
Future Generation Computer Systems 157 (2024) 226–236

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A scalable multi-density clustering approach to detect city hotspots in a smart
city
Eugenio Cesario a,∗, Paolo Lindia a, Andrea Vinci b

a University of Calabria, Rende (CS), Italy
b ICAR-CNR, Rende (CS), Italy

A R T I C L E I N F O

Keywords:
Multi density-based clustering
Parallel data mining
Smart city

A B S T R A C T

In the field of Smart City applications, the analysis of urban data to detect city hotspots, i.e., regions where
urban events (such as pollution peaks, virus infections, traffic spikes, and crimes) occur at a higher density than
in the rest of the dataset, is becoming a common task. The detection of such hotspots can serve as a valuable
organizational technique for framing detailed information about a metropolitan area, providing high-level
spatial knowledge for planners, scientists, and policymakers. From the algorithmic viewpoint, classic density-
based clustering algorithms are very effective in discovering hotspots characterized by homogeneous density;
however, their application on multi-density data can produce inaccurate results. For such a reason, since
metropolitan cities are characterized by areas with significantly variable densities, multi-density clustering
approaches are more effective in discovering city hotspots. Moreover, the growing volumes of data collected
in urban environments require the development of parallel approaches, in order to take advantage of scalable
executions offered by Edge and Cloud environments. This paper describes the design and implementation of
a parallel multi-density clustering algorithm aimed at analyzing high volumes of urban data in an efficient
way. The experimental evaluation shows that the proposed parallel clustering approach takes out encouraging
advantages in terms of execution time, speedup, and efficiency.
1. Introduction

In recent years, Edge Computing has emerged as a major com-
puting paradigm in several contexts, such as multimedia streaming,
autonomous vehicles, cognitive buildings, and Smart Cities [1–3]. In
this paradigm, data is stored and elaborated as close as possible to the
sources of information to improve response times and save bandwidth.
For instance, in Smart Cities, several edge computing nodes can be
deployed in different city areas to collect and elaborate information,
e.g., on traffic [1], drainage network [2], and power grids [3], in order
to fast provide knowledge about the city, optimize energy consumption,
or perform local control on infrastructures [4,5].

The integration of Edge and Cloud Computing paradigms is lever-
aging the development of several solutions, which are shown to be
particularly useful in the field of distributed machine learning methods:
computation and data are spread between the edge and the cloud
in order to produce efficient, scalable, and accurate prediction mod-
els [3,4,6–8]. In fact, interconnected edge nodes provide a first layer of
computation, which can be exploited to filter and aggregate data, which
is then stored and analyzed in a remote cloud layer. This approach aims
to reduce network and latency congestion, as each edge node computes

∗ Corresponding author.
E-mail addresses: eugenio.cesario@unical.it (E. Cesario), paolo.lindia@dimes.unical.it (P. Lindia), andrea.vinci@icar.cnr.it (A. Vinci).

its own local data, by reducing the exchange of information with the
other nodes and the cloud as much as possible. Such a locality-based
principle can proficiently reduce communication network congestion,
and improve the computational efficiency and scalability of the appli-
cations [9]. However, such heterogeneous computing infrastructures
require novel approaches to enable distributed and parallel machine
learning analysis that can leverage both edge computing and cloud
resources.

In the field of Smart City applications, the detection of city hotspots
is becoming a more and more popular task [10,11]. Given the avail-
ability of geo-referenced data, urban hotspots may be thought of as
homogeneous zones in spatial data, each with its own characteristics,
such as density, distribution, and boundaries. The detection of differ-
ent hotspots in a city is useful to extract specific spatial knowledge
in large metropolitan regions, studying each hotspot individually, or
discovering relationships between distinct hotspots. Such knowledge
can provide high-level summaries for spatial datasets, which is valuable
information to support the work of scientists, city planners, and policy-
makers [12,13]. For example, information collected through sensor
networks can be utilized by city managers to gain valuable insights into
vailable online 28 March 2024
167-739X/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.03.042
Received 26 September 2023; Received in revised form 1 March 2024; Accepted 26
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:eugenio.cesario@unical.it
mailto:paolo.lindia@dimes.unical.it
mailto:andrea.vinci@icar.cnr.it
https://doi.org/10.1016/j.future.2024.03.042
https://doi.org/10.1016/j.future.2024.03.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.042&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
the condition of urban infrastructures, enabling prompt or predictive
maintenance actions on roads, water and power delivery systems [14].
As another instance, in environmental analysis scientists typically di-
vide a city into zones depending on environmental variables such as
pollutant density or atmospheric conditions. In epidemic analysis, the
detection of hotspots is useful to forecast spreading trends [15,16] in
cities and countries. In crime analysis, police departments are interested
in identifying locations with similar crime behaviors, so as to char-
acterize the urban territory and forecast crime trends [17]. This can
be exploited to efficiently deploy officers over the urban territory and
to better govern the municipality in terms of public safety. However,
several studies warn against the so-called pre-crime effect [18,19],
thus policymakers and administrators should take advantage of these
capabilities avoiding discrimination, ethnic profiling, the neglection
of paramount principles such as the presumption of innocence, and
pre-emptive security policies.

Among various techniques for spatial analysis, density-based clus-
tering algorithms have been proven highly effective in identifying
urban hotspots within a city. Usually, these algorithms have the ca-
pability to automatically detect the number of clusters, as well as to
identify clusters of arbitrary shapes and sizes, which are useful prop-
erties to effectively discover spatial hotspots in urban territories [10,
20,21]. In particular, since the density of population, traffic, or events
in cities can largely vary from one area to another area (thus showing
multi-density distributions of points), several studies show that multi-
density-based approaches outperform classic algorithms to discover
urban hotspots in metropolitan cities [10,11,22,23].

The multi-density distribution of population in metropolitan cities
is also quantitatively confirmed by the coefficient of variation 𝑐𝑣, rep-
resenting the relative standard deviation of urban population density.
Specifically, for a given city, 𝑐𝑣 is formally defined as 𝑐𝑣 = 𝜎∕𝜇,
where 𝜎 represents the standard deviation of the population density
within the city, and 𝜇 is the average population density. Thus, the
coefficient of variation is a dimensionless measure estimating the vari-
ation in population density within a city. A higher 𝑐𝑣 value indicates
a more evident non-uniformity in the population density of a city.
On the basis of computed 𝑐𝑣 values, a recent study presented in [20]
highlights the considerable variability in densities within metropolitan
cities, highlighting the appropriateness to apply multi-density detection
algorithms for the accurate detection of city hotspots.

Working on such a research activity, we recently developed a multi-
density clustering algorithm to discover spatial hotspots in urban en-
vironments [20]. In particular, the algorithm has been specifically
designed to analyze data generated in metropolitan cities, whose den-
sity data distributions are heavily characterized by high variability,
making de facto classic density-based clustering detect inaccurate city
hotspots. More in detail, the algorithm proposed in [20] overtakes this
issue through a preliminary computation of density variations among
data points, and by performing a preliminary partitioning of the data
into several density level sets (each one characterized by homogeneous
density distributions). However, although the algorithm demonstrates
good results in terms of clustering accuracy, some steps of the approach
are computationally intensive and require parallelization to leverage
the scalable execution offered by an Edge–Cloud environment. This
arises from two main reasons: firstly, the computational cost of process-
ing large data volumes, and secondly, the geographical distribution of
computing nodes in urban Edge–Cloud infrastructures. In fact, consid-
ering the increasing data volumes collected in urban environments, the
analysis of such large datasets on a single machine could take a very
long processing time to get results; consequently, employing parallel
data mining approaches becomes essential to enhance computational
efficiency and scalability. Furthermore, the widespread availability of
nodes in Edge–Cloud infrastructures provides access to a distributed
pool of computing resources on the Edge, offering an effective means
227

