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A B S T R A C T

Recent work on sample efficient training of Deep Neural Networks (DNNs) proposed a semi-supervised
methodology based on biologically inspired Hebbian learning, combined with traditional backprop-based
training. Promising results were achieved on various computer vision benchmarks, in scenarios of scarce labeled
data availability. However, current Hebbian learning solutions can hardly address large-scale scenarios due to
their demanding computational cost. In order to tackle this limitation, in this contribution, we investigate
a novel solution, named FastHebb (FH), based on the reformulation of Hebbian learning rules in terms of
matrix multiplications, which can be executed more efficiently on GPU. Starting from Soft-Winner-Takes-All
(SWTA) and Hebbian Principal Component Analysis (HPCA) learning rules, we formulate their improved FH
versions: SWTA-FH and HPCA-FH. We experimentally show that the proposed approach accelerates training
speed up to 70 times, allowing us to gracefully scale Hebbian learning experiments on large datasets and
network architectures such as ImageNet and VGG.
1. Introduction

Recent efforts from the research community focused on the devel-
opment of biologically plausible alternatives to the backpropagation
algorithm for Deep Neural Network (DNN) training. Biological con-
straints require neurons to use only locally available information to
compute the weight updates, and neuroscientific observations suggest
that synaptic plasticity follows the Hebbian model [1,2]. In simple
terms, the weight update should be proportional to the input on the
respective synapse, and the neuron output at a given point in time.
The study of biologically realistic learning models is interesting both
because they are well suited for neuromorphic applications [3,4], and
for the perspective to better understand the mechanisms behind biolog-
ical intelligence and use them to enhance current Artificial Intelligence
(AI) technologies.

Among the recently proposed bio-inspired learning approaches,
Contrastive Hebbian Learning (CHL) [5] and Equilibrium Propaga-
tion (EP) [6] leverage recurrent architectures with Hebbian and anti-
Hebbian phases, showing that the resulting update steps approximate
backprop. More recently, the Forward–Forward (FF) approach has
been proposed [7] for feedforward networks, which is also based on
an alternation between two phases. While the approaches mentioned
above focus on supervised learning solutions, a lot of attention on
bio-inspired methods has converged on unsupervised learning. For

∗ Corresponding author.
E-mail addresses: gabriele.lagani@isti.cnr.it (G. Lagani), fabrizio.falchi@isti.cnr.it (F. Falchi), claudio.gennaro@isti.cnr.it (C. Gennaro),

hannes.fassold@joanneum.at (H. Fassold), giuseppe.amato@isti.cnr.it (G. Amato).

example, the Similarity Matching criterion [8–11] or the Hebbian PCA
rule [12,13] allow neurons to learn to extract the principal components
from data. Similarly, Hebbian learning with Winner-Takes-All (WTA)
competition allows neurons to find clusters in the data space [14–20].
This reveals interesting connections between the Hebbian theory of
learning and data science.

In this work, we focus on a hybrid solution of unsupervised Heb-
bian learning and supervised backprop training, which are combined
together in a semi-supervised fashion. In fact, supervised training alone
has the disadvantage of requiring numerous training samples to achieve
high performances, but the latter are often expensive to gather, re-
quiring a consistent manual effort. To circumvent this issue, a possible
direction is to pre-train the model on a large amount of unlabeled data,
with an unsupervised algorithm, and then fine-tune with supervision
on a small labeled dataset [21,22]. In this scenario, recent work has
shown superior performance of Hebbian-based semi-supervised train-
ing, compared to other unsupervised methods for pre-training, such as
Variational Auto-Encoders (VAE) [23], especially in scenarios where
the available labeled data is scarce [13,17]. Due to the difficulty of
collecting labeled data, these scenarios are of strong practical interest.

Despite their promising results, current Hebbian learning solutions
can hardly be used to address large-scale problems, due to their de-
manding computational cost. In this perspective, the goal of our contri-
bution is to address the performance limitations of Hebbian algorithms.
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For this purpose, we developed a new Hebbian learning solution,
named FastHebb (FH), which is designed to better take advantage of

PU acceleration. This is done in two steps. First, we notice that
ebbian learning with mini-batch processing evolves in two stages,
ne is the weight update computation for each sample in the mini-
atch, and the other is the aggregation of updates over all the minibatch
lements. These two phases can be merged together with a significant
peedup. Second, the resulting Hebbian equations of synaptic updates
an be translated in terms of matrix multiplications, which can be
xecuted very efficiently on GPU. Specific FH improvements of estab-
ished Soft-Winner-Takes-All (SWTA) [15,16,20,24–26] and Hebbian
rincipal Component Analysis (HPCA) [8,11,12,27–29] learning rules
re formulated, leading to more performant SWTA-FH and HPCA-FH
ersions.

In order to provide an experimental evaluation of the proposed
ethod, we used established computer vision benchmarks such as
IFAR10/100 [30], Tiny ImageNet [31] and ImageNet [32]. Besides
he image classification evaluation, we also studied the performance of
ebbian neural features for Content-Based Image Retrieval (CBIR). We
onsidered sample efficient learning scenarios, where label information
s assumed to be available only for a certain percentage of the data used
or training. Results confirm previous observation about the superior
erformance of Hebbian-based semi-supervised approaches, compared
o alternative solutions, especially in label-scarce learning regimes.
oreover, the FastHebb solution exhibits a significant acceleration of

raining times, both compared to previous Hebbian learning solutions,
nd compared to backprop-based alternatives. In particular, FastHebb
chieves a peak improvement in training up to 70 times faster than cor-
esponding Hebbian approaches not leveraging FastHebb. This allowed
o gracefully scale Hebbian algorithms to large datasets, on the scale
f ImageNet, and architectures, on the scale of VGG [33]. Extending
ebbian learning to other types of architectures, such as residual
etworks [34] and transformers [35], in non-trivial and deserves to be
xplored in a separate work.

Some of the results on FastHebb were already presented in our
ecent conference publication [36]. However, those results were just
reliminary, and the aim of this paper is to significantly extend previous
ork. Compared to [36], this paper performs a more comprehensive
valuation of the method by considering two types of test scenarios,
mage classification and CBIR, over four different computer vision
enchmarks, including ImageNet. Moreover, we also extend the range
f backbone architectures on which the approach is applied, pushing
ebbian learning to VGG-scale architectures. Code is available online.1

In summary, our contribution is twofold:

1. A scalable solution for Hebbian synaptic updates is proposed;
2. Extensive evaluation of Hebbian algorithms is presented, in-

cluding new experiments on large-scale datasets (ImageNet) and
architectures (VGG) which (to the best of our knowledge) have
been out of reach for Hebbian algorithms so far.

