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Abstract
In this paper, we describe an upgrade of the Alya code with up-to-date parallel linear 
solvers capable of achieving reliability, efficiency and scalability in the computation 
of the pressure field at each time step of the numerical procedure for solving a Large 
Eddy Simulation formulation of the incompressible Navier–Stokes equations. We 
developed a software module in the Alya’s kernel to interface the libraries included 
in the current version of PSCToolkit, a framework for the iterative solution of 
sparse linear systems, on parallel distributed-memory computers, by Krylov meth-
ods coupled to Algebraic MultiGrid preconditioners. The Toolkit has undergone 
various extensions within the EoCoE-II project with the primary goal of facing the 
exascale challenge. Results on a realistic benchmark for airflow simulations in wind 
farm applications show that the PSCToolkit solvers significantly outperform the 
original versions of the Conjugate Gradient method available in the Alya’s kernel in 
terms of scalability and parallel efficiency and represent a very promising software 
layer to move the Alya code toward exascale.

Keywords  Navier–Stokes equations · Iterative linear solvers · Algebraic MultiGrid · 
Parallel scalability

Mathematics Subject Classification  65F08 · 65F10 · 65M55 · 65Y05 · 65Z05

1  Introduction

Alya is a high-performance computational mechanics code for complex cou-
pled multi-physics engineering problems. In this work, we present the interfacing 
between Alya and the PSCToolkit to overcome one of Alya’s main obstacles in 
the path toward exascale, namely the lack of state-of-the-art parallel algebraic linear 
solvers with adequate algorithmic scalability, as already identified in  [29], where 
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Alya’s strengths and weaknesses in facing the exascale challenge have been ana-
lyzed by scalability studies up to one hundred thousand cores.

Although Alya can be applied to a wide range of problems, in this work, we shall 
concentrate on solving turbulent incompressible flow problems using a Large Eddy 
Simulation (LES) approach. Due to the wide range of scales present in turbulent 
high-Reynolds-number flows, their accurate solution requires computational meshes 
with a huge number of degrees of freedom (dofs). Alya uses a Finite Element (FE) 
spatial discretization, while its time discretization is based on finite difference meth-
ods; when an implicit time discretization is applied, the two main kernels of a simu-
lation are the assembly of stiffness matrices and the solution of the associated lin-
ear system at each time step. In  [29], the authors observed that the FE assembly 
implemented in Alya showed nearly perfect scalability, as one could a priory expect, 
while the solution of linear systems by available iterative linear solvers was the main 
weakness in the path toward exascale. The problem is related to Alya’s lack of solv-
ers with optimal algorithmic scalability, i.e., solvers able to obtain a given accuracy 
employing an almost constant number of iterations for an increasing number of dofs.

Alya’s sparse linear algebra solvers are specifically developed with tight integra-
tion with the overall parallelization scheme; they include Krylov-based solvers, such 
as Generalized Minimal Residual (GMRES) or Conjugate Gradient (CG), coupled 
to some deflation approach or a simple diagonal preconditioner. As shown in [29], 
when incompressible flow problems are considered, the solution of a Poisson-type 
equation for the pressure field becomes challenging as the size of the problem 
increases. Indeed, when a uniform mesh multiplication [19] is used to have succes-
sively finer mesh, each time the mesh is refined to obtain elements with half the size, 
the number of iterations for solving the pressure equation is approximately doubled, 
showing a mesh-size-dependent behavior. To overcome these scalability issues, we 
interfaced PSCToolkit to Alya to take advantage of the Algebraic MultiGrid 
(AMG) preconditioners available through the AMG4PSBLAS library; this effort has 
been carried out in the context of the European Center of Excellence for Energy 
(EoCoE) applications.

The rest of the paper is organized as follows. In Sect.  2, we describe the gen-
eral framework of Alya and the type of fluid dynamics problem we wish to test the 
new solvers on; in Sect.  3, we give an overall description of PSCToolkit, and 
then we focus on the AMG preconditioners employed in Sect. 3.1. Section 4 dis-
cusses the new module written to interface the solver library to the Alya software 
and the related issues. Section 5 describes the actual test case, while Sect. 6 analyzes 
the numerical scalability results in detail. Finally, Sect.  7 summarizes the results 
obtained and illustrates the new lines of development.

2 � Alya description

Alya is a high-performance computational mechanics code for complex coupled 
multi-physics engineering problems. It can solve problems in the simulation of tur-
bulent incompressible/compressible flows, nonlinear solid mechanics, chemistry, 
particle transport, heat transfer, and electrical propagation. Alya has been designed 
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for massively parallel supercomputers and exploits several parallel programming 
models/tools. It relies on MPI to support a distributed-memory model; some kernels 
support vectorization at the CPU level and GPU accelerators are exploited through 
OpenACC pragmas or CUDA.

Multi-physics coupling is achieved following a multi-code strategy that uses MPI 
to communicate different instances of Alya. Each instance solves a particular phys-
ics, enabling asynchronous execution. Coupled problems can be solved by retaining 
the scalability properties of the individual instances. Alya is one of the two Compu-
tational Fluid Dynamic (CFD) codes of the Unified European Applications Bench-
mark Suite (UEBAS) [25]. It is also part of the Partnership for Advanced Comput-
ing in Europe (PRACE) Accelerator benchmark suite [26].