to run parallel and distributed algorithms.
This paper describes the design and implementation of a paral-
lel multi-density clustering algorithm, capable of discovering spatial
hotspots from urban data and suitable for deployment and run in
an edge–cloud environment. Specifically, the proposed solution (de-
scribed by a workflow formalism) is the parallelization of CHD (City
Hotspot Detector), i.e., a sequential multi-density clustering approach
we proposed in [20], aimed at analyzing a high volume of data in an
efficient way. Briefly, the CHD algorithm is composed of several steps,
as follows. First, the neighborhood density for each point is estimated
by calculating its K-nearest neighbors’ reachability distance. Then,
the points are sorted w.r.t. their estimated density, and the density
variation between each consecutive couple of points in the ordered list
is computed; eventually, a rolling mean operator is applied to smooth
density variation values, thus making variations more stationary. On
the basis of such smoothed density variations, the points are parti-
tioned into several density level sets (DLSs), each one characterized
by homogeneous density distributions. Then, each density level set
is analyzed by a specific density-based clustering algorithm instance
(whose input parameters are automatically detected on the basis of the
specific DLS density), to detect clusters in the data partition. The final
result of the algorithm consists of a set of spatial clusters, each one
representing an urban hotspot. Some of the aforementioned steps are
very intensive from a computational viewpoint, particularly when the
analysis involves large data volumes. For such a reason, we propose a
scalable solution of CHD whose the k-nearest distance computation and
the multiple DB-SCAN executions (which are the most time-consuming
and critical steps) are parallelized, with the aim to achieve higher
performances and improve the scalability of the approach.

In order to show a concrete scenario to which such an approach can
be applied, we will present as a case study the analysis performed on
a real-world dataset collecting geo-referenced crime data of Chicago,
and we plot the detected crime hotspots on a map. Also, a scalability
analysis has been performed on large synthetic datasets (up to eight
million instances), to deal with high orders of magnitude under differ-
ent settings and with respect to several data sizes. The experimental
evaluation demonstrates that the parallel implementation produces
good results in terms of execution time, efficiency, and speed-up.

The rest of the paper is organized as follows. Section 2 outlines
related work in the area of machine learning based on edge–cloud
computing for smart city applications, and reports a review of the
most important approaches and applications in the multi-density spatial
clustering literature. Section 3 presents the problem formulation and
the parallel multi-density clustering algorithm proposed in the paper
together with the designed workflow. Section 4 describes the results
achieved on a real-world case study. Section 5 provides the experimen-
tal evaluation of the approach, in terms of execution time, efficiency,
and scalability. Finally, Section 6 concludes the paper and plans future
research works.

2. Related work

Several works have been proposed in the literature to show how
edge-based machine learning can provide useful algorithms in several
large-scale smart environments, such as Smart Power Grid, Smart Build-
ings, and Smart Cities [4–6]. In particular, in the field of Smart City
applications, the detection of city hotspots has become one of the most
relevant issues in urban environments [10,24–26]. With the aim of
providing a summary of the most representative research works in this
field, firstly we will review here some edge-based machine learning
applications in Smart environments (Section 2.1), and then we will
describe the most important approaches in the density-based spatial
clustering literature (Section 2.2).

2.1. Edge computing and machine learning.

Machine learning based on edge computing for Smart Cities is

a hot topic that has been covered in several works and applied in

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.

d
s
O
c

A
b
a
a
n
R
d

2

r
p
b
t
(
i
V
w
a
v
c
c

d
h
o
e
𝜖
H
p

real case studies [4–6,8]. In [4] a distributed near real-time traffic
forecasting application for edge computing environments is proposed,
based on a data distribution algorithm and a traffic forecasting model
for floating car data, to be deployed in a city-wide fog computing
infrastructure. The validation showed that the approach running on
an edge environment achieves higher efficiency than other cloud-
specific approaches in terms of computation distribution and reliability,
especially when connectivity issues may occur. In another recent rep-
resentative paper [5] a review of existing edge-based applications is
given, in the contexts of Smart Power Grid, Smart Power Management,
and Smart Waste Management. Ref. [27] presents a review study on
the most widely used approaches for moving computation at the edge
of the network, in order to make machine learning algorithms take
advantage of computing capabilities at the edge server level and at the
device level. In particular, they focus on operational aspects, including
data compression techniques, tools, frameworks, and hardware used in
concrete intelligent edge systems.

2.2. City hotspots detection.

The detection of city hotspots, i.e., urban areas in which events of
interest occur with high density, is a common task when analyzing
urban datasets [10,24–26]. For this purpose, several sequential and
parallel density-based approaches have been proposed in the literature.
Most of them are based on classic techniques, i.e., the well-known
DBSCAN and OPTICS algorithms [28–31], while others rely on multi-
density clustering techniques [10,20,22,23]. In this section, we will
briefly review some of the most representative research work in both
areas, also detailing those approaches that can be suitable for parallel
execution leveraging distributed edge–cloud computing nodes.

2.2.1. Classic density-based approaches.
The DBSCAN algorithm [28] is based on the concepts of core-points

and density-reachability. In this algorithm, a core-point is defined as
a point with at least a specific number of neighboring points, denoted
as 𝑚𝑖𝑛𝑃 𝑡𝑠, within a certain radius 𝜖 around it. A point is considered
reachable from a core point if it falls within its radius 𝜖 (directly
reachable) or if a path of directly reachable core points connecting
the core point to the specified point exists. DBSCAN forms clusters by
grouping data points that are connected to each other, while points not
connected to any core-points are labeled as outliers.

The OPTICS algorithm [29] (Ordering Points To Identify the Clus-
tering Structure) aims at creating an ordering of the data points by
reachability distance, given a 𝑚𝑖𝑛𝑃 𝑡𝑠 parameter. Such ordering is ex-
ploited to make a reachability plot, containing information about the
density-based clustering structure, which supports the analyst in choos-
ing the best 𝜖 parameter. The same ordered structure is exploited to
fast produce the same results of the DBSCAN clustering, after fixing
the 𝜖 parameter. Compared to DBSCAN, the data points ordering task
requires more resources in terms of computational power, but the
detection of a cluster is much faster.

Considering the algorithms described above, their parallel imple-
mentations have been proposed in [30] (DBSCAN-MR) and [31] (RP-
DBSCAN). Both approaches are based on data partitioning and map-
reduce patterns, and their efficiency has been assessed through a set of
experiments on large datasets. Furthermore, in [32] authors propose a
parallel approach based on DBSCAN to perform two-dimensional data
clustering, by partitioning the points on the basis of grid framing, and
using several procedures (Delaunay triangulation, unit-spherical empti-
ness checking using line separation, and bichromatic closest pairs)
to detect connectivity among core points. Also, they perform a wide
range of studies on synthetic and real-world datasets with various
parameters. In [33] authors propose ‘‘HY-DBSCAN ’’, which is a scalable
DBSCAN solution aimed at overtaking several computational issues
of the sequential implementation. In particular, the load balancing is
improved by exploiting a modified kd-tree to distribute points across
228

o

blocks; also, during local clustering, grid-based spatial indexing is used
for region queries; and, finally, for cluster merging, the authors propose
a distributed Rem’s Union-Find algorithm that resolves communication
deadlocks and converges to the correct result in a finite number of
iterations.

In [34] authors propose PDSDBSCAN, i.e., a parallel disjoint-set
based implementation of DBSCAN, which exploits graph algorithmic
concepts and disjoint-set data structures to break the sequential data
access order exhibited by classic DBSCAN executions. The main idea of
the approach is that each node runs a sequential DBSCAN instance on
its local data, to perform parallel computations of local clusters without
requiring communication among the nodes. In particular, clusters are
built by employing a tree-based bottom-up approach and modeled as
a tree-based structure. Then, local clusters (i.e., trees) are merged to
obtain the final clusters.

Another parallel version of DBSCAN is P-DBSCAN [35], which
exploits the PR-tree (Priority R-tree) as a spatial index data structure.
The algorithm first splits the input dataset into several parts; then, each
computational node builds a local PR-tree and executes its clustering
task on its local data independently from the other running nodes;
finally, the sub-results are aggregated into one final model. Authors
declare that P-DBSCAN achieves higher efficiency than sequential solu-
tions because the PR-Tree achieves higher computational efficiency in
query answering than the R*- and R-tree indexes [35].

