in terms of recall by VE1. Hence, we decided
to experiment the use of the patterns on a larger requirements dataset.

6 Large-scale Study

The objective of the second study was to perform an assessment of the patterns
on a larger requirements set of the company, previously validated by another
VE (i.e, VE3), to understand to which extent the approach could be applicable
more widely within the company.

6.1 Dataset, Annotations and Evaluation Measures

For this study a dataset of 1866 requirements was considered. The requirements
belonged to a requirements document concerning a system that includes an in-
terlocking, an ATP, a CTC (Centralised Traffic Control) and an Axle Counter.
The defects of the document were previously annotated by VE3, following the

criteria of the company already outlined in Sect. 5.1, and employed by VE1 for
the preliminary study. Since this task was performed before this work was con-
ceived, the annotation of the defective fragments was not performed by VE3,
who just marked requirements as accepted or rejected, and described the rea-
sons for rejection in a specific requirements validation document. From the 1866
requirements, 1733 were marked as accepted, while 93 were marked as rejected.

For the annotations performed by VE3, the measures adopted for evaluating
the effectiveness of the patterns in identifying defective requirements are tpR,
fpR, fnR, pR and rR as defined in Sect. 5.2. Intuitively, these measures indicate
whether the application of the different patterns simultaneously allows to identify
requirements that were marked as rejected by VE3. Since VE3 did not annotate
fragments, for this analysis we do not consider evaluation measures for the single
defects as in the first analysis.

6.2 Results and Observations

In Table 4 we report the output of the patterns on the dataset in terms of defects
identified (D), and in terms of defective requirements (R) – the other columns
of the table will be discussed in Sect. 7. We see that the majority of the defects
are due to passive voice. This is in line with the results of Femmer et al. [12]. The
use of passive voice appears to be a sort of writing style of these requirements,
since 615 out of 1866 (33%) include this defect. However, the most interesting
– and disappointing – aspect comes from the evaluation presented in Table 3.
The number of false positive requirements is extremely high, and the precision
is only 5.7%. This value is comparable with the precision obtained through a
random predictor [1] (for which pR = rR = 93/1866% = 5%). Hence, it appears
not acceptable if the tool needs to be used in a real-world setting. Furthermore,
also the value of rR (74.19%) is not too encouraging. Hence, let us first focus on
false negative cases, which impact the value of rR, and in Sect. 7 we will discuss
the analysis performed on false positive cases, which impact on pR.

Table 3: Large-scale analysis results: requirements.
tpR fpR fnR pR rR

69 1148 24 5.7% 74.19%

False negative cases As for the preliminary analysis, the false negative cases
are due to requirements that include defects that were not considered by any
of the patterns, but that violate one or more criteria adopted by the company.
Interesting examples are requirements that do not fulfill the criterion of testability
(guideline (b)), as e.g., The system shall be in continuous operation for 24 hours
a day and 7 days a week ; requirements that are not feasible (guideline (a)),
e.g., The core of the system shall use TCP/IP protocol in order to communicate
with peripheral boards – in this case, this requirement was considered not feasible

since the only communication protocol that was considered applicable was UDP;
requirements that include inconsistent statements (guideline (f)), e.g., The brake
symbol shall be able to show the following colors: Green when the brake is not
active, Grey when the brake is not active. Overall, these cases show that there is
a variety of defects that are hardly identifiable with NLP techniques, and hence
require a human expert to accurately assess them.

7 False Positive Analysis

Given the poor results in terms of precision, VE1 inspected the output of the
tool, and saw that part of the false positive requirements were, in her opinion, ac-
tually defective. For example, the following requirement marked as accepted, was
evidently defective due to several vague terms (highlighted in bold): Depending
on the technical or functional solution selected, there shall be time parameters in
the control system, that the Purchaser shall be able to adjust during operation in
order for the registration/deregistration to be made as effectively as possible.6

In other terms, her opinion was that VE3, when evaluating the requirements,
actually tolerated several linguistic defects, and marked as rejected only those
requirements that appeared to include severe conceptual defects. To assess how
many of the false positive cases could be considered as linguistic defects from
the point of view of a more strict annotator, a second annotation process was
performed to evaluate the false positive cases.

7.1 Annotation and Evaluation Measures

A second annotation process was performed on the requirements marked as de-
fective by at least one of the patterns. In this annotation process, two VEs (VE1
and VE2) independently annotated the output of the patterns as follows. For
each requirement fragment labelled as defective according to pattern i, each VE
annotated the fragment as defective(i), if the VE considered the defect as a true
defect. The annotator agreement was estimated with the Cohen’s Kappa [17],
resulting in k = 0.8225, indicating an almost perfect agreement. Overall, if a
fragment was annotated as defective(i) by at least one annotator, the fragment
was marked as defective(i) in the annotated set used for the evaluation. In
this analysis, we use evaluation measures for single defects, and for entire re-
quirements. Since in this analysis we focus solely on the output produced by the
patterns, we consider neither the amount of false negative cases, nor the measure
of recall (for this reason the structure of Table 4 differs from that of Table 2).
Hence, we consider pD (for each defect class i) and pR as defined as in Sect. 5.2.