As mentioned in Sect. 1, large-scale CFD applications are the main problems tar-
geted by Alya; hence, the basic mathematical models include various formulations 
of the Navier–Stokes equations, whose strong form for incompressible flows in a 
suitable domain is the following:

where u and p are the velocity and pressure field respectively, �(u) = 1

2

(
∇u + ∇Tu

)
 

is the velocity strain rate tensor, � is the kinematic viscosity, and f denotes the vec-
tor of external body forces. The problem is supplied with an initial divergence-free 
velocity field and appropriate boundary conditions.

The flow is turbulent for most real-world flow problems, and some turbulence 
modeling is needed to make the problem solvable with currently available com-
putational resources. For all the examples presented in this work, we rely on the 
functionalities of Alya, which apply the spatially filtered Navier–Stokes equations 
coupled to the Vreman subgrid-scale model [30] for turbulence closure. In practice, 
a spatially varying turbulent viscosity supplements the laminar viscosity and the 
velocity and pressure unknowns correspond to spatially filtered values. Finally, since 
the size of the dynamically important eddies at high Reynolds numbers becomes 
too small to be grid resolved close to the wall, we employ a wall modeling tech-
nique [24] to impose the boundary conditions for the LES equations. For simplicity, 
the nonlinear term has been written in its convective form, which is most commonly 
encountered in computational practice.

Space discretization is based on a Galerkin FE approximation, employing 
hybrid unstructured meshes, which can include tetrahedra, prisms, hexahedra, 
and pyramids. Temporal discretization is performed through an explicit third-
order Runge–Kutta scheme, where the Courant–Friedrichs–Lewy number is set to 
CFL = 1.0 for the cases presented in this work. A non-incremental fractional step 
method is used to stabilize the pressure, allowing the use of finite element pairs that 
do not satisfy the inf-sup condition  [12], such as the equal order interpolation for 
the velocity and pressure applied in this work. A detailed description of the above 
numerical method, together with examples for turbulent flows, showing its high 
accuracy and low dissipation, can be found in [22].

(1)�tu − 2�∇ ⋅ �(u) + u ⋅ ∇u + ∇p = f,

(2)∇ ⋅ u = 0,
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The fractional step method allows uncoupling the solution of velocity and pres-
sure  [12]. At each Runge–Kutta substep, an explicit approach computes an inter-
mediate velocity, and then a linear system coming from a Poisson-type equation 
is solved for the pressure; finally, the incompressible velocity is recovered. In the 
path toward exascale, the solution of the linear system for the pressure is the most 
demanding step. To reduce the computational burden, for most problems, an approx-
imate projection method for Runge–Kutta time-stepping schemes is applied, which 
allows solving for the pressure only at the final substep [10].

It is important to note that most flow problems solved with Alya use a fixed mesh. 
For such problems, the linear system matrix for the pressure equation remains con-
stant during the whole simulation. Therefore, the matrix assembly and the setup of a 
matrix preconditioner are needed only once at the beginning of the numerical proce-
dure. Given that the number of time steps for LES is usually of the order of 105 , it is 
clear that the linear solver computational times and scalability are the most relevant 
issues to be tackled.

3 � PSCToolkit: PSBLAS and AMG4PSBLAS

We have interfaced Alya to exploit the solvers and preconditioners developed in 
the PSCToolkit1 software framework for parallel sparse computations, proven 
on current petascale supercomputers and targeting the next-generation exascale 
machines. PSCToolkit is composed of two main libraries, named PSBLAS (Par-
allel Sparse Basic Linear Algebra Subprograms) [17, 18], and AMG4PSBLAS (Alge-
braic MultiGrid Preconditioners for PSBLAS) [16].

Both libraries are written in modern Fortran; PSBLAS implements algorithms 
and functionalities of parallel iterative Krylov subspace linear solvers, while 
AMG4PSBLAS is the package containing sophisticated preconditioners. In particu-
lar, AMG4PSBLAS provides one-level Additive Schwarz (AS) and Algebraic Multi-
Grid (AMG) preconditioners. In the following, we will describe in some detail the 
AMG preconditioners we use within the Alya test cases.

3.1 � AMG preconditioners

Algebraic MultiGrid methods can be viewed as a particular instance of a general 
stationary iterative method:

for the solution of a linear system

x
(k) = x

(k−1) + B
(
b − Ax(k−1)

)
, k = 1, 2,… given x

(0) ∈ ℝ
n,

Ax = b, A ∈ ℝ
n×n, b ∈ ℝ

n,

1  See pscto​olkit.​github.​io on how to obtain and run the code.

https://psctoolkit.github.io/
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where A is symmetric and positive-definite (SPD), and the iteration matrix B is 
defined recursively; see, e.g., [28] for an exhaustive account. AMG methods are 
often employed as preconditioners for Krylov subspace solvers; what distinguishes 
the methods implemented in AMG4PSBLAS are the specific details of the construc-
tion procedure for the B matrix.

We define A0 = A , and consider the sequence {Al}
n
�
−1

l=0
 of coarse matrices com-

puted by the triple-matrix Galerkin product:

where {Pl}
n
�
−1

l=0
 is a sequence of prolongation matrices of size nl × nl+1 , with 

nl+1 < nl and n0 = n . To complete the formal construction we need also a sequence 
{Ml}

n
�
−2

l=0
 of Al-convergent smoothers for the coarse matrices Al , i.e., matrices Ml for 

which ‖Il −M−1
l
Al‖Al

< 1 holds true, where Il is the identity matrix of size nl and 
‖v‖Al

=
√
vTAlv is the Al norm. The preconditioner matrix B for the V-cycle with � 

pre- and post-smooth iteration is then given by the multiplicative composition of the 
following error propagation matrices,

with Bn
�
≈ A−1

n
�

 , either as a direct solution or as a convergent iterative procedure with 
a fine enough tolerance.