Ref. [36] analyzes the computational bottlenecks of DBSCAN and
its inherent sequential control flow dependency at the point of the
recursive expansion. To overtake such limitations, authors propose
HPDBSCAN, a parallel approach of density-based clustering employing
three major techniques in order to break the sequentiality of DBSCAN,
i.e., (𝑖)a computation split heuristic for domain decomposition, (𝑖𝑖) a
ata index preprocessing step and (𝑖𝑖𝑖) a rule-based cluster merging
cheme. The experimental evaluation of HPDBSCAN, performed as an
penMP/MPI hybrid application [36], shows good results in terms of
omputation time and memory consumption.

A parallel version of DBSCAN based on SPARK is proposed in [37].
uthors first recognize that the large amount of distance computations
etween each node pairs, which is required to detect the core points
nd their neighbors, is the main computational bottleneck of the whole
lgorithm. To overtake it, authors implement parallelization mecha-
isms on Spark, and exploit an optimized partition method based on
Tree, and therefore perform several local DBSCAN runs parallelly on
ata partitions and merge the local results in a final clustering model.

.2.2. Multi density-based approaches.
The afore-described approaches are all based on the DB-SCAN algo-

ithm, thus their application on multi-density datasets may not provide
roper results, as they are not suitable for discriminating clusters on the
asis of different densities. Several approaches have been proposed in
he literature to overcome this issue. In [10] the VDBSCAN algorithm
Varied Density Based Spatial Clustering of Applications with Noise)
s proposed, aiming at detecting clusters having different densities.
DBSCAN computes an ordered list of k-dist values for each object,
here each k-dist element is the minimum distance so that k points
re included in the object’s neighborhood. This ordered set can be
isualized and exploited to detect the sharp changes of the k-dist values
orresponding to a list of several radius values, in order to generate
lusters with different densities.

The approach proposed in [23], namely K-DBSCAN, evaluates the
ensity of each data point (similarly to KDDCLUS), identifies k sets
aving similar densities, and associates the same 𝜖 value to the elements
f the same set, thus producing k 𝜖-values. These are exploited to
xecute a variation of the DBSCAN, which takes into account different
values for each data point, thus detecting varied-density clusters.
owever, similarly to the k-means, the approach is very dependent on a
roper setting of the parameter k, which is crucial to specify the number

f the different 𝜖 values to be evaluated.

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.

1
1

v
i
a
b
p
r
s
s

r
t
t
a

Algorithm 1 The CHD Algorithm [20].
Require:

: urban event dataset;
𝑘 : an integer value to compute the k-neighborhood density;
𝜔 : a coefficient for the density variation threshold;
𝑠 : smoothing window size;

Ensure:
𝑈𝐻 = {𝑢ℎ1, 𝑢ℎ2,… , 𝑢ℎ𝐻}: a set of H city hotspots;

1: 𝑘𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡 ← ComputeKDist(𝐷,𝐾)
2: 𝑑𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡 ← ComputeDensityVariation(𝑘𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡)
3: 𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡 ← MovingAverageFiltering(𝑑𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡, 𝑠)
4: 𝜏 ← 𝜇(𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡) + 𝜔 ⋅ 𝜎(𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡);
5: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝑆𝑒𝑡𝑠𝐿𝑖𝑠𝑡 ← PartitionDensityVariation(,𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑒𝑛𝑉 𝑎𝑟𝐿𝑖𝑠𝑡,𝜏);
6: epsList ← ComputeEpsValues(𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝑆𝑒𝑡𝑠𝐿𝑖𝑠𝑡);
7: for each 𝜖𝑖 𝑖𝑛 𝑒𝑝𝑠𝐿𝑖𝑠𝑡 do
8: 𝐷𝐿𝑆𝑖 ← 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝑆𝑒𝑡[𝑖]
9: (𝑢ℎ𝜖𝑖) ← DBSCAN(𝐷𝐿𝑆𝑖, 𝜖𝑖, 𝑘)

10: 𝑈𝐻 ← 𝑈𝐻 ∪ 𝑢ℎ𝜖𝑖
1: end for
2: return (𝑈𝐻)
Ref. [22] presents an algorithm to perform big data clustering with
aried density, using a Hadoop platform running MapReduce. The main
dea of this research study is the use of a local density detection
pproach to find each point’s density. This has been implemented
y integrating the MR-VDBSCAN approach [38] in the architecture
roposed in [22], to detect clusters with varying densities. Also, authors
ely on the application of a load balancing strategy to deal with large-
cale datasets, in order to achieve efficient speed-up and scale-up for
kewed big data.

In [39], authors proposed an adaptive Multi-density DBSCAN algo-
ithm (AMD-DBSCAN) with an improved parameter adaptation method
o search for multiple parameters pairs,i.e., Eps and MinPts, that allows
he model to detect clusters with different density levels. The proposed
pproach is a novel exploration of 𝑘𝑑𝑖𝑠𝑡 value, which is the 𝑘th nearest

neighbor of a point, to search for multiple parameter pairs matching the
distribution of the dataset. Once the lists of candidate Eps and MinPts
have been obtained, DBSCAN is executed on the different subsets of
data.

The work presented in [17] describes CHD (City Hotspot Detector),
an approach based on multi-density clustering, which has been specif-
ically designed to discover urban hotspots in a city. In particular, to
deal with the high density variability among different areas of urban
environments, a moving average filtering technique is exploited to
smooth out density fluctuations and highlight main trends. An exten-
sive comparative analysis of CHD with other state-of-art density-based
clustering algorithms, on both state-of-the-art and real-world datasets,
has been reported in [11,20], showing that it detects higher quality
city hotspots than other classic density-based approaches proposed in
the literature. In [40] a parallel solution of CHD has been sketched, to
achieve higher performance in terms of scalability. Some preliminary
tests, conducted up to a low number of parallel nodes, have shown
encouraging results in terms of execution time and speedup.

2.3. New material with respect to the conference paper.

The current paper largely extends the work presented in [40] and
provides several original contributions with respect to the previous one,
as summarized in the following. Section 3 has been extended (w.r.t. the
conference paper) and the algorithm workflow description has been
enhanced, by providing more details about the steps to improve the
performance of the approach. Section 4 reports as a case study the
detection of crime hotspots in the whole city of Chicago, to show
the usefulness of the algorithm in a real-world application, which is
an original contribution of this paper and has not been published
229
elsewhere. Section 5 has been largely enhanced in several parts. First,
the experimental testbed has been extended from 4 up to 32 nodes, to
perform a scalability analysis on a higher number of servers. Then, tests
have been performed on higher data volumes, by extending the size of
input data from one-hundred thousand to eight million instances, in
order to carry out a scalability performance analysis on a very large
dataset. Finally, an extensive experimental analysis has been devoted
to investigating how the algorithm performance, in terms of execution
time, speed-up, and efficiency is related to the number of computing
nodes and the dataset size. Figs. 5, 6, 7, 8 and 9 are completely original
figures of this paper and have not been published elsewhere. Finally,
Sections 1 and 2 have been extended and modified in several parts, and
the whole paper has been carefully restructured.

3. Multi-density urban hotspots detection: Sequential and parallel
approaches

This section first presents the City Hotspot Detector (CHD) algo-
rithm proposed in the paper [20] by discussing the problem formulation
and summarizing the related sequential algorithm. Then, we illustrate
a parallel version of CHD, based on the distributed computation of the
most computing intensive tasks on parallel running nodes.

3.1. Problem formulation

Let 𝐷 be a dataset collecting spatial urban data instances, 𝐷 =
{𝑑1, 𝑑2,… , 𝑑

|𝐷|

}, where each 𝑑𝑖 is a data tuple described by
⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒⟩, where 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 are the coordinates of
the place the event occurs. For our purpose, urban events can be traffic
spikes, crimes, viral infections, pollution peaks, etc., that is, any event
that happens and is localized in urban areas. The goal of the analysis
is to discover a set 𝑈𝐻 of urban hotspots, 𝑈𝐻 = {𝑢ℎ1, 𝑢ℎ2,… , 𝑢ℎ𝐻},
where an urban hotspot 𝑢ℎℎ is a spatial contiguous area characterized
by events having higher density with respect to other areas in the city.