6 The requirement was not rejected since it was clarified by other subsequent require-
ments. This violates the guideline (c) that require requirements to be stand-alone,
but the defect was not considered crucial.

Table 4: Evaluation of the results for the large-scale study.
Defect Class D R tpD fpD pD

Anaphoric ambiguity 387 327 258 129 66.6%

Coordination ambiguity 263 213 190 73 72.24%

Vague terms 496 306 290 206 58.46%

Modal adverbs 476 373 331 145 69.53%

Passive voice 1265 615 1242 23 98.1%

Excessive length 16 16 16 0 100%

Missing condition 188 148 129 59 68.61%

Missing unit of measurement 0 0 0 0 -

Missing reference 4 2 4 0 100%

Undefined term 54 49 43 11 79.62%

Average 79.24%

Requirements
tpR fpR pR

1042 175 85.6%

7.2 Results and Observations

Table 4 reports the results of this phase. For each defect class, the precision
reaches an average value of 79.24% for what concerns the number of defects
(average of different pD). Overall pR resulting from the application of all the
patterns together, raises from the 5.7% of Table 3, to 85.6%. However, there is
still a significant amount of false positive cases that should be noticed. For the
sake of space, we will present examples for vague terms, since these are the defects
for which the false positive cases had a major impact on the precision value (pD

= 58.46%). False positive cases of anaphoric ambiguity are studied by Yang
et al. [21], while Chantree et al. [7] studied false positive cases of coordination
ambiguity. Our false positive cases for these defect classes are similar to those
addressed by these studies. For modal adverbs, false positives occur when adverbs
form domain-specific names, e.g., normally closed to refer to relay status.

Vague terms A large number of false positive cases (206) is identified for this
defect. These cases are due to the fact that many of the vague terms are lexically
ambiguous. For example, the term light, considered as adjective, is vague, but
when playing the role of noun, as in the requirement Yellow Stop lights do not
have to be monitored, is not vague. Cases such as the one in this example can be
potentially detected by applying POS tagging, and considering a term as vague
only if it plays the role of adjective. Other cases occur when a vague word is part
of a domain-specific multi-word term, as for the term distant of the following
example: The operator shall use “distant signalling distance” to apply the brake.
To discard these cases, techniques for multi-word term identification [5] should
be applied. Finally, many cases were due to the usage of the term possible in the
phrase It shall be possible [...], considered an accepted requirement preamble
within the company. This phrase was included in a stop-phrase list, to discard
false positives, and allowed to increase the precision pD for vague terms from

58.46% to 78.37% (about 20% increase). This shows that small adjustments
to the patterns can radically improve the results in terms of precision, since
requirements appear to present systematic sources of false positives.

8 Discussion and Conclusion

This paper presents the experience of a railway signalling manufacturer in im-
plementing a set of NLP patterns to detect defects in NL requirements. From
the experience, a set of lessons learned were discussed among the authors, and
are reported below.

In-house NLP Our experience shows that NLP technologies are available for
requirements analysts with limited NLP training, and that these technolo-
gies can be proficiently used for the detection of several typical requirements
defects. Rule-based NLP patterns tend to generate large numbers of false
positives [7, 21]. If the results come from a tool that the requirements ana-
lyst cannot control, the analyst is likely to distrust the tool. Instead, if the
analyst understands the inherent principles of the tool – and implementing
the tool is a proper way for understanding its principles –, s/he can under-
stand its weaknesses and use it at its best. Furthermore, it is also important
to internally develop the tools, since, to reduce the amount of false positive
cases, tailoring the patterns for the specific needs of the company is required.
If the VE implements the patterns, s/he can customise them according to
the language used in the domain, as, e.g., to account for terms such as raw
data, hard disk (Sect. 5.3), and phrases such as it shall be possible. This last
customisation allowed to increase pD for vague terms by 20% (Sect. 7.2).

Requirements Language Counts Looking at the large number of passive
voice defects in the large-scale analysis, it appeared that the use of passive
voice was a form of writing style. As a consequence, the patterns generated
a large number of detected defects (i.e., 1265). This tells us that, to effec-
tively use NLP, one cannot simply implement appropriate defect detection
patterns: one should change also the language adopted in the requirements,
to make it more error free, so that the VE can focus on a smaller amount
of defects. For this reason, we argue that NLP tools should be first used
by the requirements editors, to limit the amount of poor writing style, and
only afterwards by a VE. However, this is not always practicable, especially
in those cases in which requirements are produced by the customer, and
assessed by the company who has to develop the product.

Validation Criteria Count Comparing the results of the preliminary analysis
with those of the large-scale study, we saw that a large part of the false
positive cases encountered in the second analysis could be associated with a
weaker validation performed by VE3, who did not focus on linguistic defects,
but more on severe conceptual defects. For this reason, the results obtained
in terms of precision were extremely poor. When changing criteria (Sect. 7),
pR varied from 5.7% to 85.6%. Hence, to perform an appropriate validation
of rule-based NLP patterns, it is advisable to start from an annotated dataset

that has been defined knowing the classes of defects that will be checked by
the patterns. Otherwise, the results might be misleading. This observation
might appear counter-intuitive, since we suggest to adapt human operators
to tools. However, when dealing with the complexity of NL, we argue that
the adaptation between humans and NLP tools should be bi-directional.