For the case at hand, we select each iteration matrix of the smoother sequence 
{Ml}

n
�
−1

l=0
 as the one representing four iterations (� = 4) of the hybrid forward/

backward Gauss–Seidel method. We consider having A in a general row-block 
parallel distribution over np processes, i.e., A is divided into np blocks of size 
nb × n , and we call App the corresponding diagonal block of A. We then decom-
pose each block App as App = Lpp + Dpp + LT

pp
 , where Dpp = diag(App) , Lpp is 

strictly lower triangular. To enforce symmetry in (3), we select Ml,pp as the block 
diagonal matrices (Fig. 1)

Al+1 = PT
l
AlPl, l = 0,… , n

�
− 1,

(3)Il − BlAl = (Il −M−T
l

Al)
𝜈(Il − PlBl+1P

T
l
Al)(Il −M−1

l
Al)

𝜈 ∀l < n
�
,

Fig. 1   Depiction of the structure of the hybrid forward/backward Gauss–Seidel method on a general row-
block parallel distribution of symmetric positive definite matrix A 
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where � is a damping parameter. The overall procedure thus amounts essentially 
to using four sweeps of the damped block-Jacobi method on the matrix of the cur-
rent level while solving the blocks with the forward, respectively backward, Gauss–Sei-
del method.

To build the prolongation (and thus the restriction) matrices, we employ the coars-
ening based on compatible weighted matching strategy; a full account of the deriva-
tion and detailed theoretical analysis may be found in [13, 15, 16]. This is a recursive 
procedure that starts from the adjacency graph G = (V ,E) associated with the sparse 
matrix A; this is the graph in which the vertex set V consists of either the row or column 
indices of A and the edge set E corresponds to the indices pairs (i,  j) of the nonzero 
entries in A. The method works by constructing a matching M in the graph G to obtain 
a partition into subgraphs. We recall that a graph matching is a subset of the graph’s 
edges such that no two of them are incident on the same vertex. Specifically, we con-
sider more than a purely topological matching by taking into account the weights of 
the edges, i.e., the values of the entries of the matrix A and of a suitable vector. In the 
first step, we associate an edge weight matrix C, computed from the entries ai,j in A 
and an arbitrary vector w ; then, we compute an approximate maximum product match-
ing of the whole graph to obtain the aggregates defining the coarse spaces. We define 
C = (ci,j)i,j as

then, M is an approximate maximum product matching of G with edge weight 
matrix C, i.e.,

The aggregates are then the subsets of indices {Gp}
|M|
p=1

 of the whole index set I  of A 
made of pairs of indices matched by the algorithm, where we denote with |M| the 
cardinality of the graph matching  M . In other terms, we have obtained the 
decomposition

see, e.g., Fig. 2 in which the matching of a test graph is computed–in more detail, 
Fig. 2a has a black dot corresponding to a non-zero element of the adjacency matrix; 
Fig. 2b shows the corresponding graph obtained from it; while Fig. 2c highlights the 
aggregated nodes, i.e., the Gp sets. In most cases, we will end up with a sub-optimal 
matching, i.e., not all vertices will be endpoints of matched edges; thus, we usually 
have unmatched vertices. To each unmatched vertex, we associate an aggregate Gs 

Ml = blockdiag(Ml,pp)
np∕nb

pp=1
, Ml,pp = �

(
Ll,pp + Dl,pp

)
, l = 0,… , n

�
,

(4)ci,j = 1 −
2ai,jwiwj

ai,iw
2
i
+ aj,jw

2
j

;

(5)M ≈ argmax
M

�

∏

(i,j)∈M�

ci,j.

I = {1,… , n} =

nM⋃

p=1

Gp, Gp ∩ Gr = � if p ≠ r;
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that is a singleton, and we denote with nS the total number of singletons. The main 
computational cost of this phase is represented by the computation of the approxi-
mate graph matching on a graph that is distributed across thousands of processors. 
The parallel coarsening implemented in AMG4PSBLAS uses the MatchBox-P 
software library [11]; this implements a distributed parallel algorithm for the com-
putation of half-approximate maximum weight matching with complexity O(|E|Δ) , 
where |E| is the cardinality of the graph edge set and Δ is the maximum vertex 
degree, i.e., the maximum number of edges incident on any given node of the graph. 
The procedure guarantees a solution that is at least half of the optimal weight, i.e., 
the approximation in (5) holds within 1/2 of the optimum. The message aggregation 
and overlapping between communication and computation employed by this strat-
egy reduces the impact of the data communication on parallel efficiency; we refer 
the reader to [16] for a complete set of experiments showcasing this feature. Finally, 
to build the prolongator matrices, the last ingredients we need are the vectors we 
identifying for each edge ei↦j ∈ M the orthonormal projection of w on the non-sin-
gleton aggregate Gp . For the sake of the explanation, we consider an ordering of the 
indices in which we move all the unknowns corresponding to unmatched vertices at 
the bottom,2 and thus define a tentative prolongator

where:

W = diag(ws∕|ws|), s = 1,… , nS , corresponds to unmatched vertices. The result-
ing number of coarse variables is then given by nc = nM + nS . The matrix P̂ we 
have just built is a piecewise constant interpolation operator whose range includes, 
by construction, the vector w . The actual prolongator P is then obtained from P̂ as 

(6)P̂ =

(
P̃ 0

0 W

)
∈ ℝ

n×nc ,

P̃ = blockdiag(we1
,… ,wenM

),

Fig. 2   Matching of the graph bcspwr01 from the Harwell-Boeing collection. The matched nodes in the 
graph are highlighted by a bold red edge