3.2. A sequential approach

The meta-code of the sequential approach for discovering multi-
density urban hotspots is reported in Algorithm 1. The algorithm
receives in input the dataset 𝐷, the integers 𝑘 and 𝑠, and the real
number 𝜔. Specifically, 𝑘 is an integer value to tune the k-neighborhood
density, 𝜔 is a tuning coefficient to compute the density variation
threshold, 𝑠 is a smoothing parameter exploited for smoothing density

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.

e
h

n

d
o
v
t
t
m
s
d
𝜏
e
C
l
s
e
i
b
d
1
c
u
d

3

h
s
s
f
e
(
m
c
b
p
d
e
d
a
a
p
m
d
d
n
e
s
r
e
t

c

o

m
𝑘

S
a
1
h
l

S
p
o

variation levels (as explained later in the section). The algorithm com-
putes and returns a set of urban hotspots 𝑈𝐻 = {𝑢ℎ1,… , 𝑢ℎ𝐻}, where
ach hotspot can be characterized by a different density w.r.t. other
otspots.

The algorithm begins by computing, for each point 𝑑𝑖, the 𝑘-nearest
eighbor distance of 𝑑𝑖, given a certain 𝑘. This is performed by the
ComputeKDist(𝐷, 𝑘) method, which computes the distance between each
𝑑𝑖 ∈ 𝐷 and its 𝑘th-nearest neighbor points (line 1). The method returns
the 𝑘−𝑑𝑖𝑠𝑡𝐿𝑖𝑠𝑡 data structure, i.e., a list storing in ascending order the 𝑘-
nearest neighbor distance of each point 𝑑𝑖 ∈ 𝐷. It is worth noting that the
𝑘-nearest neighbor distance value of a certain point 𝑑𝑖 is proportionally
related to the point density: the higher such a distance, the lower the
density of points around 𝑑𝑖 [41]. As this step is completed, the Compute-
Density-Variation(𝑘 − 𝑑𝑖𝑠𝑡𝐿𝑖𝑠𝑡) method computes the density variation
list of each point 𝑑𝑖 with respect to the next point 𝑑𝑖+1 in the sorted
𝑘 − 𝑑𝑖𝑠𝑡𝐿𝑖𝑠𝑡 and returns the density variation list (line 2). The resulting
ensity variation is then smoothed by applying a moving average filter
n a window size 𝑠 (line 3), in order to make more stable the density
ariation and to properly highlight peeks and deeps. On the basis of
he computed smoothed density variation list, the density variation
hreshold 𝜏 is computed (line 4). Then, the PartitionDensityVariation
ethod builds a list of density level sets (line 5), where a density level
et consists of a partition of data points that are consecutive in the
ensity variation list and that have a density variation lower than
. Thus, the points are divided into several density level sets (DLS)s,
ach one characterized by a density distribution. At this point, the
ompute-Eps-Values method computes the 𝜖 values, by evaluating the

evel-turning line for each density level set (line 6). Such values are
tored and returned in the 𝜖 − 𝑙𝑖𝑠𝑡, i.e., a list of 𝜖 values that are
stimated as the best values with respect to the different densities
n the data [41]. Finally, each density level set 𝐷𝐿𝑆𝑖 is processed
y the DBScan clustering algorithm with parameters (𝜖𝑖, 𝑘), and the
iscovered clusters 𝑈𝐻𝜖𝑖 are added to the final cluster set (lines 7–
1). All non-marked points are recognized as noise. The final result 𝑈𝐻
onsists of a set of spatial clusters, each one representing an event-dense
rban hotspot, detected by different 𝜖-value settings (i.e., by different
ensities).

.3. A parallel approach

The sequential approach for discovering multi-density urban
otspots described in the previous section is a sequence of concatenated
teps, some very intensive from a computational viewpoint. However,
ome steps can be naturally parallelized in order to achieve higher per-
ormances. In particular, as it will be better shown in the experimental
valuation section (Section 5), both the k-nearest distance computation
line 1) and the multiple DB-SCAN executions (lines 7–11) steps are the
ost time-consuming and critical ones. For such a reason, our effort

onsists in the parallelization of these two steps, which has been done
y implementing a Single Program Multiple Data (SPMD) parallelism
attern [42,43]. More precisely, in SPMD parallelism, the large-scale
ata to be processed is split among the 𝑛 available processors, each
xecuting in parallel the same computation (or algorithm) over a
esignated subset of the input dataset. The final result is obtained
s a combination of the local models outputs produced by the 𝑛
lgorithms, as shown in Fig. 1. In our case, we exploited the SPMD
aradigm to parallelize both the k-nearest distance computation and the
ultiple DB-SCAN executions steps. In the first one, the original urban
ataset is horizontally split into several subsets, then the subsets are
istributed to the computational nodes to parallelly compute the 𝑘th-
earest neighbors of the points in each subset. Instead, for the DBSCAN
xecutions, the input data points are preliminarily partitioned into
everal density level sets (DLSs), then several DBSCAN instances are
un on each specific partition in parallel to detect the clusters from
ach DLS; afterwards, the final clustering model is obtained by joining
230

he clusters detected by each local computation.
Fig. 1. SPMD parallelism pattern.

Now, in order to have a clear view of the whole parallel approach
we propose in this paper, Fig. 2 shows it by exploiting the work-
flow formalism, i.e., a graph in which nodes represent data sources,
algorithms, and outputs, and edges represent execution dependencies
among nodes. The original dataset 𝐷 contains urban data instances
(represented in the previously described format) of events that oc-
curred in an urban environment. In particular, let us suppose that
the original dataset is composed of 𝑁 instances, each one represented
by ⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒⟩-couple. The workflow comprises six steps (see
Fig. 2), each one described in the following.

Step 1 — Data Mapping. The original urban dataset is partitioned
by the Data Mapper in 𝑀 horizontal partitions 𝐷1,… , 𝐷𝑀 , whose size
(i.e., number of instances) is balanced among them, and thus each
consisting of |𝐷𝑖| ≅

1
𝑀 |𝐷| data points, for 𝑖 = 1,… ,𝑀 . The partitions

are then distributed to the computational nodes to compute the partials
k-nearest-neighbors of each data point (see Step 2), assuring that intra-
partition and inter-partition comparisons are performed for all data
points, and hence ensuring that each couple of partition ⟨𝐷𝑖, 𝐷𝑗⟩ with
𝑖 ≥ 𝑗 is processed at least once by a computing node. Thus, each
computing node elaborates a subset 𝑆 ∈  of the partitions 𝐷1,… , 𝐷𝑀 ,
where 𝑠 ∈ 𝑆 is a data point, and || = 𝑁 (𝑁 is the number of available
computing nodes). It is worth noticing that this data partitioning and
mapping is an additional step with respect to the sequential case (where
no splitting step is contemplated), and it is aimed at improving the
scalability of the whole approach.

Step 2 — Partial K-nearest-neighbors computing. This step is aimed
at computing the 𝑘th-nearest neighbor of each point in each subset
𝑆 of partitions distributed to nodes, given a certain 𝑘 parameter.
Specifically, for each data point 𝑥 in the subset 𝑆, the set 𝑘𝑛𝑛𝑥𝑆 is
omputed, such that 𝑘𝑛𝑛𝑥𝑆 ⊆ 𝑆, |𝑘𝑛𝑛𝑥𝑆 | = 𝑘, and ∀𝑥′ ∈ 𝑆∖𝑘𝑛𝑛𝑥𝑆 ,
𝑑𝑖𝑠𝑡(𝑥, 𝑥′) ≥ max𝑥′′∈𝑆 𝑑𝑖𝑠𝑡(𝑥, 𝑥′′). In the workflow, this is done by
running 𝑁 k-nearest-neighbor computations, each one taking in input
one of the  subsets built at the previous step. The result consists of
a set {𝑘𝑛𝑛1,… , 𝑘𝑛𝑛𝑁}, where each 𝑘𝑛𝑛𝑖 contains the 𝑘-nearest neighbors
f each 𝑥 ∈ 𝑆𝑖 with respect to 𝑆𝑖.