Here is the structure of the following Sections: Section 2 illus-
rates related contributions; Section 3 describes the proposed FastHebb
ethod more in detail; Section 4 delves into the details of our ex-
erimental scenarios in sample efficient and large-scale settings; in
ection 5, the results of our experiments are described; conclusive
emarks are presented in Section 6.

. Background and related work

Some past contributions focused on addressing the biological plau-
ibility problem of backpropagation by proposing solutions that can be
hown to approximate backprop using Hebbian updates. Contrastive
ebbian Learning (CHL) [37] and Equilibrium Propagation (EP) [6]

1 https://github.com/GabrieleLagani/HebbianLearning/tree/fasthebb
2

approaches do so by leveraging recurrent network architectures with
two phases of activity. A free phase fixes the values of input neurons
to represent a given sample, while output neurons and the remaining
hidden units are left free. The recurrent dynamics lead the network
to settle down into a steady state, where an anti-Hebbian update is
performed. During the forced phase, the activations of output neurons
are also fixed to a value closer to the desired target. Again, the re-
current dynamics will induce the network into another steady state,
where a Hebbian update is performed. This combination of updates
can be shown to approximate backprop at each neuron, using only
local information. Another approach with strong biological support
is Predictive Coding (PC) [38], in which a layer optimizes a local
loss function that accounts for the error in predicting the next layer
activations. Optimization is performed in a nested fashion. First, neu-
ron activations are optimized to meet the objective, which leads to
the emergence of recurrent interactions among neurons, followed by
optimization of the weights. Again, the resulting updates can be shown
to match backprop updates using only local information [39]. The PC
approach has been successfully applied, in different flavors, to DNN
training [40–42]. More recently, the Forward–Forward (FF) approach
has been proposed [7]. This is based on standard feedforward architec-
tures, but using an input vector composed of both sample and target.
The approach alternates a positive phase, where sample and correct
target are provided to the network, which is required to maximize its
activations, and a negative phase, where the sample is paired with a
randomly generated target, and the network is required to minimize its
activations. In a previous work [43], we have used a similar method
for training biologically realistic models of in vitro cultured neural
networks, where sample and target are provided simultaneously to the
network, and Hebbian plasticity reinforces the connection between the
two, so that at test time, when a sample with no target is provided, the
network can recall the association. A weight normalization mechanism
plays the role of the negative phase in this case.

In addition to these attempts to model supervised learning from a
biologically plausible perspective, other efforts have been focused on
modeling bio-inspired unsupervised learning mechanisms. Past works
used Hebbian learning with WTA competition models to train feature
extractors in feedforward and/or convolutional CNNs [14–20], show-
ing impressive convergence speed. In particular, a recent work [26]
showed that soft-WTA training of DNNs allows the network to extract
increasingly abstract representations, in the same vein as backprop
training, but at the cost of using very wide layers. Indeed, while it is
known that Hebbian learning alone is unable to improve performance
in deeper networks [44,45], other factors such as network structure
(as in SoftHebb [16,26]), or the conditions of label availability for
training data [12] can result in interesting scenarios where Hebbian
learning is helpful. The SoftHebb method is similar in spirit to Fas-
tHebb, as it reformulates Hebbian updates in terms of convolution
operations for GPU-efficient computation, while our method leverages
matrix multiplications. However, it is not clear whether SoftHebb can
be extended also to other types of plasticity models, while FastHebb can
be flexibly adapted to a variety of competitive learning and subspace
learning principles, as we will show later. The authors also provide
experimental results with Hebbian learning on ImageNet, although only
for a single training epoch. The method that we propose allows us
to run a full training session (20 epochs or more) even on ImageNet
scale. Krotov’s learning rule [15] is a variant of WTA-based learning, for
which a Pytorch-optimized implementation has been provided in [46].
While the initial experimental analysis only focused on fully-connected
networks, promising results suggest that there is potential toward ex-
tending this method to deeper convolutional architectures. Miconi [44]
proposed translations of some Hebbian synaptic update equations into
optimizable objective functions, which are more relatable to common
frameworks for DL. A similar method based on surrogate losses is
adopted in the Hebbian–anti-Hebbian (HaH) network models [47,48],

as a mechanism to introduce local learning in DNN layers. The method

https://github.com/GabrieleLagani/HebbianLearning/tree/fasthebb
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is applied for training a VGG network model in a hybrid fashion,
i.e. lower layers are trained by HaH learning, while higher layers are
trained by backpropagation. Experimental analysis shows that the hy-
brid model is significantly more robust against adversarial noise [49].
In our contribution, we additionally show that FastHebb can scale even
to train all layers of a VGG network. Another line of research explored
the Similarity Matching objective as a possible direction to derive biolog-
ically plausible neural models for principal subspace extraction [8–11],
with extensions also to the supervised end-to-end recurrent training
case [50,51].

Other research on Hebbian learning has focused on different set-
tings, such as domain adaptation [52], cross-modal retrieval [53],
metalearning [54,55]. Moreover, recent studies investigated how bio-
logically plausible features could enable the brain to support certain
successful deep learning paradigms, such as weight sharing in convo-
lutional layers [56], or attention-based mechanisms in Transformer ar-
chitectures [57–59]. It has also been shown that networks trained with
biologically inspired principles exhibit certain properties of neuronal
selectivity observed also in primate brains [60].

In our past contributions, we took a hybrid approach, and explored
Hebbian WTA and PCA training of DNNs in semi-supervised scenarios,
using unsupervised Hebbian algorithms as a tool for pre-training [12,
13,61]. Experiments showed promising results, compared to backprop-
based alternative methods, especially in scarce data learning scenarios.
Due to the difficulty of gathering manually labeled data, these scenarios
are of strong practical interest. Given the promising results obtained
in previous works, in this contribution we further enhance previous
solutions towards achieving higher efficiency and scalability to more
complex scenarios.

Other works have explored semi-supervised approaches exploiting
unsupervised pre-training with backprop-based auto-encoding archi-
tectures [21,22,62,63]. A different direction towards semi-supervised
learning is instead based on pseudo-labeling or consistency-based meth-
ods [64–67]. Since our approach belongs to the unsupervised pre-
training category, we will focus our comparisons in this setting. How-
ever, it is worth mentioning that the other approaches are not mutually
exclusive with unsupervised pre-training, and, indeed, these can be
integrated together, as also suggested in Section 6

3. Speeding up Hebbian learning with FastHebb

In this Section we provide an overview of the FastHebb method.
Compared to our previous work [36], this contribution is significantly
extended with novel scenarios of experimental investigation: in ad-
dition to standard benchmarks for image recognition, we also con-
sider more applicative scenarios of Content-Based Information Retrieval
(CBIR). Moreover, we push our experiments to large-scale backbone
network architectures that were prohibitive before, such as VGG [33].