NLP is Only a Part of the Answer In our large-scale study, several false
negative cases occurred, which can hardly be detected with NLP. These are
examples of conceptual defects that require a human with knowledge of the
domain and of the specific project. The amount of these cases – 24 out of
93 defects in total – is not negligible. Furthermore, it is worth noting that
69 out of 93 conceptual defects could be actually detected by looking at
linguistic defects that can be identified with NLP. Although computing the
correlation between linguistic defects and conceptual defects is out of the
scope of this work, this result suggests that some form of relation between
the two might exist, and this is an aspect that is worth further exploration.

Statistical NLP vs Lexical Techniques Our patterns make use of POS tag-
ging and shallow parsing, which are statistical techniques that can hamper
the objective of 100% recall [3]. However, in Sect. 5, we showed that 100%
recall was achieved for those patterns that used these techniques, while it was
not achieved for the pattern adopted for vague terms, which uses a lexical
based approach. Hence, we argue that the argument in favour of a“dumb”
lexical-based defect detection approach instead of an approach that leverages
statistics-based technique [3] should be partially revised. If one wants to use
lexical-based detection approaches, then one should use only defect indica-
tors belonging to closed word classes (e.g., pronouns, conjunctions). Instead,
if one uses open word classes (e.g., adjective, adverbs), the problems are
not different from those that might emerge with statistical techniques. As
these latter may fail, also lists of dangerous adjectives and adverbs may fail,
because they might not include words that were not considered until they
appear in the requirements (as e.g., the word some, as noted in Sect. 5.3).

Overall, the experience was considered extremely useful by the company. In
particular, VE1 says that, after studying the literature on defect identification,
and implementing the patterns, also her way of judging requirements defects be-
came more strict. This is also the reason why requirements marked as accepted
by VE3, were afterwards rejected by VE1 and VE2. In future works, appropri-
ate adjustments will be defined to address the false positives identified in this
study. Concerning false negative cases, it is worth remarking that, unless the
tool for defect detection is appropriately validated, a VE has to manually in-
spect the requirements anyway to produce the verification report, as required
by the CENELEC EN 50128:2011 norm [6]. Although human review cannot be
replaced, NLP support can help a VE in prioritising the requirements to be
manually analysed for defects, or, as suggested by Berry et al. [3], to check for
defects left behind after a manual analysis has been performed.

References

1. Alvarez, S.A.: An exact analytical relation among recall, precision, and classifica-
tion accuracy in information retrieval. Tech. Rep. BCCS-02-01, Computer Science
Department, Boston College (2002)

2. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of con-
formance to requirements templates using natural language processing. IEEE TSE
41(10), 944–968 (2015)

3. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The case for dumb requirements
engineering tools. In: REFSQ’12. pp. 211–217. Springer (2012)

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: Linguistic sources of ambiguity (2003)

5. Bonin, F., Dell’Orletta, F., Montemagni, S., Venturi, G.: A contrastive approach
to multi-word extraction from domain-specific corpora. In: LREC’10 (2010)

6. CENELEC: EN 50128:2011: Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems. Tech. rep.
(2011)

7. Chantree, F., Nuseibeh, B., Roeck, A.N.D., Willis, A.: Identifying nocuous ambi-
guities in natural language requirements. In: RE’06. pp. 56–65 (2006)

8. Cunningham, H.: GATE, a general architecture for text engineering. Computers
and the Humanities 36(2), 223–254 (2002)

9. Cutts, M.: The plain English guide. Oxford University Press (1996)
10. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case

study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Transactions on Software Engineering 39(1), 18–44 (2013)

11. Femmer, H., Fernndez, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. Journal of Systems and Software 123, 190 – 213 (2017)

12. Femmer, H., Kučera, J., Vetrò, A.: On the impact of passive voice requirements
on domain modelling. In: ESEM’14. p. 21. ACM (2014)

13. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: RE’12. pp. 191–200 (2012)

14. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining
ambiguity sources. In: REFSQ’10. pp. 218–232. Springer (2010)

15. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. IJCSSE 20(1) (2005)

16. Kang, N., van Mulligen, E.M., Kors, J.A.: Comparing and combining chunkers of
biomedical text. Journal of biomedical informatics 44(2), 354–360 (2011)

17. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics pp. 159–174 (1977)

18. Manning, C.D.: Part-of-speech tagging from 97% to 100%: is it time for some
linguistics? In: CICLing, pp. 171–189. Springer (2011)

19. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis
using linguistic tools. REJ 9(1), 40–56 (2004)

20. Tjong, S.F., Berry, D.M.: The design of SREE: A prototype potential ambiguity
finder for requirements specifications and lessons learned. In: REFSQ’13. pp. 80–
95. Springer (2013)

21. Yang, H., Roeck, A.N.D., Gervasi, V., Willis, A., Nuseibeh, B.: Analysing anaphoric
ambiguity in natural language requirements. REJ 16(3), 163–189 (2011)