Step 3.1 — K-distance List Computation. This step aims to compute
the global k-distList for each 𝑑𝑖 ∈ 𝐷, by merging the information
computed in the previous step. First, for each 𝑑𝑖 ∈ 𝐷, a set of 𝑘𝑛𝑛𝑑𝑖
is computed by searching the k-nearest neighbors of 𝑑𝑖 in all the sets
𝑘𝑛𝑛𝑆 where 𝑑𝑖 ∈ 𝑆. Then, the k-distance of each 𝑑𝑖 is computed as
ax𝑥′∈𝑘𝑛𝑛𝑑𝑖 𝑑𝑖𝑠𝑡(𝑑𝑖, 𝑥

′). In this way, the final result is the list storing the
-nearest neighbor distance of each point 𝑑𝑖 ∈ 𝐷.

tep 3.2 — Smoothed Density Variation Evaluator. This step is
imed at performing the computations defined on line 3 of Algorithm
, in order to make more stable the density variation and to properly
ighlights peeks and deeps. The result is the smoothed density variation
ist, described in Section 3.2.

tep 3.3 — Density Level Sets Synthetizer. This step is aimed at
erforming two sequential tasks. First, the density variation thresh-
ld 𝜏 is computed on the basis of the computed smoothed density

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
Fig. 2. Multi-density algorithm workflow.
Fig. 3. Geo-localized crime events and detected crime hotspots in Chicago (2001–2022).
variation values. As a consequence of that, a list of the density level
sets 𝐷𝐿𝑆 = {𝐷𝐿𝑆1,… , 𝐷𝐿𝑆𝑅}, i.e., collections of data points whose
density variations are lower than 𝜏, is built.

Step 4 — Eps-list Computation. In this step, for each density level
set 𝐷𝐿𝑆𝑖, an 𝜖𝑖 value is estimated. According to [41], for a certain
density level set 𝐷𝐿𝑆𝑖, its corresponding 𝜖𝑖 is chosen by considering
the maximum 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of points belonging to 𝐷𝐿𝑆𝑖.

Step 5 — Several DB-Scan Executions. For each 𝜖𝑖 (computed at the
previous step), a DBSCAN instance is executed on the corresponding
density level set 𝐷𝐿𝑆𝑖. These runs are performed in parallel, by exploit-
ing the available 𝑁 nodes. The parallelization of this step is crucial to
the whole scalability of the approach, because it is the most relevant
time consuming stage of the entire process. More precisely, this step is
performed in parallel on the available 𝑁 computing nodes, where each
𝐷𝐿𝑆𝑖 is analyzed by an instance of DBSCAN(𝜖𝑖, 𝑚𝑖𝑛_𝑝𝑡𝑠) and produces a
clustering model 𝑈𝐻𝜖𝑖 . Each clustering model is a set of clusters/dense
regions detected on the specific density level set.

Step 6 — Clusters Collection. All discovered clusters {𝑈𝐻𝜖1 ,… , 𝑈𝐻𝜖𝑅}
are added to the final cluster set 𝑈𝐻 = ∪𝑖=1...𝑅𝑈𝐻𝑖, where all non-
marked points are recognized as noise in the final clustering model. The
final result consists in a set of spatial clusters, each one representing
an event-dense urban hotspot, detected by different 𝜖-value settings
(i.e., by different densities).

4. Application of CHD on a real case-study: detecting crime
hotspots in Chicago

To show a real-world application of the algorithm described above,
we show as a case study the analysis performed to detect crime hotspots
231
in the whole area of Chicago. The analysis has been performed on
the ’Crimes - 2001 to present’ dataset, available on the Chicago Data
Portal,1 which is a real-life collection of instances describing criminal
events that occurred in Chicago from 2001 to the present. Each instance
corresponds to a geo-localized crime event, described by longitude
and latitude attributes. From the whole dataset, we selected the crime
events occurred in the city from 2001 to 2022, totally amounting to
about six million instances. The considered city boundaries and the
collected geo-localized crime events are shown in Fig. 3(a). The area
consists of several urban districts, each characterized by different densi-
ties of population, economic activities, crimes, etc. (thus an interesting
task for multi-density hotspot analysis).

The execution of the algorithm on the aforementioned dataset has
produced a set of spatial clusters, each one representing an urban
hotspot, as shown in Fig. 3(b). Interestingly, this image shows how
crime events are clustered on the basis of a density criteria; the four
most significant hotspots are zoomed-in on the left and rights sides
of Fig. 3(b), clearly recognizable in several parts of the area (colored
in green, red, blue and yellow). Many other hotspots are detected,
representing areas having minor crime-densities w.r.t. the highlighted
ones, or local high-density crime zones surrounded by low-density ones.
Such results have been achieved by fixing 𝜔 = −0.27, 𝑘 = 64, 𝑠 = 5000,
which have been assessed to best suit our application scenario. The
analysis of how the parameter setting affects the results quality has
been deeply studied in [11] and is out of the scope of this paper.

In order to make the experimental execution workflow more clear,
Fig. 4 sketches the steps of the approach, by graphically showing the

1 Source: https://data.cityofchicago.org/.

https://data.cityofchicago.org/

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
Fig. 4. Experiment Workflow.
data involved during the running steps. The input geo-referenced data
is split in several subsets (step 1), to compute the partial k-nearest
neighbors of all points (step 2). Then, the k-distance and density varia-
tion lists are computed and, on the basis of the 𝜏 value, the points are
partitioned on several density level sets (step 3). For each density level
set, an 𝜖 value is estimated (step 4) and a DBSCAN instance is executed,
to discover the clusters in each DLS (step 5). Finally, all discovered
clusters are collected and aggregated in a final global clustering model
(step 6).

5. Experimental evaluation and results

To evaluate the scalability of the multi-density clustering approach
described in Section 3, we conducted a comprehensive series of exper-
iments by testing the parallel approach in various scenarios. We have
tested the parallel approach on synthetic datasets to deal with higher
orders of magnitude, which are not achievable on the real dataset due
to its limited cardinality, under different settings and with respect to
several data sizes (up to eight million events).

In the rest of the section, we will first describe the experimental
setting, the synthetic dataset exploited to run the tests, and the per-
formance metrics exploited to assess the performance of the approach
(Section 5.1). Then, we will present the results of the evaluation in-
vestigating the execution time, the efficiency, and the scalability when
varying the number of nodes and data volumes (Section 5.2).

5.1. Experimental setting and performance metrics

The approach described in the previous section has been developed
in Python and leveraging the scikit-learn library. Experiments
were performed on a cluster, located at the University of Calabria (UNI-
CAL), composed of thirteen nodes each having four AMD Opteron(TM)
6376 processors (16 CORE, 2.3 GHz) and sixteen 16 GB RAM modules
(256 GB RAM). The total number of cores is 832 (on 52 processors),
and the total RAM size is 3328 GB.