In the following, we start by introducing a convenient notation,
that will be used to translate Hebbian synaptic update equations into
the FastHebb formulation. Then, we illustrate the learning rules that
are analyzed in this work, and we derive their FastHebb-enhanced
counterpart.

3.1. A convenient notation

When working with common packages for DL, such as Pytorch, data
are typically represented as tensors. In this context, a tensor is simply a
data array with multiple dimensions. We wish to introduce a notation
for tensors that is better suited for relating mathematical formalism
with the corresponding implementation in DL packages. For example,
a tensor has a number of dimensions, whose interpretation lies in the
mind of the programmer (e.g. batch, channel, height, and width dimen-
sions for images). Given a tensor, packages such as Pytorch allow us
to transpose or permute any of its dimensions, which corresponds to
eordering indexes. We can also unsqueeze singleton dimensions or
3

squeeze them out, which correspond to adding or removing singleton
indexes, i.e. indexes of dimension 1. Therefore, in essence, the notation
that we introduce is motivated by a more straightforward mapping to
the programming formalism for working with tensors.

We consider tensors, denoted by capital letters, followed by one
index per dimension. The symbol used to denote the index denotes its
meaning. For example, we can use an index 𝑝 = 1...𝑃 to represent the
batch dimension, an index 𝑞 = 1...𝑄 to represent the channel dimension,
and index 𝑚 = 1...𝑀 to represent the weight vector dimension. A 1
symbol used as an index represents a singleton. For example, a neural
feature map at some layer can be denoted as 𝐴𝑝,𝑞,1, which is a tensor
with one element for each mini-batch element (dimension p) and for
each neuron (dimension q). The last dimension is a singleton because
the output of each neuron for each mini-batch element is a scalar.
Similarly, a weight matrix can be denoted by 𝐵1,𝑞,𝑚, because it does
not extend along the mini-batch dimension, but it has a number of
channels (one per neuron), and each corresponds to a weight vector.
Concerning the input tensors, for example images, they have a mini-
batch, channel, height, and width dimensions. However, due to the
convolutional processing, a patch will be extracted from each hori-
zontal and vertical location of each image, which is treated, for the
Hebbian learning purposes, as a separate input. Therefore, our mini-
batch is the collection of all patches extracted from all images. Each
patch is flattened into a vector, whose size corresponds to the weight
vector size of the next neural layer. On the other hand, this tensor does
not extend along the neuron dimension. Overall, our input tensors can
be represented as 𝐶𝑝,1,𝑚.

This notation is convenient, because it allows us to easily swap
indexes, or squeeze and unsqueeze singleton dimensions. If tensors have
compatible dimensions, we can also perform element-wise operations
(additions, multiplications, etc.). When a dimension is a singleton, it
automatically undergoes broadcasting, i.e. the tensor is replicated along
that direction until it matches the corresponding dimension of the other
tensor involved in the operation.

Matrix multiplication plays an important role in DNN processing.
We make the usage of matrix multiplications explicit in our notation,
by writing bmm(⋅, ⋅) (which stands for batch matrix multiplication):

𝑍𝑖,𝑗,𝑙 =
∑

𝑘
𝑈𝑖,𝑗,𝑘𝑉𝑖,𝑙,𝑘

=
∑

𝑘
𝑈𝑖,𝑗,𝑘𝑉𝑖,𝑘,𝑙 ∶= bmm(𝑈𝑖,𝑗,𝑘, 𝑉𝑖,𝑘,𝑙).

(1)

Notice that the matrix multiplication operation is equivalent to
taking the element-wise product between tensors 𝑈 and 𝑉 , identify-
ing the common index 𝑖 and summing over (or contracting) index 𝑘.
Specifically, index 𝑖 represents a batch dimension, and the operation is
a batch matrix multiplication between 𝑖 matrix pairs. For each pair, the
two matrices have indices (𝑗, 𝑘) and (𝑘, 𝑙), which are mapped to indices
(𝑗, 𝑙): (𝑗, 𝑘) × (𝑘, 𝑙) → (𝑗, 𝑙). The operation generalized to tensors with

ore that three dimensions as follows: all dimensions except the last
wo are considered as batch dimensions, while the last two dimensions
epresent rows and columns of the matrices being batch-multiplied.
atch dimensions must correspond between the two tensors, or be
ingleton (in which case, broadcasting takes place).

.2. Hebbian synaptic updates: from computation to aggregation

We consider two types of Hebbian learning rules: Hebbian PCA
HPCA) and soft-Winner-Takes-All (SWTA). In this paper, we just give
he definition of these learning rules, but the interested reader can find
ore details in [12,13,19,20].

Given a layer of neurons whose activations are denoted by 𝑎𝑞 (index
refers to the qth neuron in the layer), whose weight vectors are

enoted by 𝐛𝑞 , and whose input vector is denoted by 𝐜, the SWTA
ynaptic update equation is the following:

𝐛 = 𝛼 𝑠 (𝐜 − 𝐛 ), (2)
𝑞 𝑞 𝑞
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Fig. 1. Phases of weight update computation and aggregation, before and after FastHebb.
where 𝛼 stands for the learning rate and 𝑠𝑞 is the softmax of the
activations with temperature 𝑇 [68]:

𝑠𝑞 =
𝑎𝑞∕𝑇

∑

𝑘 𝑎𝑘∕𝑇
. (3)

Essentially, this modulates the update steps so that neurons with higher
activations will also ‘win’ larger updates.

The HPCA learning rule, instead, is the following:

𝛥𝐛𝑞 = 𝛼 𝑎𝑞 (𝐜 −
𝑞
∑

𝑘=1
𝑎𝑘𝐛𝑘). (4)

This rule can be shown to induce neurons to extract the principal
components from data [27,28].

When working with images and convolutional layers, these weight
updates need to be computed for each patch extracted from a given
image. However, due to the constraints of convolutional layers, neurons
at different offsets need to maintain shared weights, hence they are
bound to follow the same synaptic modifications. This can be achieved
by aggregating the different weight updates, obtained from patches
at different locations, into a unique update. Aggregation needs to be
performed for all the images in a mini-batch as well. The overall
two-phases approach is depicted in Fig. 1(a).
4

Aggregation is performed simply by averaging, in the HPCA case,
or by a weighted average, where the weights are 𝑠𝑞 coefficients, for
SWTA.

In the following, we show that it is possible to reformulate the
update computation and aggregation phases as a single stage, which
leverages matrix multiplications for efficient GPU computation. This is
depicted in Fig. 1(b).

3.3. From Hebbian synaptic updates to FastHebb

The Hebbian rules presented above can be rewritten in matrix
form, including the aggregation step, using the notation outlined at the
beginning of this Section:

𝛥𝐵1,𝑞,𝑚 =
∑

𝑝
𝐷𝑝,𝑞,1 𝛥𝐵𝑝,𝑞,𝑚 = bmm(𝐷𝑞,1,𝑝, 𝛥𝐵𝑞,𝑝,𝑚), (5)

where 𝛥𝐵𝑝,𝑞,𝑚 is the collection of all weight updates that need to be
aggregated, and 𝐷𝑝,𝑞,1 is the tensor of coefficients for the aggregation.

