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Abstract. Many studies in neuropsychology have highlighted that ex-
pert musicians, who started learning music in childhood, present struc-
tural differences in their brains with respect to non-musicians. This in-
dicates that early music learning affects the development of the brain.
Also, musicians’ neuronal activity is different depending on the played
instrument and on the expertise. This difference can be analysed by pro-
cessing electroencephalographic (EEG) signals through Artificial Intelli-
gence models. This paper explores the feasibility to build an automatic
model that distinguishes violinists from pianists based only on their brain
signals. To this aim, EEG signals of violinists and pianists are recorded
while they play classical music pieces and an Artificial Neural Network is
trained through a cloud computing platform to build a binary classifier
of segments of these signals. Our model has the best classification perfor-
mance on 20 seconds EEG segments, but this performance depends on
the involved musicians’ expertise. Also, the brain signals of a cellist are
demonstrated to be more similar to violinists’ signals than to pianists’
signals. In summary, this paper demonstrates that distinctive informa-
tion is present in the two types of musicians’ brain signals, and that this
information can be detected even by an automatic model working with
a basic EEG equipment.
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1 Introduction

Music influences the development of the brain from childhood to adulthood
[11]. The pattern of brain architecture, brain’s plasticity, and behaviour devel-
opment are affected by early music learning, and music-specific neural networks
have been also hypothesised [43]. Further, structural differences have been high-
lighted between the brains of adult musicians and non-musicians [55,24]. Never-
theless, the development and the nature of these structural differences are not
clear, but generally they affect complex motor, auditory, and multi-modal skills
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[48]. Indeed, musicians’ neural activity changes depending on the played instru-
ment because playing music with different instruments usually involves different
sensory-motor activities, different components of the nervous system, and hier-
archically organized gross and fine movements [58]. Moreover, during a musical
performance the sound is also processed by the musician’s auditory circuitry,
and the brain adjusts the movements based on the processed information. Also,
the brain visually processes and interprets symbols if the musician is reading
music [17].

These aspects can be studied by processing electrical brain activity, especially
through computational models. To this aim, biosensors can be used to record
brain signals that allow direct communication between neural activity and an ex-
ternal device [57]. The human brain contains billions of inter-connected neurons
across different areas of the brain and the interactions between neurons create
very small electrical discharges. Although each of these currents is very difficult
to measure from outside the skull, the overall current created by thousands of
neurons can be measured by external detectors and reported as electroencephalo-
graphic (EEG) signals [40]. Emotional states, thoughts, and music-related brain
activity are somehow related to the signals produced by different concurrent neu-
ronal aggregations from several areas of the brain. Using arrays of sensors on the
skull, the signals of these aggregative regions can be recorded. Processing these
signals through computational models helps finding patterns correlated to the
thoughts, the actions, and the emotional states produced by a certain situation
[50].

EEG signals have been used in research on human cognitive and sensory-
motor functions [26,23], and applications to music have recently focussed on
music perception and composition [22,34]. For example, music has been deduced
from brain signals in neurotherapy [54], stress control [52], brain activity mon-
itoring [4], and music generation [45]. Several studies have modelled the cor-
relation between music and brain waves patterns to understand brain changes
due to long-term music training using neurophysiological analytical frameworks
[41,39,51]. The drawbacks of these approaches are that (i) they require complex
and expensive equipment, (ii) aim at explicitly modelling very complex and un-
known phenomena, and (iii) typically their answers are generic. For example,
they can distinguish a musician from a non-musician but they cannot identify
the type of musician.

In this paper, EEG signals and Artificial Neural Networks (ANNs) are used
to automatically distinguish between piano and violin players based on their
brain signals recorded while playing different classical music pieces. Results are
presented based on a 40 minutes collection of recordings, and show that a high-
performance automatic classifier can be built even using one biosensor placed
at the frontal-pole position of the cerebral cortex (Fp1 in the International 10-
20 electroencephalogram system [28]). Cloud computing is used to identify the
highest accuracy ANN among a huge set of possible parametrisations. Overall,
the aim of this paper is to demonstrate that it is possible to automatically detect
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the presence of similarities in the brain signals of professional musicians without
using either complex equipment or neurophysiological analytical models.