In particular, model parallelization has been implemented by com-
bining the two libraries Dask.distributed and
joblib. Dask.distributed is a centrally managed, distributed,
dynamic task scheduler. The central dask scheduler process co-
ordinates the actions of several dask worker processes, which are
spread across multiple machines, and the concurrent requests of sev-
eral clients. joblib provides a simple helper class to write parallel
for loops using multiprocessing. The core idea is to write the code
to be executed as a generator expression and convert it to parallel
computing. Dask can scale Joblib-backed algorithms out to a cluster
of machines by providing an alternative to the default Joblib backend
232
which is capable of running parallel tasks only in a single computing
environment. The choice of the Joblib library, which natively offers
thread- and process-based parallelisms, has been natural since it is used
to write several Scikit-Learn algorithms for parallel execution [44]. The
source code implementing the Parallel CHD algorithm shown in this
paper is made available to the research community.2

In order to evaluate the proposed approach, we developed an ad-
hoc data generator to produce synthetic data (named Chess data). More
in detail, to deal with different data sizes, we built several datasets,
composed by 1M, 2M, 4M, and 8M instances respectively. Each dataset
has been generated by first building a set of pre-defined spatial squared
cells, and then populating each cell by points whose density is randomly
selected within a set of 64 possible different densities. The final result is
a multi-density dataset, composed of squared cells having different den-
sities. The points within each cell are randomly positioned according to
a uniform probability distribution, on both the vertical and horizontal
axes. As an instance, Fig. 5 shows the 1M instances Chess dataset, where
cell densities vary from 64 points per cell to 1764 points per cell. The
data generator code is also available to the community.3

Finally, let us introduce the performance metrics adopted during
our tests. As a matter of fact, the goal of the evaluation is to assess
the execution time and scalability of the algorithm, by analyzing the
time taken by each step and comparing the performances achieved by
both sequential and parallel executions. In particular, we evaluated the
results by exploiting the following performance metrics:

• Execution time: the total execution time of the distributed algo-
rithm varying the number of running nodes, that is, the elapsed
time from task submission until the final result is returned to
it; formally, the time taken by the algorithm to execute on a
single node is called the sequential execution time and it is denoted
by 𝐸𝑇1, while the execution time of the corresponding parallel
implementation on 𝑛 identical nodes is called the parallel execution
time and it is denoted by 𝐸𝑇𝑛.

• Speed-up: the ratio of the turnaround time elapsed by exploiting
one node to the turnaround time on 𝑛 nodes, which measures how
much performance gain is achieved by parallelizing a given ap-
plication over a sequential implementation; formally, the speedup
on 𝑛 nodes is defined as 𝑆𝑛 =

𝐸𝑇1
𝐸𝑇𝑛

.

2 The Parallel CHD implementation exploited for evaluating the approach
is available here: https://gitlab.com/chd3/parallel-chd.

3 https://gitlab.com/chd3/datasets

https://gitlab.com/chd3/parallel-chd
https://gitlab.com/chd3/datasets

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
Fig. 5. Chess Synthetic Dataset, 1 million points.

Table 1
Experimental setting values.

Symbol Meaning Values

𝐷𝑥 𝑥 instance dataset 1M–8M
𝑁 n. of nodes 1–32
𝜔 density variation threshold −0,27
𝑘 k-nearest neighbor distance parameter 64
𝑠 smoothing window size 5000

• Efficiency : the ratio between speedup and the number of pro-
cessing nodes, which measures the percentage of time for which
processing nodes are usefully exploited for computation (and not
for communication tasks or even idling); formally, the efficiency
on 𝑛 nodes is defined as 𝐸𝑛 =

𝑆𝑛
𝑛 .

5.2. Scalability analysis

The performance evaluation of the approach, to assess the execution
time, scalability and efficiency of the whole task, has been carried
out by running our tests varying the data size and the number of
computing nodes. Specifically, from the whole dataset we created four
data partitions composed of 1, 2, 4 and 8 million instances, referred
in the following as 𝐷1𝑀 , 𝐷2𝑀 , 𝐷4𝑀 , and 𝐷8𝑀 , respectively. Those four
datasets have been used in the experimental evaluation. Table 1 reports
a summary of the experimental setting, with dataset sizes, number of
nodes, and the input parameters values fixed during the tests.

As an initial result, Fig. 6 shows the turnaround times of the
approach as it runs on a range of computing nodes, from 1 to 32,
across various data sizes. Therefore, the chart can also be seen as a
comparison between sequential and parallel executions. In particular,
Fig. 6(a) shows how the turnaround time decreases as the number of
nodes increases, for different dataset sizes. For instance, for the 𝐷1𝑀
dataset the turnaround time decreases from 699 s obtained on a single
node, to 49 s on 32 nodes. For the 𝐷2𝑀 dataset the turnaround time
diminishes from 1663 s to 84 s. For the 𝐷4𝑀 dataset the turnaround
time decreases from 3577 s to 176 s. Finally, on the 𝐷8𝑀 dataset, the
turnaround time ranges from 7634 to 365 s using 32 nodes. Fig. 6(b)
shows the relationship between turnaround time and dataset size, for a
different number of servers. The graph shows that the time required to
execute the entire approach increases proportionally with the increase
of the input size. On the other side, the time required to execute
the entire algorithm diminishes in proportion to the augmentation of
computational resources.

Fig. 7 shows the execution speed-up and the efficiency of the
approach as the number of computing nodes increases, versus different
data sizes. In Fig. 7(a) it becomes evident that the speed-up is nearly
linear with all datasets, up to the case of 8 nodes. For instance, on the
𝐷8𝑀 dataset it achieves a value of 6.63. Then, for 16 and 32 nodes, it
still maintains a notable trend, assessing on 11.97 and 20.88, respec-
tively. Overall, these results show a reasonable scalability of the parallel
approach till 32 nodes. Fig. 7(b) shows the application efficiency, vs
the number of servers and for different number of instances. As shown
233
in the figure, efficiency maintains a good trend and notable values till
the case of 16 parallel nodes, in particular for large data volumes. For
example, for the largest dataset the efficiency on 8 servers is equal
to 0.83, whereas on 16 servers it is slightly below 0.8 (0.75). So, it
means that the 83% and 75% of the computing power of each used
server is exploited, respectively. For 32 nodes the efficiency is 0.65.
Furthermore, it is worth noting that fixed the number of servers, the
efficiency increases with the data size. This suggests that as the problem
size increases, the distributed architecture becomes more convenient,
which is an indicator of good scalability characteristics.

Fig. 8 shows the parallel execution time, partitioned for the amount
required by each step of the approach, varying the data size and the
number of servers. In particular, Fig. 8(a) shows the parallel execution
time varying the number of data instances, achieved by exploiting 32
nodes. It is evident that the k-distance detection and DB-Scan execution
steps take the majority of the total execution time. For example, for
𝐷8𝑀 and 32 nodes, the k-distance detection and DB-Scan execution
steps take around the 97% of the total execution time (25% and 72%
respectively), and the other steps take only the remaining 3% of the
total time. In particular, while the first one has a linear increasing
trend with respect to data size, the second one shows a quadratic
order increasing with respect to the number of instances (according to
the temporal complexity of the DBScan algorithm). On the other side,
Fig. 8(b) shows the parallel execution time for each step varying the
number of nodes, for the eight-million instances case. The chart con-
firms that the turnaround time decreases with higher number of nodes,
in particular due to the reduction of the parallel DB-Scan executions.

Fig. 9 shows overhead and turnaround times, for 16 and 32 nodes,
versus increasing data sizes. We considered as overhead the time
required by the approach to perform all the additional operations
with respect to the sequential execution. This includes algorithmic
operations (horizontal data splitting, clusters collection) as well as
communication operations of each step of the workflow to execute. The
overhead increases with the dataset size and the number of running
nodes. However, we can observe that the overhead takes only a very
small amount (almost negligible) of the total turnaround time, showing
that the majority of the execution time is due to computation.

Fig. 10 compares the speedup retrieved by our experimentation
with the speedup of two parallel density-based algorithms, namely,
HPDBSCAN and PDSDBSCAN, as reported in the paper [36], on datasets
of about 4M tuples. The Parallel CHD algorithm outperforms PDSDB-
SCAN by considering nodes 1 to 32, while, even if performances of
HPDBSCAN seem to be better w.r.t. nodes 1 to 16, the results on 32
nodes are more favorable to the proposed parallel implementation of
CHD. As a final remark, it is worth noting that, even if the three
compared algorithms are all density-based, only the CHD can detect
clusters each characterized by a different internal density.

6. Conclusion

This paper has presented a parallel multi-density clustering algo-
rithm, to discover spatial hotspots from urban data. The experimental
evaluation of the proposed approach has been performed on several
synthetic datasets, showing good results in terms of execution time,
speed-up and efficiency of the approach. Also, a case study based on
the analysis of a real-world dataset (a collection of geo-referenced crime
data of Chicago) is presented, with the aim to show a concrete scenario
on which such an algorithm can be applied on.