Now that the two phases of weight computation and aggregation
are merged together. We proceed differently depending on the specific
learning rule.



Neurocomputing 595 (2024) 127867G. Lagani et al.

𝛥

w
)

i
k
c

t

𝛥

w
l
a

r
r

𝛥

FastHebb for SWTA. Let us rewrite the SWTA update rule as follows:

𝐵1,𝑞,𝑚 = 𝛼
∑

𝑝
𝐷𝑝,𝑞,1 𝑆𝑝,𝑞,1

(

𝐶𝑝,1,𝑚 − 𝐵1,𝑞,𝑚

)

= 𝛼
∑

𝑝
(𝐷𝑆)𝑝,𝑞,1 (𝐶 − 𝐵)𝑝,𝑞,𝑚

= 𝛼 bmm
(

(𝐷𝑆)𝑞,1,𝑝, (𝐶 − 𝐵)𝑞,𝑝,𝑚
)

,

here 𝐷𝑝,𝑞,1 =
𝑆𝑝,𝑞,1

∑

𝑝 𝑆𝑝,𝑞,1
.

The computational complexity required by this algorithm is 𝑂(𝑃 𝑄𝑀
n time. Moreover, if we wish to exploit GPU parallelism, we need to
eep a 𝑃 × 𝑄 × 𝑀 tensor in memory, thus requiring 𝑂(𝑃 𝑄𝑀) space
omplexity as well, which can be prohibitive for large-scale scenarios.

However, it is possible to improve over these bounds by contracting
he aggregation index 𝑝 (which is typically the largest dimension) early:

𝐵1,𝑞,𝑚 = 𝛼
∑

𝑝
𝐷𝑝,𝑞,1 𝑆𝑝,𝑞,1

(

𝐶𝑝,1,𝑚 − 𝐵1,𝑞,𝑚

)

= 𝛼
∑

𝑝
(𝐷𝑆)𝑝,𝑞,1 𝐶𝑝,1,𝑚 − 𝛼

∑

𝑝
(𝐷𝑆)𝑝,𝑞,1 𝐵1,𝑞,𝑚

= 𝛼 bmm
(

(𝐷𝑆)1,𝑞,𝑚, 𝐶1,𝑞,𝑚

)

− 𝛼
∑

𝑝
(𝐷𝑆)𝑝,𝑞,1 𝐵1,𝑞,𝑚

= 𝛼 bmm
(

(𝐷𝑆)1,𝑞,𝑝, 𝐶1,𝑝,𝑚

)

− 𝛼 𝐸1,𝑞,1 𝐵1,𝑞,𝑚,

where 𝐸1,𝑞,1 =
∑

𝑝(𝐷𝑆)𝑝,𝑞,1.
This requires only 𝑂(𝑄 (𝑃 +𝑀)) space complexity. Concerning the

time complexity, this depends on the specific matrix multiplication
algorithm adopted, but this can be made lower than 𝑂(𝑃 𝑄𝑀). This
is the FastHebb formulation for SWTA.

FastHebb for HPCA. Similarly to the SWTA case, we can rewrite the
HPCA equation, together with the aggregation phase (in this case, the
coefficient 𝐷𝑝,𝑞,1 is just 1

𝑃 ), with the proposed notation:

𝛥𝐵1,𝑞,𝑚 = 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1

(

𝐶𝑝,1,𝑚 −
𝑞
∑

𝑞′=1
𝐴𝑝,𝑞′ ,1 𝐵1,𝑞′ ,𝑚

)

= 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1

(

𝐶𝑝,1,𝑚 −
𝑄
∑

𝑞′=1
𝑇𝑞,𝑞′ 𝐴𝑝,𝑞′ ,1 𝐵1,𝑞′ ,𝑚

)

= 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1 𝐹𝑝,𝑞,𝑚

= 𝛼 1
𝑃

bmm
(

𝐴𝑞,1,𝑝, 𝐹𝑞,𝑝,𝑚

)

,

here 𝐹𝑝,𝑞,𝑚 =
(

𝐶𝑝,1,𝑚 −
∑𝑄

𝑞′=1 𝑇𝑞,𝑞′ 𝐴𝑝,𝑞′ ,1 𝐵1,𝑞′ ,𝑚

)

, and 𝑇𝑞,𝑞′ is simply a
ower-triangular matrix with all ones on and below the main diagonal
nd all zeros above.

The computation of the HPCA equation is slightly more complex,
equiring 𝑂(𝑃𝑄2𝑀) space and time, but this can be improved by
eordering the sums:

𝐵1,𝑞,𝑚 = 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1

(

𝐶𝑝,1,𝑚 −
𝑄
∑

𝑞′=1
𝑇𝑞,𝑞′ 𝐴𝑝,𝑞′ ,1 𝐵1,𝑞′ ,𝑚

)

= 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1 𝐶𝑝,1,𝑚

− 𝛼 1
𝑃

∑

𝑝
𝐴𝑝,𝑞,1

𝑄
∑

𝑞′=1
𝑇𝑞,𝑞′ 𝐴𝑝,𝑞′ ,1 𝐵1,𝑞′ ,𝑚

= 𝛼 1
𝑃

bmm
(

𝐴1,𝑞,𝑝, 𝐶1,𝑝,𝑚

)

− 𝛼 1
𝑃

𝑄
∑

𝑞′=1

∑

𝑝
𝐴𝑝,𝑞,1 𝐴𝑝,𝑞′ ,1 𝑇𝑞,𝑞′ 𝐵1,𝑞′ ,𝑚

= 𝛼 1
𝑃

bmm
(

𝐴1,𝑞,𝑝, 𝐶1,𝑝,𝑚

)

− 𝛼 1
𝑃

𝑄
∑

bmm
(

𝐴1,𝑞,𝑝, 𝐴1,𝑝,𝑞′
)

𝑇𝑞,𝑞′ 𝐵1,𝑞′ ,𝑚
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𝑞′=1
= 𝛼 1
𝑃

bmm
(

𝐴1,𝑞,𝑝, 𝐶1,𝑝,𝑚

)

− 𝛼 1
𝑃

𝑄
∑

𝑞′=1
𝐺1,𝑞,𝑞′ 𝐵1,𝑞′ ,𝑚

= 𝛼 1
𝑃

bmm
(

𝐴1,𝑞,𝑝, 𝐶1,𝑝,𝑚

)

− 𝛼 1
𝑃

bmm
(

𝐺1,𝑞,𝑞′ , 𝐵1,𝑞′ ,𝑚

)

,

where, 𝐺1,𝑞,𝑞′ = bmm
(

𝐴1,𝑞,𝑝, 𝐴1,𝑝,𝑞′
)

𝑇𝑞,𝑞′ .
The overall computation now has 𝑂(𝑄2+𝑄𝑀) complexity in space,

and up to 𝑂(𝑃𝑄𝑀 + 𝑃𝑄2 + 𝑄2𝑀) in time. This is the FastHebb
formulation for HPCA.