Expert musicians who learned music in childhood (5-8 years old) were in-
volved in the experiment, in order to include factors related to early modifica-
tions of the brain besides the played instrument. Also, a good (non-expert) violin
player who started playing at adult age (18 years old) and a basic piano player
were involved to test the model’s performance when basic expertise is introduced
in the training set. Finally, an expert cello player was introduced to test if his
brain signals were better classified as belonging to a violinist or a pianist.

2 Equipment and Method

2.1 EEG device

Electroencephalography (EEG) has applications in several domains, including
health, education, and entertainment [9,27]. Although complex EEG systems
may cost thousands of dollars, cheaper solutions exist that use biosensors col-
lecting electrical signals from the surface of the scalp that originate from sources
in the cerebral cortex. These systems can be quite accurate, portable, and may
come with embedded noise filtering and signal processing functions [25,2].

For the experiment presented in this paper, the NeuroSky EEG biosensor
embedded in the NeuroSky MindWave toolkit was used. This toolkit is a wear-
able headphone-like tool that uses one dry NeuroSky biosensor to be placed at
the frontal-pole (Fp1) position of the cerebral cortex. This biosensor digitizes
and amplifies raw analog brain signals, with a 512 Hz sampling frequency, and
produces a one-dimensional signal. The NeuroSky product has been used as a
development platform in other scientific experiments as well as in professional
and entertainment products due to its fair precision and low cost [37,36]. The
biosensor embedded in the NeuroSky products has been evaluated to be at 96%
as accurate as state-of-the art EEG sensors [32,56,38].

The NeuroSky MindWave toolkit includes a built-in noise reduction filter
and a signal processing module that calculates the power spectrum of the signal
every 1s. The signal spectrum was band-pass filtered (between 0.5Hz and 100Hz)
and classified according to common subdivision ranges of brain signals frequency
bands [19]: Gamma (40-100 Hz), Beta (12-40 Hz), Alpha (8-12 Hz), Theta (4-8
Hz), and Delta (0.5-4 Hz) waves. Usually, these frequency bands are correlated
with different brain states, for example Beta waves are correlated with logical-
rational processing, whereas Alpha waves are associated with intuitive processes
involving internal focus of attention and with top-down sensory inhibition [21].
The power spectrum of these five bands was used as numeric vector of features
in our model.

One advantage of the NeuroSky MindWave toolkit is that it is sufficiently
lightweight and portable to not obstruct musicians’ movements. However, one
problem in our recording sessions was that the biosensor was subject to shifts
and disconnections. Thus, the collected signals included noise and gaps that our
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model had to manage. Generally, motion artefacts are a common source of noise
when using dry sensors, although most of the artefact energy is concentrated
in the frequencies under 5Hz [42]. These artefacts can be reduced by using a
high-pass filter (over 0.5Hz) and a filter based on contact impedance variations
[6]. In our experiment, the band-pass and the built-in noise reduction filters were
used for this purpose.

One criticism in using the NeuroSky toolkit is that it uses one channel only
at the Fp1 position, whose activity is correlated also to other movements (e.g.
eyes’ ones) and only indirectly to music [33,7]. However, one of the aims of
this paper is to demonstrate that a machine learning approach can manage a
musicians’ classification task even using this equipment, because it can recognize
the indirect effects of playing different instruments on the EEG signals in Fp1.

2.2 Classification Model

An Artificial Neural Network (ANN) can be used to build an automatic classi-
fier that associates an input vector to one category among several [8]. In par-
ticular, a multi-layer Feed-Forward ANN was the best suited model for the di-
chotomic classification problem managed in this paper, i.e. classifying a segment
of brain signal as belonging either to a violinist or a pianist (Section 3). Indeed,
Feed-Forward ANNs are suited for classification tasks where a numeric vector
represents a mono-dimensional time series spectrum like it was a picture, and
have proven to gain comparable or higher performance than other techniques
(e.g. Support Vector Machines and Naive Bayes classifiers) in several domains
[16,18]. Further, our purpose was to assess the possibility to use brain signals
for musicians classification more than reaching the highest possible classification
performance, thus deep-learning convolution steps were not necessary [49].