2  This ordering is for explanatory purposes only, and is not actually enforced in practice.
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P = (I − 𝜔D−1A)P̂ , where D = diag(A) and � = 1∕‖D−1A‖∞ ≈ 1∕�(D−1A) , with 
�(D−1A) the spectral radius of D−1A . Indeed, the P we have built is an instance of 
smoothed aggregation. Please observe that the procedure we have described pro-
duces, at best, a halving of the size of the system at each new level of the hierar-
chy. Given the size of the systems we are interested in, this may be unsatisfactory 
since the number of levels in the hierarchy and thus the operational cost needed to 
cross it would be too large. Fortunately, it is rather easy to overcome this issue: to 
obtain aggregates of size greater than two, we just have to collect them together by 
multiplying the corresponding prolongators (restrictors). This permits us to select 
the desired size of the aggregates (2, 4, 8, and so on) as an input parameter of the 
method.

To conclude the description of the preconditioners, we need to specify the 
choice for the coarsest solver. While using a direct solver at the coarsest level is 
the easiest way to ensure that the coarsest grid is resolved to the needed tolerance, 
such an approach for an AMG method running on many thousands of parallel 
cores can be very expensive. If the matching strategy has worked satisfactorily, 
the coarsest-level matrix will tend to have both a small global size and a small 
number of rows per core: in this case, the cost of data communication will domi-
nate the local arithmetic computations causing a deterioration of the method effi-
ciency. We use here a dual strategy: on the one hand, we employ a distributed 
coarsest solver running on all the parallel cores, whilst on the other, we limit 
the maximum size of the coarsest-level matrix to around 200 unknowns per core. 
Specifically, we use the Flexible Conjugate Gradient (FCG) method with a block-
Jacobi preconditioner on which we solve approximately the blocks by an incom-
plete LU factorization with one level of fill-in, ILU(1), the stopping criterion is 
based on the reduction of the relative residual of 3 orders of magnitude or a maxi-
mum number of iterations equal to 30.

To have a comparison with the preconditioner just discussed, we also consider 
the same construction but with a different aggregation procedure: the decoupled 
version of the classic smoothed aggregation of Vaněk et al. [27]. This is an aggre-
gation option that was already available in previous versions of the library  [9, 
14], and was already successfully used in CFD applications [2, 3]. The basic idea 
is to build a coarse set of indices by grouping unknowns into disjoint subsets (the 
aggregates) by using an affinity measure and defining a simple tentative prolonga-
tor whose range contains the so-called near null space of the matrix of the given 
level, i.e., a sample of the eigenvector corresponding to the smallest eigenvalue. 
The strategy is implemented in an embarrassingly parallel fashion, i.e., each pro-
cessor produces aggregates by only looking at local unknowns, i.e., the aggrega-
tion is performed in a decoupled fashion, in contrast to the previous matching 
procedure that instead crosses the boundary of the single process.

Table 1 summarizes the different preconditioners we have discussed here and 
that are used in the experiments of Sect. 6.1.

Remark 1  The AMG4PSBLAS library provides interfaces to some widely used paral-
lel direct solvers, such as SuperLU [23] and MUMPS [1]. Thus, we could have used 
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any of those within the damped block-Jacobi method, either on the smoother or on 
the coarsest solvers. For what concerns the smoothers, it has been observed in the 
literature [4, 16] that the combination with the Gauss–Seidel method delivers bet-
ter smoothing properties for the overall method. In the coarsest solver case, the size 
of the local matrices is small enough to not usually show a significant performance 
increase when using a direct solver. We also stress that the preconditioner described 
in this section depends only on native PSCToolkit code, i.e., the user does not 
have to install optional third-party libraries to use it.

4 � Interfacing Alya to PSCToolkit

The Alya code is organized in a modular way, and its architecture is split into mod-
ules, kernel, and services, which can be separately compiled and linked. Each mod-
ule represents a physical model, i.e., a set of partial differential equations which can 
interact for running a multi-physics simulation in a time-splitting approach, while 
Alya’s kernel implements the functionalities for dealing with the discretization 
mesh, the solvers and the I/O functionalities. As already mentioned, the governing 
equations of a physical model are discretized in space by using FE methods and all 
the functionalities to assemble the global stiffness matrix and right-hand-side (RHS) 
of the corresponding set of equations, including boundary conditions and material 
properties are the responsibility of the module. Instead, all the functionalities needed 
to solve the algebraic linear systems are implemented in the kernel. Some work on 
data structures and distribution of matrices and RHS was necessary to interface Alya 
with libraries from PSCToolkit, as described in the following.

Alya uses the compressed sparse row matrix scheme for the internal represen-
tation of sparse matrices. This scheme is supported by PSCToolkit, so no sig-
nificant difficulty was met from this perspective. The main difficulty in the interfac-
ing process was how the data, i.e. the discretization mesh and the corresponding 
unknowns, are distributed among the parallel processes and the way the related 
sparse matrix rows and RHS are locally assembled. The Alya code is based on a 
domain decomposition where the discretization mesh is partitioned into disjoint sub-
sets of elements/nodes, referred to as subdomains. Then, each subdomain is assigned 
to a parallel process that carries out all the geometrical and algebraic operations 

Table 1   Summary of the described preconditioners, the labels are used to describe the results in Sect. 6.1

Pre-smoother 4 iterations of hybrid forward Gauss–Seidel
Post-smoother 4 iterations of hybrid backward Gauss–Seidel
Coarsest solver FCG preconditioned by block-Jacobi with ILU(1) block solvers
Cycle V-cycle
Aggregation Coupled smoothed based on matching Decoupled classic

|G| ≤ 8 |G| ≤ 16 smoothed
Label MLVSMATCH3 MLVSMATCH4 MLVSBM
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corresponding to that part of the domain and the associated unknowns. The interface 
elements/nodes on the boundary between two subdomains are assigned to one of the 
subdomains (see Fig. 3).