3.4. A variety of layers

Even though theoretical developments still need to be address in
order to extend Hebbian learning to certain types of layers, such as
residual or attention blocks, there is already a variety of neural network
modules that can be leveraged with the currently available tools. In
particular:

• Convolutional [69] can immediately rely on the FH formulation
developed above, as it has been specifically designed for this type
of processing.

• Fully-Connected (FC) [1] layers can be reduced to convolutional
layers with kernel size equal to the whole input size, so that
learning rules for convolutional layers can be reused in the FC
case.

• BatchNorm [70] layers are already capable of learning without
external feedback, computing running mean and variance pa-
rameters from batch statistics. As far as the affine parameters
are concerned, this can be left untrained during unsupervised
training, and fine-tuned in a successive supervised phase.

• ReLU [71] layers, or other activation functions, which do not
have learnable parameters, do not require training.

• Dropout [72], again, does not have learnable parameters, hence
training is not necessary.

4. Evaluation scenario

We evaluated the proposed methodology on a number of established
computer vision benchmarks: CIFAR10/100 [30], Tiny ImageNet [31],
and ImageNet [32]. We performed an evaluation of Hebbian-based
approaches in semi-supervised learning settings, on a backbone net-
work model described in the following, compared to a Variational
Auto-Encoder (VAE) [21,23] baseline. In addition, we provide a Fas-
tHebb evaluation on VGG [33], to show the scalability of the proposed
approach to large architectures. We evaluated the performance both
in terms of classification accuracy, and in terms of training speedup
achieved with FastHebb. We also provide an evaluation of Hebbian
neural features for large-scale image retrieval tasks.

4.1. Neural network backbone for evaluation

In order to provide an evaluation for the proposed approach, we
need to define a suitable backbone network architecture for our exper-
iments. For this purpose, we need a network that presents the common
architectural features of Convolutional Neural Networks (pooling and
convolutional layers [69], batch normalization [70], etc.). On the
other hand, we need to exclude more recent features such as residual
connections [34] or attention layers [35], for Hebbian algorithms are
not trivial to generalize to these cases, which deserve to be analyzed
in a separate work. For a first experimentation stage, we do not need
to consider a very large model; it is instead preferable to consider a
more compact architecture, which enables faster experimentation, and

easier analysis of deep features, also on a layer-by-layer basis. It also
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Fig. 2. Backbone neural network model used in our experiments.
Fig. 3. Bigger neural network model for the ImageNet experiments.
makes reproducibility by other researchers more accessible. Therefore,
we opted for an AlexNet-inspired [69] architecture shown in Fig. 2,
with 6 layers, which is also consistent with previous works [20,36].
For larger-scale experiments on ImageNet we used an extended version
of the previous model with 10 layers, shown in Fig. 3, as well as a VGG
model [33].

Previous work also showed thorough analyses of the performance of
various Hebbian learning methods, including HPCA and SWTA, varying
the number of layers in the backbone architectures. Such results can
be found in [12,13]. Note that the same results also apply to the pro-
posed SWTA-FH and HPCA-FH approaches, since these are algebraically
equivalent to the above learning rules (although more efficient in the
execution).

4.2. Semi-supervised training protocol for sample-efficient learning

Since the proposed approaches are unsupervised learning paradigms,
we aim at exploring whether they can be combined together with
traditional supervised backprop training, in a semi-supervised fashion.
Therefore, we investigate the combination of SWTA-FH and HPCA-FH
methods with backprop, where SWTA-FH and HPCA-FH extrapolate
knowledge from samples without using labels, while supervised back-
prop further empowers learned features with information coming from
the supervision.

We evaluated the proposed approach assuming a condition of
scarcity of available labeled training data. We define a sample efficiency
regime as the percentage of available labeled samples, over the total
number of training samples. For each of the considered datasets, we
performed experiments in eight different sample efficiency regimes:
1%, 2%, 3%, 4%, 5%, 10%, 25%, and 100%.

In order to take advantage of both labeled and unlabeled train-
ing samples, for each sample efficiency regime, we followed a semi-
supervised training protocol in two phases: first, the network is pre-
trained using one of the proposed unsupervised Hebbian algorithms,
exploiting all the available training samples; second, end-to-end fine-
tuning is performed, using supervised backprop training on a cross-
entropy loss, and exploiting the labeled samples only. Finally, both
the resulting classification accuracy and the training time (in terms of
epoch duration, number of epochs, and total duration) were recorded.

Note that, since the final classification layer of the neural network
necessarily requires supervision to be trained, it is only trained during
the supervised fine-tuning phase. However, since the final classifier has
direct access to the error signal, it does not rely on backpropagation,
but on direct Stochastic Gradient Descent (SGD) optimization. Instead,
6

during the unsupervised training phase, SWTA-FH and HPCA-FH ap-
proaches are applied to train all the backbone architecture layers except
the final classifier, without requiring supervision.

As a baseline for comparison, we used unsupervised pre-training
based on the Variational Auto-Encoder (VAE) approach [73]. In this
case, pre-training was performed by using the deep layers (excluding
the final classifier) of the proposed architectures as encoder, mapping
their output to 256 gaussian latent variables. This was augmented with
a another network branch, acting as decoder, with a specular structure
w.r.t. the encoder (i.e. pooling layers replaced with unpooling, and con-
volutions with transpose convolutions), mapping the latent variables to
a decoded sample. The overall models were trained in the encoding–
decoding task, optimizing the 𝛽-VAE Variational Lower Bound [74],
in an end to end fashion, using all the available training samples. At
this point, the decoder was dropped, a linear classifier was placed on
top of the latent features, and supervised backprop-based end-to-end
fine tuning was performed, using only the available labeled samples
for the given sample efficiency regime. Notice that, in this case, the
pre-training phase, even if unsupervised, is still backprop-based, while
Hebbian algorithms enable pre-training without requiring backprop.

4.3. Retrieval with neural features

Deep features extracted from pre-trained networks were also used as
vector descriptors for multimedia content indexing and retrieval [75–
77]. The performance of the resulting feature representation was eval-
uated in Content-Based Image Retrieval (CBIR) tasks.