Although ANNs are powerful models, the main disadvantage of using them
is that it is not possible to reconstruct the analytical form of the simulated
function. In fact, despite the model can recognize that similarities exist in vectors
belonging to the same class, the related patterns remain unknown. Nevertheless,
learning quality measurements can reveal if the model has been able to detect
the presence of distinctive information in the training set [5].

2.3 Cloud Computing Platform

Our method required testing a large number of ANNs in order to find the length
of the EEG signal portion and the best topology that optimised the classifica-
tion. These tests were performed using a cloud computing platform that trained
alternative ANNs concurrently and allowed exploring a large space of parameters
in a reasonable amount of time. In particular, an open-source computational sys-
tem was used (DataMiner [14,15]) that is part of a distributed e-Infrastructure
for Open Science (D4Science [10]).

The ANN implementation used for this paper, is open-source and part of the
DataMiner framework and is published as a free to use Web service [13,12] under
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the Web Processing Service standard (WPS [1]). WPS standardises the repre-
sentation of the input and output and makes the service usable by a number of
clients and by external software. DataMiner saves the history of all trained and
tested models using a standard and exportable format [30]. Every executed pro-
cess can be re-executed and parametrised multiple times by other users, thanks
to collaborative experimentation spaces [35]. In this view, this platform allowed
making the presented experiment compliant with Open Science directives of re-
peatability, reproducibility and re-usability of data and processes.

DataMiner is made up of 15 machines with Ubuntu 16.04.4 LTS x86 64
operating system, 16 virtual cores, 32 GB of RAM and 100 GB of disk space.
As for our experiment, each machine concurrently trained and tested different
ANN topologies.

3 Experiment and Results
3.1 Experimental Setup and Model Training
Using the technology presented in the previous section, an automatic classifier
of nine male musicians was built (schematised in Figure 2), which distinguished
pianists from violinists based on the power spectra of their brain signals. The
characteristics of these players are reported in Table 1 and a visual comparison
of brain signals is displayed in Figure 1. The musicians were all volunteers, and
all expert musicians started their music training during childhood.

Table 1. Characteristics of the musicians involved in the presented experiment.

ID Instrument Age Begin Age Expertise
Pianist 1 Piano 16 7 Expert
Pianist 2 Piano 19 5 Expert-Professional
Pianist 3 Piano 50 6 Expert
Violinist 1 Violin 16 6 Expert-Professional
Violinist 2 Violin 53 7 Expert
Violinist 3 Violin 19 7 Expert-Professional
Cellist Cello 19 8 Expert-Professional
Non-expert 1 Violin 29 18 Good
Non-expert 2 Piano 30 18 Basic

Each player was asked to play two pieces without reading a score: the first was
a piece the player knew well and that was not demanding (easy-familiar piece);
the second was a more difficult piece requiring higher concentration (challenging-
unfamiliar piece). All pieces were different from each other, because this max-
imised the players’ comfort and allowed for better concentration on the music.
The musicians played one after the other, and wore the NeuroSky MindWave
toolkit while playing. The recording sessions were done in the Montecastelli Mu-
sic Hall, a chamber concert hall that hosts both scientific venues and concerts
[3].
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Fig. 1. Visual comparison of brain signals of the involved musicians. For each musi-
cian, signals of 2s and 10s are reported, which were selected from high-concentration
moments in the execution of a piece.
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The music hall was reserved for this experiment and the musicians were isolated
from distractions. At the end of the recording sessions, 40 minutes of audio
and brain signals had been recorded in total, with equal distribution of time
per musician. The power spectra in the Gamma-Delta bands were extracted (5
features at 1s rate). Although the number of musicians was not high, a large
number of brain signals and spectral features were collected.

Segments of EEG signals with several lengths were cut and treated as dif-
ferent signals for models training and testing. Training and test sets involved
also signals belonging to the same musician, i.e. they included a potential intra-
subject correlation. However, a time series cross-correlation analysis revealed an
average 0.2 correlation score (with maximum 0.4 and minimum 0.008) across all
training sets. This means that there was poor intra-subject correlation, possibly
because the played pieces were articulated and did not contain repeated musi-
cal sequences. To further decrease this effect, completely disjoint training and
test sets were also prepared though a leave-one-out procedure, where the tested
musician’s signals were not involved in the training set, i.e. for every musician,
an ANN was tested for the classification of the EEG segments of the musician,
after being trained on the EEG segments of the other musicians.