In future work, other research issues may be investigated. First,
we plan to extend the approach to perform an automatic setting of
the input parameter values, by executing a parameter sweeping proce-
dure exploiting the running nodes in parallel. Second, we may further
explore the algorithm application on other urban domains, i.e., mobil-
ity, pollution, micro-climate, etc., to discover multi-density hotspots
for other kinds of events. Finally, we are interested in studying the
algorithm scalability and efficiency on a large-scale Edge–Cloud archi-
tecture, in order to assess the performance on a real-time applicative
domain.

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.

C

n
i
o
i
C

D

c
i

Fig. 6. Execution times in different scenarios.
Fig. 7. Speed-up and efficiency vs the number of available nodes, for different data sizes.
Fig. 8. Turnaround time (with the partial times required by each step) vs the number of available nodes (a) and different data sizes (b).
D

A

P
Q
p
U
(
-

RediT authorship contribution statement

Eugenio Cesario: Writing – review & editing, Writing – origi-
al draft, Validation, Supervision, Methodology. Paolo Lindia: Writ-
ng – review & editing, Writing – original draft, Validation, Method-
logy, Conceptualization. Andrea Vinci: Writing – review & edit-
ng, Writing – original draft, Validation, Supervision, Methodology,
onceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
234

-

ata availability

Data will be made available on request.

cknowledgments

This research has been supported by the ‘‘PNRR MUR project
E0000013-FAIR’’ and the ‘‘ICSC National Centre for HPC, Big Data and
uantum Computing’’ (CN00000013) within the NextGenerationEU
rogram. This work has also been partially supported by European
nion - NextGenerationEU - National Recovery and Resilience Plan

Piano Nazionale di Ripresa e Resilienza, PNRR) - Project: ‘‘SoBigData.it
Strengthening the Italian RI for Social Mining and Big Data Analytics’’
Prot. IR0000013 - Avviso n. 3264 del 28/12/2021, and by the Italian

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
Fig. 9. T-Drive: Overhead time vs data sizes.

Fig. 10. Speedup Comparison between CHD, HPDBSCAN and PDSDBSCAN.

Ministry of University and Research, PRIN 2022 ‘‘INSIDER: INtelligent
ServIce Deployment for advanced cloud-EdgeintegRation’’, grant n.
2022WWSCRR, CUP H53D23003670006.

References

[1] Guanxiong Liu, Hang Shi, Abbas Kiani, Abdallah Khreishah, Joyoung Lee, Nirwan
Ansari, Chengjun Liu, Mustafa Mohammad Yousef, Smart traffic monitoring
system using computer vision and edge computing, IEEE Trans. Intell. Transp.
Syst. 23 (8) (2021) 12027–12038.

[2] Giuseppina Garofalo, Andrea Giordano, Patrizia Piro, Giandomenico Spezzano,
Andrea Vinci, A distributed real-time approach for mitigating CSO and flooding
in urban drainage systems, J. Netw. Comput. Appl. 78 (2017) 30–42.

[3] Grazia Belli, Andrea Giordano, Carlo Mastroianni, Daniele Menniti, Anna
Pinnarelli, Luigi Scarcello, Nicola Sorrentino, Maria Stillo, A unified model for
the optimal management of electrical and thermal equipment of a prosumer in
a DR environment, IEEE Trans. Smart Grid 10 (2) (2019) 1791–1800.

[4] Juan Luis Pérez, Alberto Gutierrez-Torre, Josep Ll Berral, David Carrera, A
resilient and distributed near real-time traffic forecasting application for Fog
computing environments, Future Gener. Comput. Syst. 87 (2018) 198–212.

[5] Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, Athana-
sios V. Vasilakos, Fog computing for sustainable smart cities: A survey, ACM
Comput. Surv. 50 (3) (2017) 1–43.

[6] Dixon Vimalajeewa, Chamil Kulatunga, Donagh P. Berry, Learning in the com-
pressed data domain: Application to milk quality prediction, Inform. Sci. 459
(2018) 149–167.

[7] Albino Altomare, Eugenio Cesario, Andrea Vinci, Data analytics for energy-
efficient clouds: design, implementation and evaluation, Int. J. Parallel Emergent
Distrib. Syst. 34 (6) (2019) 690–705.

[8] Franco Cicirelli, Antonio Guerrieri, Giandomenico Spezzano, Andrea Vinci,
Orazio Briante, Antonio Iera, Giuseppe Ruggeri, Edge computing and social
internet of things for large-scale smart environments development, IEEE Internet
Things J. 5 (4) (2017) 2557–2571.

[9] Marica Amadeo, Franco Cicirelli, Antonio Guerrieri, Giuseppe Ruggeri, Gian-
domenico Spezzano, Andrea Vinci, When edge intelligence meets cognitive
buildings: The COGITO platform, Internet Things (2023) 100908.

[10] Peng Liu, Dong Zhou, Naijun Wu, VDBSCAN: varied density based spatial
clustering of applications with noise, in: 2007 International Conference on
Service Systems and Service Management, IEEE, 2007, pp. 1–4.
235
[11] Eugenio Cesario, Paolo Lindia, Andrea Vinci, Detecting multi-density urban
hotspots in a smart city: Approaches, challenges and applications, Big Data Cogn.
Comput. 7 (1) (2023) 29.

[12] Cities: The century of the city, Nature 467 (2010) 900–901.
[13] Franco Cicirelli, Antonio Guerrieri, Carlo Mastroianni, Giandomenico Spezzano,

Andrea Vinci, The Internet of Things for Smart Urban Ecosystems, Springer,
2019.

[14] Mehdi Hosseinzadeh, Atefeh Hemmati, Amir Masoud Rahmani, Clustering for
smart cities in the internet of things: a review, Cluster Comput. 25 (6) (2022)
4097–4127.

[15] Clara Pizzuti, Annalisa Socievole, Bastian Prasse, Piet Van Mieghem, Network-
based prediction of COVID-19 epidemic spreading in Italy, Appl. Netw. Sci. 5
(2020) 1–22.

[16] Maria Pia Canino, Eugenio Cesario, Andrea Vinci, Shabnam Zarin, Epidemic
forecasting based on mobility patterns: an approach and experimental evaluation
on COVID-19 data, Soc. Netw. Anal. Min. 12 (1) (2022) 116.

[17] Eugenio Cesario, Paschal I. Uchubilo, Andrea Vinci, Xiaotian Zhu, Discovering
multi-density urban hotspots in a smart city, in: IEEE International Conference on
Smart Computing, SMARTCOMP 2020, Bologna, Italy, September 14-17, 2020,
IEEE, 2020, pp. 332–337.

[18] Rosamunde Van Brakel, Paul De Hert, Policing, surveillance and law in a pre-
crime society: Understanding the consequences of technology based strategies,
Technol. Led Polic. 20 (2011) 165–192.

[19] Wim Hardyns, Anneleen Rummens, Predictive policing as a new tool for law
enforcement? Recent developments and challenges, Eur. J. Crim. Policy Res. 24
(2018) 201–218.

[20] Eugenio Cesario, Paschal I. Uchubilo, Andrea Vinci, Xiaotian Zhu, Multi-
density urban hotspots detection in smart cities: A data-driven approach and
experiments, Pervasive Mob. Comput. 86 (2022).

[21] Eugenio Cesario, Big data analytics and smart cities: applications, challenges,
and opportunities, Front. Big Data 6:1149402 (2023) 1–13.

[22] Safanaz Heidari, Mahmood Alborzi, Reza Radfar, Mohammad Ali Afsharkazemi,
Ali Rajabzadeh Ghatari, Big data clustering with varied density based on
MapReduce, J. Big Data 6 (1) (2019) 77.

[23] Madhuri Debnath, Praveen Kumar Tripathi, Ramez Elmasri, K-DBSCAN: Identify-
ing spatial clusters with differing density levels, in: 2015 International Workshop
on Data Mining with Industrial Applications, DMIA, IEEE, 2015, pp. 51–60.