The CBIR systems architecture works as follows: in a first phase,
feature representations are computed for all images in a given database,
by extracting the deep representations from the convolutional part
of the network. These feature representations are then mapped to a
binary 256-dimensional descriptor which is then used for indexing the
database images. This is done as in [76] by training another piece
of network, with a 256 units hidden layer with tanh activations and
a final classifier. This is trained in the classification task, so that
the feature representation is mapped to the correct class, but passing
through a compression stage into the desired 256 dimensional vector.
The tanh activation is a ‘‘soft’’ proxy for the binarization operation,
which does not block gradients from flowing backward during training.
The 256 dimensional representation is then binarized by a thresholding
operation: positive values are mapped to 1 and negative values are
mapped to 0.

Test set images are used as sample queries: at test time, their
256-dimensional binary feature representation is computed as well,
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Table 1
Analysis of algorithm performance on each dataset, for VAE, Hebbian PCA (HPCA), Hebbian PCA with FastHebb (HPCA-FH), soft-WTA (SWTA),
and soft-WTA with FastHebb (SWTA-FH) methods, on the 10-layer (for ImageNet) and 6-layer (for the other datasets) networks.
Dataset Method Epoch duration Num. epochs Total duration

CIFAR10

VAE 14 s 17 3 min 58 s
SWTA 4 min 14 s 1 4 min 14 s
SWTA-FH 18 s 1 18 s
HPCA 6 min 23 s 12 1 h 16 min 36 s
HPCA-FH 19 s 12 3 min 48 s

CIFAR100

VAE 15 s 15 3 min 45 s
SWTA 4 min 16 s 1 4 min 16 s
SWTA-FH 18 s 1 18 s
HPCA 6 min 25 s 7 44 min 55 s
HPCA-FH 19 s 7 2 min 13 s

Tiny ImageNet

VAE 33 s 20 11 min
SWTA 9 min 41 s 1 9 min 41 s
SWTA-FH 41 s 1 41 s
HPCA 14 min 20 s 14 3 h 20 min 40 s
HPCA-FH 43 s 14 10 min 2 s

ImageNet

VAE 2 h 59 min 19 s 16 47 h 49 min 4 s
SWTA 105 h 13 min 24 s 3 315 h 40 min 12 s
SWTA-FH 3 h 38 min 6 s 3 10 h 54 min 18 s
HPCA 155 h 41 min 39 s 3 467 h 4 min 57 s
HPCA-FH 3 h 39 min 18 s 3 10 h 57 min 54 s
f

w
P

5

Table 2
Accuracy results on each dataset (top-1 for CIFAR10, and top-5 for the other datasets,
since they have many more classes), for the various approaches explored, on the
10-layer (for ImageNet) and 6-layer (for the other datasets) networks.

Regime Method CIFAR10 CIFAR100 Tiny ImageNet ImageNet

1%
VAE 22.54 12.28 5.55 2.72
SWTA-FH 30.23 15.30 6.20 6.69
HPCA-FH 39.75 22.63 11.38 8.65

2%
VAE 26.78 15.25 6.74 6.14
SWTA-FH 36.59 20.76 8.56 11.52
HPCA-FH 45.51 30.83 15.71 13.64

3%
VAE 29.00 16.44 7.74 15.35
SWTA-FH 41.54 23.69 10.26 15.67
HPCA-FH 48.80 35.04 18.23 17.28

4%
VAE 31.15 17.89 8.45 23.97
SWTA-FH 45.31 26.91 11.52 19.95
HPCA-FH 51.28 38.89 20.55 20.39

5%
VAE 32.75 18.48 9.29 29.04
SWTA-FH 48.35 29.57 12.55 24.87
HPCA-FH 52.20 41.42 22.46 23.28

10%
VAE 45.67 23.80 13.51 43.73
SWTA-FH 58.00 38.26 16.70 41.54
HPCA-FH 57.35 48.93 28.13 34.27

25%
VAE 68.70 52.59 37.89 61.33
SWTA-FH 69.85 56.26 24.96 59.34
HPCA-FH 64.77 58.70 37.10 56.92

100%
VAE 85.23 79.97 60.23 76.84
SWTA-FH 85.37 79.80 54.94 76.10
HPCA-FH 84.38 74.42 53.96 77.28

and the database images are ranked against the query based on the
Hamming distance between feature representations. Retrieved images
are considered to be a correct match if they belong to the same class
as the query.

The evaluation measure used for the CBIR task is the Average
Precision Score (APS) :

𝐴𝑃𝑆 =
𝐾
∑

𝑖=1
𝑃𝑖 (𝑅𝑖 − 𝑅𝑖−1) (6)

where 𝑃𝑖 is the precision at the 𝑖th retrieved item, 𝑅𝑖 is the correspond-
ng recall. This score is renormalized (so that its maximum value is
lways 1) and averaged over all the queries, thus obtaining the mean
7

verage Precision (mAP). i
4.4. Implementation details

The experiments, implemented in Pytorch, depend on a number of
hyperparameters, whose search was pursued by Coordinate Descent
(CD) [78], optimizing, for each dataset, the accuracy results of the
trained models on the respective validation set. In the following, the
resulting parameters and implementation details are illustrated.

All training sessions were performed over 20 epochs (which were
enough for the models to converge). Data were processed in mini-
batches of 64 samples each, and each sample was an RGB image
of 32 pixels in height and width for the 6-layer CIFAR10/100 and
Tiny ImageNet network, 210 pixels for the 10-layer ImageNet network,
and 224 pixels for VGG (specifically, the VGG-11 model was used),
pre-normalized to zero mean and unit variance.

Concerning Hebbian pre-training, the learning rate parameter was
set to 10−3. For ImageNet training, we also introduced an adaptive
learning rate mechanism to cope with the high variance of weight
updates due to the high dimensionality of the feature maps (causing
instability during training), which divides the learning rate by the
square root of the input size (this corresponds to normalizing the output
variance, assuming the inputs are normalized). For SWTA training only,
whitening pre-processing was also necessary, as in [30,79], although
this step did not show any benefit on the other approaches. SWTA uses
0.02 as inverse temperature parameter 1∕𝑇 .

Batch-norm layers used momentum 0.9.
Backprop-based training (i.e. both fine-tuning and VAE pre-training)

leveraged Stochastic Gradient Descent (SGD) optimization with learn-
ing rate 10−3, and momentum 0.9, with Nesterov acceleration [80].
After 10 training epochs, learning rate was reduced by half every 2
epochs until the end of the training session. The best training epoch
in terms of validation results was then selected as final model (early
stopping).

𝛽-VAE training used coefficient 𝛽 = 0.5.
Supervised fine-tuning was regularized by dropout with 0.5 rate,

and 𝐿2 weight decay with penalty equal to 5⋅10−2, 10−2, 5⋅10−3, 1⋅10−3,
or CIFAR10, CIFAR100, Tiny ImageNet, ImageNet, respectively.