An Artificial Neural Network classifier was built to automatically classify a
musician’s signal segment as belonging to either a piano or a violin player (Figure
2). The segment length containing the maximum discriminant information was
one parameter to identify, other than the ANN topology maximising the classi-
fication performance. Segment lengths between 1s and 30s were explored (which
maintained the size of the training and test sets statistically significant), and
the optimal ANN topology was searched between 2 and 5 layers. The ANN used
a logistic sigmoid activation function in the neurons and a standard backpropa-
gation algorithm implementation for network training [47], with 1000 maximum
iterations, 0.9 learning rate, and a 0.001 threshold on the mean squared error. A
total number of ∼700,000 combinations of segment lengths and topologies were
tested, which explains the necessity of using a cloud computing platform. For
each fixed-length segment, DataMiner used a growing strategy to search for the
best (i) number of layers, (ii) number of neurons in each layer, and (iii) a di-
chotomic classification threshold on the output. This strategy basically consists
in adding neurons and layers as far as the error with respect to the training set
decreases down to a certain threshold [8].

As input to the ANN, power spectrum features vectors from the brain sig-
nal segments were used. Features associated to a segment larger than 1s were
built by concatenating the 1s power spectrum vectors completely included in the
segment. For example, a 20s segment was represented as the concatenation of 5
spectral features (one for each second), i.e. as a 100 features vector (= 20 · 5).
Features in all bands were used because the EEG reported instrument-specific
activity in all of them, sometimes with long time span. The ANNs were trained
to output 0 for pianists and 1 for violinists and a 10-fold cross-validation test
(using each EEG segment as one instance) was used to assess the performance
of each step of the growing process, i.e. the EEG segments were assigned to
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10 clusters and one cluster was used to test the model trained with all the
other clusters. For each cluster, the accuracy of the classification was calculated
as n. of test segments correctly classified

overall n. of test segments and an overall accuracy on all clusters was
calculated as the average of the single-cluster accuracies. In order to reduce over-
fitting issues and dependency between the training vectors, consecutive signal
segments were never assigned to the same cluster.

The schematic flow of our method for model building can be summarised as
follows:

For each musician m ∈ [1, 9]:
Record brain signals while playing an easy-familiar piece
Record brain signals while playing a challenging-unfamiliar piece

For each musician's brain signal:
Prepare sets of segments containing signals from length 1s to 30s:

{S1}m · · · {S30}m

For each union of all the sets of segments of length k seconds (with
k ∈ [1, 30]), i.e Gk = {Sk}1 ∪ {Sk}2 ∪ . . . ∪ {Sk}9:
Distribute all Gk segments onto 10 groups, with the constraint

that one group should not contain consecutive segments from one
brain signal

Find the ANN topology with the highest performance, using a growing
strategy while performing a 10-fold cross-validation test using
the previously defined 10 groups

Use the best found ANN topology to perform a cross-validation test
based on the nine {Sk}m sets constituting Gk (leave-out-out
process)

Record the ANN topology with the highest performance in the 10-fold
cross-validation test, which thus identifies the optimal segment
length k∗

By using this flow, the optimal segment length k∗ was found to be 20s (i.e. the
ANN had 120 input neurons). The best topology was made up of 2 hidden layers
with 100 neurons in the first hidden layer and 20 neurons in the second, and one
output neuron (Figure 2). Further, our flow reported an optimal classification
threshold of 0.7 for this topology in the 10-fold cross-validation test.
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Fig. 2. Schema of our automatic classifier. The power spectrum is extracted from
the spectrogram at 1s rate as a vector of numeric features; the vectors in a 20s signal
segment are concatenated and used as input to a multi-layer Artificial Neural Network;
the output of the model is a continuous function on which a threshold is used to classify
the input vector as either belonging to a violinist or a pianist.
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3.2 Performance

Table 2. Performance of our automatic classifier at the variation of the pieces, of the
involved musicians, and of their expertise.