The sparse matrices expressing the linear couplings among the unknowns are dis-
tributed in such a way that each parallel process holds the entries associated with the 
couplings generated on its subdomain. Two different options are possible for sparse 
matrix distribution: the partial row format and the full row format [20], respectively. 
In the full row format, if a mesh element/node and the corresponding unknown 
belong to a process, all row entries related to that unknown are stored by that pro-
cess. In the partial row format, the row of a matrix corresponding to an unknown is 
not full and needs contributions from unknowns belonging to different processes. 
Alya uses a partial row format for storing the matrix.

The libraries from PSCToolkit build the preconditioners and apply the Krylov 
methods on the assumption of a full row format; nevertheless, support for partial 
row format was added to the libraries’ pre-processing stage so that the interfacing 
can be as transparent as possible. The pre-processing support implies the retrieval 
of remote information for those matrix contributions that correspond to elements on 
the boundary; the data communication is split between the discovery of the needed 
entries (which needs only be executed when the discretization mesh changes) and 
the actual retrieval of the matrix entries, which must happen at any time step where 
the matrix coefficients and/or vector entries may be rebuilt, prior to an invocation 
of the solvers. When the topology of the mesh does not change, and there is only an 
update in the coefficients, it is also possible to reuse the same preconditioner; this 
may be full reuse of the overall matrices hierarchy, or partial reuse, employing the 
same prolongators/restrictors to rebuild the AMG hierarchy and smoothers.

We developed a software module in Alya’s kernel for declaration, allocation, and 
initialization of the library’s data structures as well as for using solvers and precon-
ditioners. PSBLAS makes available some of the widely used iterative methods based 
on Krylov projection methods through a single interface to a driver routine, while 
preconditioners for PSBLAS Krylov solvers are available through the AMG4PSB-
LAS package. The main functionalities for selecting and building the chosen precon-
ditioner are the responsibility of the software module included in the Alya’s kernel, 
while the functionalities for applying it within the PSBLAS Krylov solver are com-
pletely transparent to the Alya code and are the responsibility of the library.

Fig. 3   Mesh partitioning into (3a) disjoint sets of nodes, and (3b) disjoint sets of elements



13543

1 3

Alya toward exascale: algorithmic scalability using…

5 � The Bolund test case

Our main aim was to test the libraries for systems stemming from fluid dynamics 
simulation of incompressible flow arising in the study of wind-farm efficiency. The 
test case is based on the Bolund experiment (Figs. 4 and 5), a classical benchmark 
for microscale atmospheric flow models over complex terrain [5, 6]. An incompress-
ible flow treatment is used because the Mach number, i.e., the ratio of the speed of 
the flow to the speed of sound, is much smaller than 0.3. The test case is based on a 
small ( 12m ) isolated steep hill at Roskilde Fjord in Denmark having a significantly 
steep escarpment in the main wind direction and uniformly covered by grass so that 
the resulting flow is not influenced by individual roughness elements. This is consid-
ered the ideal benchmark for the validation of neutral flow models and, hence a most 
relevant scenario for the analysis of software modeling for wind energy. Though rel-
atively small, its geometrical shape induces complex 3D flow. Bolund was equipped 

Fig. 4   Photograph of the Bolund hill [7]

Fig. 5   Volume rendering of the velocity over Bolund obtained with Alya
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with several measurement masts with conventional meteorological instruments and 
remote sensing Lidars to obtain detailed information of mean wind, wind shear, tur-
bulence intensities, etc. A publicly available database for evaluating currently avail-
able flow models and methodologies for turbine siting in complex terrain regarding 
wind resources and loads is available at [7].

We discretize the incompressible Navier–Stokes Eq. (1) as described in Sect. 2. 
At each time step of the LES procedure, we solved the SPD linear systems aris-
ing from the pressure equation employing the preconditioned flexible version of 
the CG method (FCG) method by PSBLAS. Starting from an initial guess for pres-
sure from the previous time step, we stopped linear iterations when the Euclidean 
norm of the relative residual was no larger than TOL = 10−3 . The Reynolds number 
based on the friction velocity for this test case is approximately RE� = Uh∕� ≈ 107 
with U = 10m s−1 . As discussed in [6, Section 2.1], we can neglect Coriolis force 
in the horizontal direction and use the formulation  (1) since the Rossby number 
RO = 667 ≫ 1.

The next Sect. 6 details the scalability result obtained for this test case with the 
new solvers and preconditioners from PSCToolkit described in Sect. 3.

6 � Parallel performance results

In the following, we discuss the results of experiments run on two of the most pow-
erful European supercomputers. The first set of experiments aimed to analyze the 
behavior of different AMG preconditioners available from AMG4PSBLAS and run 
on the Marenostrum-4 supercomputer up to 12288 CPU cores. Marenostrum-4 is 
composed of 3456 nodes with 2 Intel Xeon Platinum 8160 CPUs with 24 cores per 
CPU. It is ranked 121th in the November 2023 TOP500 list3, with more than 10 peta-
flops of peak performance and is operated by the Barcelona Supercomputer Center. 
The simulations have been performed with the Alya code interfaced to PSBLAS 
(3.7.0.1) and AMG4PSBLAS (1.0), built with GNU compilers 7.2. The second set 
of experiments aimed to reach very large scales and run by using only one of the 
most promising preconditioners by AMG4PSBLAS on the Juwels supercomputer, up 
to 23551 CPU cores. Juwels is composed of 2271 compute nodes with 2 Intel Xeon 
Platinum 8168 CPUs, of 24 cores each. It is ranked 127th in the November 2023 
TOP500 list, with more than 9 petaflops of peak performance, and is operated by the 
Jülich Supercomputer Center. The simulations have been performed with the Alya 
code interfaced to the same versions of the solvers libraries mentioned above, built 
with GNU compilers 10.3.