The implementation used Pytorch version 1.8.1 and Python 3.7,
ith an Ubuntu 20.4 system running on an I7 series 10700K Intel
rocessor, 32 GB RAM, and 12 GB NVidia Geforce 3060 GPU.

. Results

The results of the experiments described in the previous Section are

llustrated hereafter. First, we report the recorded training speed, in
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Table 3
mAP results on each dataset, for the various approaches explored, on the 10-layer (for
ImageNet) and 6-layer (for the other datasets) networks.

Regime Method CIFAR10 CIFAR100 Tiny ImageNet ImageNet

1%
VAE 21.90 6.10 3.18 0.95
SWTA-FH 28.29 8.16 3.80 1.94
HPCA-FH 37.39 15.39 6.61 4.88

2%
VAE 23.13 6.40 3.20 1.39
SWTA-FH 31.71 8.82 3.95 2.54
HPCA-FH 39.80 15.98 7.39 5.72

3%
VAE 24.27 6.36 3.52 2.02
SWTA-FH 34.54 9.13 4.16 3.21
HPCA-FH 41.64 16.40 7.57 6.56

4%
VAE 24.36 6.36 3.57 3.83
SWTA-FH 36.54 9.41 4.32 3.77
HPCA-FH 43.22 16.72 7.61 7.19

5%
VAE 24.65 6.49 3.57 5.49
SWTA-FH 38.69 9.66 4.39 4.19
HPCA-FH 44.92 17.10 7.79 7.75

10%
VAE 28.26 7.09 3.76 13.27
SWTA-FH 48.55 11.27 5.01 9.14
HPCA-FH 49.99 18.42 8.45 10.56

25%
VAE 62.30 13.69 7.59 24.50
SWTA-FH 63.95 16.37 6.98 20.75
HPCA-FH 58.81 21.49 10.13 21.24

100%
VAE 84.67 42.83 22.64 44.21
SWTA-FH 84.54 43.95 20.86 39.60
HPCA-FH 81.80 36.19 17.99 43.81

terms of epoch duration, number of epochs for convergence, and total
duration, on CIFAR10/100, Tiny ImageNet, and ImageNet datasets,
comparing VAE pre-training, ordinary Hebbian learning, and FastHebb.
Second, we report the classification and retrieval results of the vari-
ous approaches in the label-scarcity scenarios described earlier. Third,
we provide a performance comparison of different publicly available
Hebbian learning implementations on a standard setting, where the
epoch duration is measured on a single convolutional layer, while
training on CIFAR-10. Finally, we report the results on the VGG, with
convolutional layers enhanced by FastHebb pre-training, architecture
as well. The results were obtained from averaging five independent
experiment iterations, and t-testing confirmed the observed differences
to be statistically significant with p-values below 0.05.

5.1. Training speed analysis

Table 1 shows a comparison between the considered approaches
in terms of computational performance of training, on the 10-layer
(for ImageNet) and 6-layer (for the other datasets) architectures. The
Table shows the single epoch duration, the number of epochs until
convergence (measured as the point after which validation results
stop improving), and the total training duration.2 These results are
specifically focused on the pre-training duration, while we observed
no statistically significant difference in the duration of the successive
fine-tuning phase for different pre-training approaches.

We can observe that FastHebb methods are significantly faster (up
to 50 times for HPCA and HPCA-FH on ImageNet) than the traditional
Hebbian counterparts, with an epoch duration becoming comparable
to backprop-based VAE training. This enables Hebbian approaches to
scale gracefully to complex datasets such as ImageNet, where the best
speed-up by a factor of 50, in terms of epoch duration, is observed for
HPCA. Moreover, the overall training duration of Hebbian approaches
becomes faster (up to 5 times on ImageNet) than VAE, thanks to the

2 For Hebbian approaches not using FastHebb, the training duration would
e unfeasible to measure explicitly; instead, it was estimated by multiplying
he single epoch duration by the number of epochs.
8

lower number of epochs required to convergence. Among the Hebbian
approaches, soft-WTA has lower time complexity, and it is in fact faster.

5.2. Label scarcity results

Table 2 illustrates the classification results, in terms of accuracy
(top-1 for CIFAR10, and top-5 for the other datasets, since they contain
many more classes), in various sample efficiency regimes, comparing
the alternative approaches. Notice that in the results for HPCA and
SWTA there is no difference between using FastHebb or not. In fact,
despite the computational speedup, from the algebraic point of view
FastHebb is equivalent to ordinary Hebbian learning, leading to the
same results. Therefore, we show these results just once.

The results show that, in conditions of label scarcity (sample effi-
ciency regimes below 4%–5%), Hebbian approaches perform signifi-
cantly better than VAE. On the other hand, it is only when far more
labels are available for the supervised fine-tuning phase that VAE-
based pre-training really kicks in. In these scenarios, however, the
performance of Hebbian approaches is comparable or only slightly
lower, but this is compensated by the speedup in training time ob-
served before. Comparing HPCA and SWTA, it appears that the former
performs typically better.

5.3. Retrieval experiments

Table 3 shows the retrieval mAP results obtained on the various
datasets, for each of the considered approaches, on the 10-layer (for
ImageNet) and 6-layer (for the other datasets) architectures.

This second scenario confirms the previous observations that, in
conditions of extreme label scarcity (below 10%), Hebbian-based neu-
ral features achieve better results than VAE counterparts. Again, VAE-
based pre-training improves in higher regimes, but, as observed before,
this is fairly compensated by the training time advantage of Hebbian
approaches. Comparing HPCA and SWTA, also in this case it appears
that the former performs typically better.

5.4. Comparison with other Hebbian learning implementations

Table 4 provides a performance comparison of various publicly
available Hebbian learning implementations. We considered the sur-
rogate loss formulation of Hebbian learning from [44],3 the Hebbian–
anti-Hebbian (HaH) model [47,48],4 the Pytorch implementation of
Krotov’s learning rule [15] illustrated in [46],5 and SoftHebb [26].6
We also consider the standard HPCA and SWTA learning rules from
previous works [12,13,20],7 and the respective FastHebb formulations
from this work.

In order to compare the considered methods on equal footings,
we measure their performance in a common scenario, where a single
convolutional layer with 5 × 5 filters, 3 input channels (corresponding
to RGB planes), and 96 output channels is considered. The layer is
trained using a given Hebbian learning methodology on the CIFAR-10
dataset, and the average epoch duration is measured and reported in
the Table. The Table also shows the best results for each method, taken
from the respective papers.