Average Accuracy Max. Accuracy Min. Accuracy
Easy-familiar pieces only - expert musicians only - no cellist

65% 70% 50%
Challenging-unfamiliar pieces only - expert musicians only - no cellist
65% 75% 50%

All pieces - expert musicians only - no cellist
72.5% 87.5% 50%

All pieces - expert musicians + cellist (as violinist)
80% 90% 70%

All pieces - expert and good musicians + cellist (as violinist)
81.6% 91.7% 75%

All pieces - expert and good musicians + cellist (as pianist)
59.9% 75% 50%
All pieces - expert, good, and basic musicians + cellist (as violinist)

74.3% 85.7% 64.3%

The variation of the performance of our model was calculated at the variation
of the musicians and of the pieces involved in the training process (Table 2). In
particular, involving the cellist increased the performance when he was classified
as a violinist in the training set (from 72.5% to 80%). On the contrary, indicating
his brain signals as pianists’ signals decreased the overall model’s performance
to 59.9%. This scenario indicates that the cellist’s signals resemble more the
violinists’ ones. This observation may seem intuitive, but is not trivial because
playing a cello involves completely different movements with respect to playing
a violin, although these are both arc instruments. However, other studies have
reported this same scenario from a neurophysiological perspective by observing
that cellists and violinists have larger and similar cortical activation patterns in
the right hemisphere, whereas pianists have larger activity in the left hemisphere
[20,29].

Including a non-expert player in the model’s training, improved the perfor-
mance (from 80% to 81.6%) only if he had some experience. In fact, including a
player with basic expertise strongly decreased the performance (down to 74.3%),
i.e. the ANN was confounded by his brain signals. Overall, the model with the
highest performance was the one involving both expert and good players and all
pieces (81.6% with a peak of 91.7%). With these pieces and musicians, an aver-
age accuracy of 79.5% was calculated by using a leave-one-out approach, where
all the signals of the tested musician were excluded from the training set and
were used only for testing the performance. This low decrease of performance
indicates that the model is poorly affected by intra-subject correlation.
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The performance of our model likely depends on other factors than motion
artefacts, because these mostly affect only one of the involved features (the
Delta) and were partially mitigated by the used filters. Thus, our model is indeed
capturing distinctive information that exists in the brain signals recorder by the
Fp1 EEG sensor.

4 Conclusions

In this paper, an automatic classifier of violinists and pianists has been presented,
based on features extracted from EEG signals in the Fp1 cortex position. Ex-
istence of distinctive information, probably related to common patterns in the
brain signal spectra of the players, has been identified especially in 20s signal
segments by a four-layer Artificial Neural Network. This model was built after
testing a large parameters space through a cloud computing platform, which
was able to overcome the use of a non-optimal equipment and the absence of
neurophysiological a priori assumptions.

Our study is a preliminary investigation and enforcement of the very com-
plex hypothesis that musicians’ brain signals similarities depend on the played
instrument and on musical expertise. The main drawback of our model is that
it does not report explicit patterns, because it is not possible to extract an an-
alytical form of the classification function associated to the ANN. Nevertheless,
it reveals that distinctive information exists and should be further explored, e.g.
with more powerful equipment or by embedding neurophysiological information
in the model or by using deep-learning techniques. Also, our results suggest to
investigate musicians’ brain signals similarities in terms of their correlation with
the way sound is produced [44]. For example, the highlighted similarity between
the cellist and the violinists may be due to their constant interaction with a con-
tinuous sound, whereas pianists interact with digital-like sounds. This difference
could be explored starting from the evaluation of how music reading and listen-
ing would change the performance of our classifier. Indeed, the effect of music on
EEG activity has been already highlighted by other studies [53], some of which
have also classified and categorized musicians based on their EEG response to
music listening [31,46]. Our computational approach is suited for these further
explorations especially because of its Open Science compliance, since it allows
(i) repeating the experiment with a larger corpus, (ii) involving other musicians
and instruments, and (iii) reusing the ANN model thanks to its publication a
standardized Web service.
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at the following links:
https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.

mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_REGRESSOR
https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.

mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_TRAINER
The source code is available at http://svn.research-infrastructures.eu/public/d4science/gcube/trunk/data-analysis/EcologicalEngine/

src/main/java/org/gcube/dataanalysis/ecoengine/models/
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