6.1 � Comparison of AMG preconditioners

In this section, we discuss results obtained on Marenostrum-4 and compare 
the behavior of FCG coupled to the preconditioners described in Sect.  3.1 and 

3  Available at www.​top500.​org.

https://www.top500.org
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summarized in Table  1. We run both strong scalability analysis for unstructured 
meshes of tetrahedra of three fixed sizes as well as weak scalability analysis, 
obtained by fixing different mesh sizes per core and linearly increasing both mesh 
size and the number of cores. A general row-block matrix distribution based on the 
Metis 4.0 mesh partitioner [21] was applied for the parallel runs.

6.1.1 � Strong scalability

We first focus on strong scalability results obtained on the Bolund experiment for 
three fixed size meshes (small, medium and large) including n1 = 5570786 ≈ 6 × 106 , 
n2 = 43619693 ≈ 4.4 × 107 and n3 = 345276325 ≈ 0.35 × 109 dofs, respectively. 
Three different configurations of the number of cores, obtained by doubling each 
time the number of MPI cores with respect to the minimum number of cores (nodes) 
needed to run at full load, were employed for the three different mesh sizes: from 
minp = 48 to maxp = 192 cores in the case of the small mesh, from minp = 384 
to maxp = 1536 cores for the medium mesh, and finally from minp = 3072 to 
maxp = 12288 cores for the large mesh. We analyze the parallel efficiency and con-
vergence behavior of the linear solvers for 20 time steps after a pre-processing phase 
so that we focus on the solvers’ behavior in the simulation of a fully developed flow. 
Note that in the Alya code a master–slave approach is employed, where the master 
process is not involved in the parallel computations.

In Figs. 6 and 7, we report a comparison of the different methods in terms of the 
total number of iterations of the linear solvers and of the solve time per iteration (in 

Fig. 6   Strong scalability: total iteration number of the linear solvers
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seconds), respectively. Note that in the figures, we also have results obtained with a 
version of Deflated CG (AlyaDefCG), available from the original Alya code.

We can observe that the total number of linear iterations is much smaller than 
that with the original AlyaDefCG, for all three meshes, when AMG4PSBLAS multi-
level preconditioners are applied. For the small mesh, the minimum number of lin-
ear iterations is obtained by MLVSBM which shows a fixed number of 60 iterations 
for all core counts, while MLVSMATCH3 requires 90 iterations for all core counts 
except on 192 cores, where 1 less iteration was needed, and MLVSMATCH4 requires 
100 iterations; in this case, the original AlyaDefCG requires 700 iterations for all 
core counts.

In the case of the medium mesh, we observe a larger number of iterations of the 
solvers employing AMG4PSBLAS preconditioners with respect to the large mesh. 
We have a minimum number of iterations with MLVSMATCH3 ranging from 122 
to 123 for all number of cores, while MLVSMATCH4 requires a range from 160 to 
161 iterations and MLVSBM requires a range from 172 to 174 iterations. The origi-
nal AlyaDefCG requires a number of iterations ranging from 1040 to 1042 for the 
medium mesh.

In the case of the large mesh, the number of iterations required by MLVSMATCH3 
ranges between 108 on 3072 cores and 137 on 12288 cores, while MLVSMATCH4 
requires a more stable number of iterations ranging from 115 to 117; a similarly sta-
ble behavior is observed for MLVSBM which requires a number of iterations ranging 
from 121 to 123. AlyaDefCG requires a number of iterations ranging from 1404 to 
1406 for the large mesh.

Fig. 7   Strong scalability: time per iteration of the linear solvers
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The oscillations in the number of iterations seem to be mostly dependent on the 
data partitioning obtained by Metis, which in turn, appears to have a larger impact 
on the MLVSMATCH3 preconditioner in the case of the large mesh. A deeper analy-
sis of the impact of the data partitioner on the solver behavior, albeit interesting, is 
out of the scope of our current work and would require a significant amount of com-
puting resources.

In all cases, the time needed per iteration decreases for an increasing number 
of cores and, as expected, it is larger for the AMG preconditioners, where the cost 
for the preconditioner application at each FCG iteration is larger than that of Alya-
DefCG. Depending on mesh size and number of cores, the AMG preconditioners 
show very similar behavior, although MLVSBM always requires a smaller time per 
iteration for the large mesh and for the medium mesh when 1536 cores are used.

In Figs. 8 and 9, we can see the total solve time spent in the linear solvers and the 
resulting speedup for the preconditioners. Here, we define speedup as the ratio 
Sp = Tminp

∕Tp , where Tminp
 is the total time for solving linear systems when the min-

imum number of total cores, per each problem size, is involved in the simulation, 
and Tp is the total time spent in linear solvers for all the increasing number of cores 
used for the specified mesh size.