From these results, it is possible to observe that FastHebb enables
efficient training of convolutional Hebbian layers compared to previous
solutions. On the other hand, among the competing approaches, a
solution that provides comparable efficiency to FastHebb is represented
by SoftHebb [26]. While FastHebb leverages matrix multiplications,

3 https://github.com/ThomasMiconi/HebbianCNNPyTorch
4 https://github.com/metehancekic/HaH
5 https://github.com/julestalloen/pytorch-hebbian
6 https://github.com/NeuromorphicComputing/SoftHebb
7
 https://github.com/GabrieleLagani/HebbianPCA

https://github.com/ThomasMiconi/HebbianCNNPyTorch
https://github.com/metehancekic/HaH
https://github.com/julestalloen/pytorch-hebbian
https://github.com/NeuromorphicComputing/SoftHebb
https://github.com/GabrieleLagani/HebbianPCA
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Table 4
Single-layer training performance (in terms of epoch duration) for different publicly
available Hebbian learning repositories, compared to our solution based on FastHebb,
on CIFAR-10. Accuracy results of the overall models from the respective papers on
CIFAR-10 are also reported.

Method Epoch duration (single layer) Acc. (%)

HebbGrad-WTA 8 s 65.55 [44]
HaH 11 s 87.30 [48]
Pytorch-Hebbian Krotov 9 s 50.75 [15]
SoftHebb 4 s 80.30 [26]
SWTA 56 s 85.37 [13]
HPCA 1 min 23 s 84.38 [13]

SWTA-FH (this work) 4 s 85.37
HPCA-FH (this work) 4 s 84.38

Table 5
Comparison of ImageNet training times, for Hebbian PCA (HPCA), Hebbian PCA with
FastHebb (HPCA-FH), soft-WTA (SWTA), and soft-WTA with FastHebb (SWTA-FH)
methods, on VGG-11.

Dataset Method Epoch duration Num. epochs Total duration

ImageNet

SWTA 290 h 44 min 5 1454 h
SWTA-FH 7 h 7 min 5 35 h 35 min
HPCA 453 h 32 min 13 5896 h
HPCA-FH 6 h 25 min 13 83 h 25 min

Table 6
Accuracy results on ImageNet (top-5), and retrieval mean Average Precision (mAP) for
the various approaches explored, on the VGG network.

Regime Pre-train Accuracy (%) mAP (%)

1%
None 14.71 4.79
SWTA-FH 19.40 3.63
HPCA-FH 15.53 5.16

2%
None 26.88 6.42
SWTA-FH 31.91 5.18
HPCA-FH 27.24 6.70

3%
None 36.68 8.05
SWTA-FH 40.24 7.08
HPCA-FH 36.74 8.05

4%
None 44.01 9.34
SWTA-FH 46.98 8.95
HPCA-FH 43.69 9.68

5%
None 49,37 10.80
SWTA-FH 51.36 10.47
HPCA-FH 50.40 10.92

10%
None 65.61 17.44
SWTA-FH 65.09 17.53
HPCA-FH 65.49 17.65

25%
None 78.71 29.01
SWTA-FH 78.17 29.52
HPCA-FH 78.53 29.20

100%
None 90.03 50.58
SWTA-FH 88.00 49.93
HPCA-FH 88.54 50.06

SoftHebb achieves efficient computation by reformulating part of the
Hebbian update as a convolution. However, it is not clear whether
this approach, designed for a soft-WTA type of learning principle, can
be extended also to other forms of weight updates such as PCA-type
plasticity rules. On the other hand, FastHebb is very flexible, and can
be adapted to both competitive learning and subspace learning types
of plasticity rules, as shown in this work. However, a reformulation of
more general Hebbian updates in terms of convolutions could also be
an interesting direction of future research (see Section 6).

The HaH approach [47,48] has been deployed in hybrid VGG ar-
chitectures, where only the bottom layers where trained with Hebbian
learning. In our experiments, instead, we were able to apply FastHebb
9

to a VGG model in its entirety, as will be shown in the next subsection.
5.5. Experiments on VGG

In Table 5, we report the training times required for the pre-training
phase of VGG models using the different approaches considered so far.
We do not consider VAE-type training of the VGG model, because that
requires a large decoder, making the overall model very deep, which
we found to be untrainable due to vanishing gradients [81,82]. On the
other hand, Hebbian pre-training was straightforward to apply in this
case, as it requires no gradient backpropagation. Instead, as a baseline
for comparison, we used Xavier initialization [83] (note that, since this
is not properly a training method, it is not included in Table 5). In
fact, it is known that appropriate initialization methods can achieve
competitive results compared to end-to-end pre-training [83,84].

Training times show once more the effectiveness of FastHebb meth-
ods in training large scale architectures, while using ordinary Hebbian
learning would be unfeasible. In the best case, a speedup of almost 70
times is reached, comparing HPCA-FH with HPCA.

Finally, in Table 6, we report the results, both in terms of classifica-
tion accuracy and retrieval mAP, achieved by training the VGG model
in the semi-supervised task. We show the results achieved with Xavier
initialization, HPCA pre-training, and SWTA pre-training.

When the scale of the architecture increases, it appears that SWTA
approach improves over HPCA. Previous observations about Hebbian
methods performing better in low sample efficiency regimes (5% and
below) are confirmed. In particular, SWTA outperforms the network
with no pre-training by a margin up to 5 percent points in accuracy,
in the 1%–2% sample efficiency regimes. In terms of mAP, Hebbian
pre-training is still slightly superior, although the difference is not
statistically significant.

6. Conclusions and future work

In this article, we have illustrated the FastHebb approach for Heb-
bian learning, which leverages a matrix multiplication formulation of
Hebbian synaptic updates to achieve higher efficiency. This makes Heb-
bian learning more scalable, enabling the use of Hebbian neural fea-
tures also on large datasets (ImageNet) and architectures (VGG), which
(to the best of our knowledge) have been computationally prohibitive
for Hebbian learning so far. Experimental scenarios of label scarcity
show promising results of the proposed FH learning rules, namely
SWTA-FH and HPCA-FH, for pre-training – compared to backprop-
based alternatives such as VAE – considering classification accuracy,
retrieval mAP, and training time.

Even though, in this paper, we have shown that it is possible to scale
Hebbian training to large models such as VGG, further work needs to be
done to adapt Hebbian approaches to more recent architectures, such
as residual networks [34] or Transformers [35]. At the current stage,
Hebbian learning models still lack a theoretical background to support
and guide their application to such types of computation blocks. This
represent an interesting open challenge for future research directions.
While the FastHebb solution leverages matrix multiplications to achieve
efficient GPU computation, recent work suggests that similar improve-
ments could be achieved by directly leveraging convolutions [26]. This
could represent an interesting direction of future investigation.

Moreover, additional performance improvements might come from
the combination of Hebbian-based pre-training with pseudo-labeling
and consistency-based semi-supervised methods [67,85]. Finally, in
line with recent efforts towards backprop-free learning (such as the
Forward–Forward algorithm [7]), we plan to explore strategies to
combine Hebbian approaches with local supervision signals.
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