[24] Charlie Catlett, Eugenio Cesario, Domenico Talia, Andrea Vinci, Spatio-temporal
crime predictions in smart cities: A data-driven approach and experiments,
Pervasive Mob. Comput. 53 (2019) 62–74.

[25] Eugenio Cesario, Domenico Talia, Distributed data mining models as services on
the grid, in: Workshops Proceedings of the 8th IEEE International Conference
on Data Mining, ICDM 2008, December 15-19, 2008, Pisa, Italy, IEEE Computer
Society, 2008, pp. 486–495.

[26] Sushmita Mitra, Jay Nandy, KDDclus: A simple method for multi-density cluster-
ing, in: Proceedings of International Workshop on Soft Computing Applications
and Knowledge Discovery, SCAKD 2011, Moscow, Russia, Citeseer, 2011, pp.
72–76.

[27] M.G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh
Ananthanarayanan, Faraz Hussain, Machine learning at the network edge: A
survey, ACM Comput. Surv. 54 (8) (2021) 1–37.

[28] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al., A density-based
algorithm for discovering clusters in large spatial databases with noise, in: Kdd,
vol. 96, 1996, pp. 226–231.

[29] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, Jörg Sander, OPTICS:
ordering points to identify the clustering structure, in: ACM Sigmod Record, vol.
28, ACM, 1999, pp. 49–60.

[30] Bi-Ru Dai, I-Chang Lin, Efficient map/reduce-based dbscan algorithm with
optimized data partition, in: 2012 IEEE Fifth International Conference on Cloud
Computing, IEEE, 2012, pp. 59–66.

[31] Hwanjun Song, Jae-Gil Lee, RP-DBSCAN: A superfast parallel DBSCAN algo-
rithm based on random partitioning, in: Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 1173–1187.

[32] Yiqiu Wang, Yan Gu, Julian Shun, Theoretically-efficient and practical parallel
DBSCAN, in: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, Association for Computing Machinery, New
York, NY, USA, 2020, pp. 2555–2571.

[33] Guoqing Wu, Liqiang Cao, Hongyun Tian, Wei Wang, HY-DBSCAN: A hybrid
parallel DBSCAN clustering algorithm scalable on distributed-memory computers,
J. Parallel Distrib. Comput. 168 (2022) 57–69.

[34] Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, Alok N. Choudhary, A new scalable parallel DBSCAN algorithm using
the disjoint-set data structure, in: Jeffrey K. Hollingsworth (Ed.), SC Conference
on High Performance Computing Networking, Storage and Analysis, SC ’12,
IEEE/ACM, 2012, pp. 1–11.

[35] Min Chen, Xuedong Gao, Huifei Li, Parallel DBSCAN with priority R-tree,
in: 2010 2nd IEEE International Conference on Information Management and
Engineering, 2010, pp. 508–511.

http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb1
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb2
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb2
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb2
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb2
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb2
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb3
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb12
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb16
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb16
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb16
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb16
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb16
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb22
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb23
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb23
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb23
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb23
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb23
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb24
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb24
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb24
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb24
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb24
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb25
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb26
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb27
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb27
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb27
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb27
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb27
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb31
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb32
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb33
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb33
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb33
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb33
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb33
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb34
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb35
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb35

Future Generation Computer Systems 157 (2024) 226–236E. Cesario et al.
[36] Markus Götz, Christian Bodenstein, Morris Riedel, HPDBSCAN: highly par-
allel DBSCAN, in: Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, MLHPC 2015, ACM, 2015, pp.
1–10.

[37] Guangchun Luo, Xiaoyu Luo, Thomas Fairley Gooch, Ling Tian, Ke Qin, A
parallel DBSCAN algorithm based on spark, in: Zhipeng Cai, Rafal A. Angryk,
Wen-Zhan Song, Yingshu Li, Xiaojun Cao, Anu G. Bourgeois, Guangchun Luo,
Liang Cheng, Bhaskar Krishnamachari (Eds.), 2016 IEEE International Confer-
ences on Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications (Sustain-
Com), BDCloud-SocialCom-SustainCom 2016, IEEE Computer Society, 2016, pp.
548–553.

[38] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, Jianping Fan, MR-
DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed
data, Front. Comput. Sci. 8 (2014) 83–99.

[39] Ziqing Wang, Zhirong Ye, Yuyang Du, Yi Mao, Yanying Liu, Ziling Wu, Jun Wang,
AMD-DBSCAN: An adaptive multi-density DBSCAN for datasets of extremely
variable density, in: 2022 IEEE 9th International Conference on Data Science
and Advanced Analytics, DSAA, 2022, pp. 1–10.

[40] Eugenio Cesario, Andrea Vinci, Shabnam Zarin, Towards parallel multi-density
clustering for urban hotspots detection, in: 29th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing, PDP 2021, IEEE,
2021, pp. 245–248.

[41] Yufang Zhang Zhongyang Xiong, Xuan Zhang, Multi-density DBSCAN algo-
rithm based on density levels partitioning, J. Inf. Comput. Sci. 9 (10) (2012)
2739–2749.

[42] Antonio Congiusta, Domenico Talia, Paolo Trunfio, Parallel and grid-based data
mining, in: Data Mining and Knowledge Discovery Handbook, Springer US, 2005,
pp. 1017–1041.

[43] Mohammed J. Zaki, Parallel and distributed data mining: An introduction, in:
Large-Scale Parallel Data Mining, Springer, 2002, pp. 1–23.

[44] Scikit-learn & joblib, 2023, https://ml.dask.org/joblib.html. (Accessed 12
December 2023).
236
Eugenio Cesario is an Associate Professor of Computer
Engineering at University of Calabria (Italy). His research
interests fall in the broad areas of Data Analytics and
Parallel/Distributed Data Mining, and include Urban Com-
puting, Smart Cities, Crime Data Mining, Energy-aware
Cloud Computing, Cloud\Grid services architectures, Knowl-
edge Discovery applications. He co-authored over seventy
scientific papers in international journals, conference pro-
ceedings, and edited volumes. He is currently serving as
member of the Editorial Board of two journals. He received
two best paper awards and a best paper nomination in
three international conferences. He has been serving as a
chair, organizer, panelist and program committee member
of several international conferences.

Paolo Lindia is a Ph.D. student in Information and Commu-
nication Technologies (ICT) at the Department of Computer
Science, Modeling, Electronics and Systems Engineering
(DIMES) of the University of Calabria. He received the M.Sc.
degree in Data Science from Bicocca University, Italy. He
is also a member of the Scalable Computing and Cloud
Laboratory (SCALab) at DIMES, where he contributes to
research and development projects.

Andrea Vinci received a Ph.D. in system engineering and
computer science from the University of Calabria, Rende,
Italy. He is a Researcher with ICAR-CNR, Rende, Italy,
since 2012. His research mainly focuses on the Internet
of Things and cyber–physical systems. He has authored
or co-authored researches on the definitions of platforms
and methodologies for the design and implementation of
cyber–physical systems, and on distributed algorithms for
the efficient control of urban and building infrastructures
based on artificial and swarm intelligence.

http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb36
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb38
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb38
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb38
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb38
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb38
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb40
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb41
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb42
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb42
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb42
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb42
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb42
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb43
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb43
http://refhub.elsevier.com/S0167-739X(24)00112-2/sb43
https://ml.dask.org/joblib.html

	A scalable multi-density clustering approach to detect city hotspots in a smart city
	Introduction
	Related Work
	Edge Computing and Machine Learning.
	City Hotspots Detection.
	Classic density-based approaches.
	Multi density-based approaches.

	New material with respect to the conference paper.

	Multi-density Urban Hotspots detection: Sequential and Parallel approaches
	Problem Formulation
	A Sequential Approach
	A Parallel Approach

	Application of CHD on a real case-study: detecting crime hotspots in Chicago
	Experimental Evaluation and Results
	Experimental Setting and Performance Metrics
	Scalability analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