We observe that the AMG preconditioners from AMG4PSBLAS gener-
ally achieve shorter execution times than the original AlyaDefCG; indeed, the 
expected longer time per iteration is more than compensated by the large reduc-
tion in the number of iterations especially for the small and large mesh. In good 

Fig. 8   Strong scalability: total solve time of the linear solvers
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agreement with the behavior in terms of iterations and time per iteration, we 
observe that MLVSBM generally shows the shortest execution time for the small 
mesh, especially for small number of cores, while for the medium and large mesh, 
MLVSMATCH3 and MLVSMATCH4 show some better or comparable behavior 
with respect to MLVSBM. The best speedups are generally obtained, except for 
the small mesh, by the original AlyaDefCG, while in the case of AMG precon-
ditioners, the very good convergence behavior and solve time on the smallest 
number of cores limit the speedup for the increasing number of cores. For the 
AMG4PSBLAS preconditioners, speedups are in good agreement with the total 
solve times, showing that MLVSMATCH3 and MLVSMATCH4 are generally bet-
ter or comparable with respect to MLVSBM for all meshes when the small and 
medium number of cores are used, while MLVSBM is better for medium and large 
mesh when the largest number of cores is used.

In conclusion, the selected solvers from the PSCToolkit generally outper-
form the original Alya solver for the employed test case, and the choice of the 
better preconditioner from AMG4PBLAS depends on target mesh size and number 
of employed parallel cores. This appears as an advantage for Alya’s users that 
having available a large set of parallel preconditioners through the interface to 
PSCToolkit, can select the best one for their specific aims.

Fig. 9   Strong scalability: speedup of the linear solvers. We note that ideal values for speedups in all three 
configurations are 1, 2 and 4, respectively.
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6.1.2 � Weak scalability

In this section, we analyze the weak scalability of the AMG4PSBLAS precondition-
ers, i.e., we observe the solvers looking at their behavior when we fix the mesh size 
per core and increase the number of cores.

We considered the same test case and the three meshes of the previous section in 
the three possible configurations of computational cores, from 48 up to 3072, from 
96 up to 6144 and from 192 to 12288. The different configurations of cores corre-
spond to three different (decreasing) mesh sizes per core equal to nxcore1 = 1.1e5 , 
nxcore2 = 5.9e4 , and nxcore3 = 2.9e4 , respectively. Note that the medium and the 
large mesh correspond to scaling factors of 8 and 64, respectively, with respect to 
the small mesh; therefore in the same way, we scaled the number of cores for our 
weak scalability analysis.

We can limit our analysis to observe the average number of linear iterations of the 
different employed preconditioners per each time step in the various simulations and 
to analyze execution times and scaled speedup for solve. In Fig. 10, we report the 
average number of iterations for each time step. We can observe a general increase, 
ranging from 35 to 70 for an increasing number of cores when the original Alya-
DefCG is employed. On the other hand, when AMG preconditioners from AMG4PS-
BLAS coupled with FCG by PSBLAS are applied, we observe a constant average 
number of iterations equal to 5 for MLVSMATCH4 both for the small and the large 
mesh, independently of the number of cores, while MLVSBM requires 3 iterations 
for the small mesh and 6 for the large mesh. MLVSMACTH3 ranges from 4 to 6 iter-
ations on the small mesh and the large mesh, respectively. In the case of medium 
mesh, in agreement with what was observed for the strong scalability analysis, all 
the preconditioners require a larger average number of iterations, which is 8 for 
MLVSBM and MLVSMATCH4, and 6 for MLVSMATCH3. This behavior indicates a 
very promising algorithmic scalability of MLVSMATCH4. In Figs.  11 and 12, we 
can see the total solve time and the corresponding scaled speedup. We can observe 
that, as expected from the previous sections, all preconditioners from AMG4PSBLAS 
generally lead to a smaller increase ratio in the solve times with respect to the 

Fig. 10   Weak scalability: average number of linear iterations per time step. nxcore
1
 dofs per core (a), 

nxcore
2
 dofs per core (b), nxcore

3
 dofs per core (c)
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original AlyaDefCG, when the mesh size goes from the small to the large one. In 
more detail, we observe that, for all mesh sizes per core, smaller increase ratios in 
the execution time are generally obtained with MLVSMATCH3 and MLVSMATCH4. 
This is better observed by looking at the scaled speedup. It is defined as 
scalfactor × Tminp

∕Tp , where scalfactor = 1, 8, 64 , for the three increasing number of 
cores, Tminp

 is the total time for solving linear systems when the minimum number of 
total cores is involved in the simulation, per each mesh size per core, and Tp is the 
total time spent in linear solvers for all the increasing number of cores used for the 
specified mesh size per core. We observe that the best values are obtained with the 
MLVSMATCH3 and MLVSMATCH4 preconditioners when nxcore1 and nxcore2 dofs 
per core are used. In detail, for nxcore1 dofs per core, MLVSMATCH3 reaches the 
best value of about 71% of scaled efficiency on 3072 cores and about 44% of scaled 
efficiency on 6144 core when nxcore2 dofs per core are employed. This shows that 
the scalability of MLVSMATCH3 and MLVSMATCH4 are very promising in facing 
the exascale challenge, especially when the resources are used at their best in terms 
of node memory capacity and bandwidth. On the other hand, in the case of nxcore3 

Fig. 11   Weak scalability: total solve time (s) of the linear solvers. nxcore
1
 dofs per core (a), nxcore

2
 dofs 

per core (b), nxcore
3
 dofs per core (c)

Fig. 12   Weak scalability: the scaled speedup of the linear solvers. nxcore
1
 dofs per core (a), nxcore

2
 dofs 

per core (b), nxcore
3
 dofs per core (c)
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dofs per core (12c), the scaled speedup of AlyaDefCG is better; this is essentially 
due to the very large solve time spent by this solver on 192 cores.

