

7.19 - Flax sprouts from commercial and wild species as functional food

Dougué Kentsop R.A.¹, Pappalardo V.², Zaccheria F.², Consonni R.², Genga A.¹, Mattana M.¹

¹ Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, 6 Italy;

² Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via Mario 8 Bianco 9, 20131 Milan, Italy;

Background

Flaxseed has regained popularity as food ingredient and has been recognized as functional food source owing to its bioactive components: omega-3 fatty acids, high quality proteins, lignans and dietary fiber [1]. Germination was demonstrated to improve nutritional value of seeds by increasing **phenolic** and **lignans** content and by decreasing **antinutritional factors**. In this work:

- 1. some Linum usitatissimum (L.u.) varieties and wild Linum species were sprouted
- 2. sprouts **nutritional characterization** was performed: oil, protein and phenol content, antioxidant activity (AA), and antinutritional factors.

Results

- 1) Sprout development:
- L.u. var. Sideral
- L.u. var. Solal
- Linum dolomiticum

2) Seeds, sprouts and coats nutritional characterization:

Specie/var.	Tissues	Phenols µg GAE/mg DW	Flavonoids µg QE/mg DW	AA % inhib DPPH/mg DW	μg Isoorientin/ mg DW	μg Isovitexin/ mg DW	μg SDG/ mg DW
L.u. var. Sideral	Seeds	3.0 ± 0.1	8.6 ± 0.6	17.9 ± 1.3	n.d.	n.d.	15.0 ± 0.4
	Sprouts	10.6 ± 0.7	8.0 ± 0.1	30.0 ± 1.7	n.d.	n.d.	0.0
	Coats	9.1 ± 0.7	13.3 ± 0.6	45.4 ± 0.9	n.d.	n.d.	62,3 ± 0.3
L.u. var. Solal	Seeds	3.5 ± 0.2	7.3 ± 0.6	20.5 ± 0.7	n.d.	n.d.	21.7 ± 0.7
	Sprouts	10.7 ± 0.5	7.4 ± 0.6	41.2 ± 2.5	n.d.	n.d.	0.0
	Coats	9.3 ± 0.5	20.3 ± 1.4	53.2 ± 1.1	n.d.	n.d.	82.1 ± 3.2
Linum dolomiticum	Seeds	4.6 ± 0.4	23.0 ± 1.1	26.8 ± 1.0	2.67 ± 0.17	0.06 ± 0.02	0.0
	Sprouts	7.0 ± 0.4	24.9 ± 1	13.6 ± 1.1	0.46 ± 0.04	1.89 ± 0.12	0.0
	Coats	6.7 ± 0.1	30.4 ± 1.4	32.8 ± 1.5	0.15 ± 0.01	0.07 ± 0.03	0.0

- 1. Total **phenol content** and **antioxidant activity** are higher in sprouts than in seeds.
- 2. Secoisolaricilresinol diglucoside (**SDG**), the **most** representative lignan found in *L.u.*, is only present in **seed**-coat of *L. usitatissimum* varieties only.
- 3. The wild species, *Linum dolomiticum*, shows a higher flavonoid content than *L.u.* and the main representative ones are **isoorientin** and **isovitexin**.

Specie/var.	Tissues	g proteins/100g DW	% oil	% ω3	% ω6
L.u. var. Sideral	Seeds	15.9 ± 0.3	25	55.7	16.2
	Sprouts	26.1 ± 1.0	23.8	54	17.7
	Coats	12.9 ± 0.7	6.1	48.3	18
<i>L.u.</i> var. Solal	Seeds	18.6 ± 0.7	37	1.6	71.2
	Sprouts	22.5 ± 0.2	30	2.3	71.4
	Coats	14.5 ± 1.0	15.9	1.3	65.5
Linum dolomiticum	Seeds	27.5 ± 0.2	24.9	58.6	18.8
	Sprouts	19.0 ± 0.3	22.8	55.0	15.05
	Coats	7.1 ± 0.3	9.8	n.d.	n.d.

Anti Nutritional factors:

A reduction in the content of anti-nutritional factors was observed after sprouting. In particular:

- **1. Phytic acid**: lowered after sprouting, seed-coats exhibited the lowest content.
- **2. Tannins**: mainly present in seed-coats. *L. dolomiticum* showed a higher content than *L.u.* varieties in seeds and sprouts.

Materials and Methods

The seeds were germinated for five days or more depending on the species. Seed coats were separated from the shoots during harvesting, were freeze-dried and defatted. All the analyses were performed on these samples.

Conclusions

- Germination represents a very good strategy to improve nutritional value of numerous seed species
 [2]. In flax sprouts an increase in **phenols** and **antioxidant activity** together with a decrease in **antinutritional factors** was observed compared to the seed counterparts.
- 2. Commercial and wild flax species showed different abundance of specific metabolite classes.
- 3. Interestingly, **SDG** was present only in *L.u.* varieties. **SDG** has a strong AA and phytoestrogenic effects through its derived mammalian metabolites, enterodiol and enterolactone [3].

REFERENCES

Kajla, P., Sharma, A., & Sood, D. R. (2015). *Journal of food science and technology*, *52*(4), 1857-1871.
 Pajak et al. (2019). *Food Chemistry*, 275, 69-76.
 Prasad, K. (2000). *International journal of angiology*, 9(04), 220-225.

POR FESR 2014-2020 / INNOVAZIONE E COMPETITIVITÀ

- In *L.u.* varieties protein content was higher in sprouts than in seeds. The opposite was observed in L *dolomiticum*, probably due to the longer time of sprouting.
- The oil content slightly decreased after germination. However, the quality is maintained. The two *L.u.* varieties showed w3 and w6 opposite percentage.

Specie/var.	Tissues	Phytic acid (g/100 g)	ug TA /mg DW	
	Seeds	1.36 ± 0.06	1.6 ± 0.6	
L.u. var. Sideral	Sprouts	0.85 ± 0.09	0.3 ± 0.1	
	Coats	0.18 ± 0.02	6.7± 0.9	
	Seeds	3.52 ± 0.25	1.9± 0.3	
L.u. var. Solal	Sprouts	2.95 ± 0.16	0.5 ± 0.3	
	Coats	0.23 ± 0.04	6.3 ± 1.0	
Linum	Seeds	2.39 ± 0.06	2.6 ± 0.6	
LIIIUIII	Sprouts	1.36 ± 0.16	1.2 ± 0.7	
uoioimiticum	Coats	0.09± 0.01	5.9 ± 0.8	