6.2 � Results at extreme scales

In this section, we discuss some results obtained on the Juwels supercomputer by 
increasing the number of dofs till to n4 ≈ 2.9 × 109 . We limit our analysis to the 
weak scalability results of one of the most promising solvers in PSCToolkit. 
Indeed, due to the limited access to the Juwels resources and taking into account the 
above preconditioners comparison, we only run experiments by using the MLVS-
MATCH4 preconditioner. A general row-block data distribution based on a parallel 
geometric partitioning using Space Filling Curve (SFC)  [8] was applied for these 
experiments. As in the previous experiments, we analyze the parallel efficiency and 
convergence behavior of the linear solver for 20 time steps after a pre-processing 
phase so that we focus on the solver behavior in the simulation of a fully devel-
oped flow for all the meshes but the largest one, where we were not able to skip the 
transient phase due to long simulation time. In this last case, we considered a total 
number of time steps equal to 1379 and analyzed solver performance in the last 20 
time steps. Note that increasing mesh size imposes a decrease in time step due to 
stability constraints of the explicit time discretization that is preferred for LES simu-
lations. Therefore, the total simulated time depends on the mesh size. Furthermore, 
to reduce observed operating oscillations associated with the full node runs, we used 
only a total of 46 cores per node.

As already mentioned, we analyze the weak scalability of the solvers; we consid-
ered a mesh size per core equal to nxcore1 and used a scaling factor of 8 for going up 
to the largest mesh size; therefore in the same way, we scaled the number of cores 
for our weak scalability analysis. We can limit our analysis to observing the average 
number of linear iterations of the solver per each time step and analyzing execution 
times and scaled speedup for the solve phase. We compare the results obtained by 
using the PSCToolkit’s solver against Alya’s Conjugate Gradient solver (hereby 
AlyaCG). Observe that in these experiments, we also tried to use the Deflated CG 
implemented in Alya, but it does not work for the two larger test cases, and AlyaCG 
appears better in the case of smaller size meshes. In Fig. 13, we report the average 

Fig. 13   Weak scalability: aver-
age number of linear iterations 
per time step. Systems size from 
n
1
 to n

4
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number of iterations per each time step. We can observe a general increase, rang-
ing from 133 to 331 for an increasing number of cores, but on 368 cores where 95 
average iteration count is obtained, when the original AlyaCG is employed, while 
very good algorithmic scalability, with an average number of linear iterations per 
each time step ranging from 4 to 6, when the PSCToolkit’s solver is applied. In 
Fig. 14a,b, we can see the total solve time and the corresponding scaled speedup. 
We can observe that the good algorithmic scalability of MLVSMATCH4 leads to 
an almost flat execution time for solving when the first three meshes are employed, 
while a decrease is observed for the simulation carried out with the largest mesh, 
depending on a smaller average number of iterations per time step. On the contrary, 
the original AlyaCG generally shows a huge increase for increasing number of cores 
and mesh size, but in the second one, where a decrease in the average number of 
iterations per time step is observed. Then we look at the scaled speedup, defined as 
scalfactor × T45∕Tp , where scalfactor = 1, 8, 64, 512 , for increasing number of cores, 
T45 is the total time for solving linear systems when 45 cores are involved in the sim-
ulation, and Tp is the total time spent in linear solvers for all the increasing number 
of cores. We observe that for the two larger meshes, MLVSMATCH4 has a super-lin-
ear scaled speed-up of about 71 (up from the ideal speedup of 64) and 640 (up from 
the ideal speedup of 512), respectively, showing that its very good algorithmic scal-
ability is coupled with excellent implementation scalability of all the basic compu-
tational kernels. This scalability is very promising in facing the exascale challenge.

7 � Conclusions

In this paper, we presented our work on improving the linear solver capabilities 
of a large-scale CFD code by interfacing it with a software framework, includ-
ing new and state-of-the-art algebraic linear solvers, specifically designed to 
exploit the very large potential of current petascale supercomputers and aimed at 

Fig. 14   Weak scalability: systems size from n
1
 to n

4
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the early exascale supercomputers. Our activities were carried out in the context 
of the European Center of Excellence for Energy applications, where one of the 
lighthouse codes was the Alya code, developed at the Barcelona Supercomputing 
Center (BSC) and applied to wind flow studies for renewable production. How-
ever, this work has a wider impact, and confirms the benefits of using third-party 
software libraries developed by specialists, in complex, multi-component and 
multi-physics simulation codes.

From Alya’s perspective, the most significant achievement has been obtaining 
excellent algorithmic scalability thanks to multigrid preconditioners, as shown 
in the weak scalability studies. This allows us to solve much bigger problems 
efficiently. Our first objective for the future is to test the GPU version of PSC-
Toolkit. During EoCoE, we have significantly optimized the FE assembly on 
GPUs, making it four times more energy efficient than the CPU version; integrat-
ing a competitive linear algebra GPU package is now the next priority. After that, 
having the entire workflow for incompressible flow problems on GPUs should be 
relatively straightforward. We expect to have a much higher number of unknowns 
for problems running for MPI process when GPU accelerators are exploited. 
Therefore, strong scalability should be much less critical. While we have focused 
on a wind energy problem in this work, we wish to test the solver in other incom-
pressible flow problems in the future. Moreover, since the solver is fully inter-
faced with Alya, it will be interesting to test the suitability of PSCToolkit for 
other problems, such as solid mechanics or heat transfer.
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