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Abstract

The increasing pervasiveness of ICT technologies and sensor infrastructures is enabling
police departments to gather and store increasing volumes of spatio-temporal crime
data. This offers the opportunity to apply data analytics methodologies to extract use-
ful crime predictive models, which can effectively detect spatial and temporal patterns
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of crime events, and can support police departments in implementing more effective
strategies for crime prevention. The detection of crime hotspots from geo-referenced
data is a crucial aspect of discovering effective predictive models and implementing
efficient crime prevention decisions. In particular, since metropolitan cities are heav-

ily characterized by variable spatial densities of crime events, multi-density clustering
seems to be more effective than classic techniques for discovering crime hotspots. This
paper presents the design and implementation of MD-CrimePredictor (Multi- Density
Crime Predictor), an approach based on multi-density crime hotspots and regres-

sive models to automatically detect high-risk crime areas in urban environments,

and to reliably forecast crime trends in each area. The algorithm result is a spatio-tem-
poral crime forecasting model, composed of a set of multi-density crime hotspots, their
densities and a set of associated crime predictors, each one representing a predictive
model to forecast the number of crimes that are estimated to happen in its specific
hotspot. The experimental evaluation of the proposed approach has been performed
by analyzing a large area of Chicago, involving more than two million crime events
(over a period of 19 years). This evaluation shows that the proposed approach, based
on multi-density clustering and regressive models, achieves good accuracy in spa-

tial and temporal crime forecasting over rolling prediction horizons. It also presents

a comparative analysis between SARIMA and LSTM models, showing higher accuracy
of the first method with respect to the second one.

Keywords: Crime data mining, Crime forecasting, Crime hotspots, LSTM, Multi-density
clustering, Urban crime data analysis, Smart cities

Introduction

Reference context

The increasing urbanization occurring during the last years is transforming every
aspect of the urban society and affecting its sustainable development [1-4]. In fact, as
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urbanization continues to grow, it is bringing significant social and economic benefits
(i.e., additional urban services and employment opportunities), while also presenting
challenges in city management issues, like resource planning (water, electricity), traffic,
air and water quality, public policy and public safety services.

Among the main urban issues, criminal activities are one of the most important social
problems in metropolitan areas, because they can severely affect public safety, harm the
economy and sustainable development of a society, as well as reduce the quality of life
and well-being of citizens. For such a reason, improving strategies to effectively manage
and utilize limited public security resources has become a crucial issue for policymakers
and urban management departments.

However, ICT technologies and sensor infrastructures are enabling public organiza-
tions and police departments to gather and store increasing volumes of crime-related
data, with spatial and temporal information. This offers the opportunity to apply data
analytics methodologies to extract useful knowledge models, which can effectively
detect spatial and temporal patterns of crime events. By extracting useful predictive
models and applying appropriate methods for data analysis, police departments are sup-
ported to better utilize their limited resources and implement more effective strategies

for crime prevention.

Motivations and contributions

Several criminal justice studies show that the incidence of criminal events is not uni-
formly distributed within a city [2, 3, 5, 6]. In fact, crime trends are strongly affected
by the geographic location of the area (there are low-risk and high-risk areas). Also,
they can vary with respect to the period of the year (there could be seasonal patterns,
peaks, and dips). For this reason, an effective predictive model must be able to automati-
cally determine which city neighborhoods are most affected by crime-related incidents,
namely crime hotspots, as well as how the crime rate in each particular hotspot evolves
over time. This knowledge can allow police departments to allocate their resources more
efficiently over the urban territory, enabling the effective deployment of officers to high-
risk areas, or moving officers from areas expecting a decline in crime activities, thus
more efficiently preventing or promptly responding to crimes.

In literature, classic density-based clustering algorithms are largely exploited to dis-
cover spatial hotspots [7—11]. However, due to the adoption of global parameters, they
fail to identify multi-density hotspots (i.e., different regions having various densities [12,
13]) unless the clusters (or hotspots) are clearly separated by sparse regions [14]. In par-
ticular, this is a key issue when analyzing crime data and thus correctly detecting the real
crime hotspots. In fact, the density of population, traffic, or events in large cities can
vary widely from one area to another area [5], which also makes the incidence of crime
events extremely dissimilar in terms of density.

Such a spatial density variation in crime events challenges the discovery of proper hot-
spots when classic density-based algorithms perform the analysis. For example, the well-
known DBSCAN [14] receives two global input parameters (¢ and min — points), which
results in a minimum density threshold 8, that is exploited for clustering the whole
dataset. The optimal value of §,,;, can affect the densities of the discovered hotspots and
does not deal with large density variations in the urban data. Indeed, if the value of i,
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is too small, the algorithm can discover several small non-significant hotspots that actu-
ally do not represent dense crime regions, while if §,,;, is too large, it can discover a
few large regions having high intra-cluster density variations. Thus, classic density-based
clustering algorithms fail to identify proper hotspots characterized by different density
levels, and their application to discover crime hotspots can produce inaccurate results,
particularly in urban environments. A recent study in Cesario et al. [5] shows that multi-
density clustering achieves higher performance than classic approaches for discovering
hotspots in multi-density urban environments.

This paper presents the design and implementation of MD-CrimePredictor (Multi-
Density Crime Predictor), an approach based on multi-density crime hotspots and
regressive models to automatically detect high-risk crime areas in urban environments,
and to forecast crime trends in each area reliably. The algorithm is composed of three
main steps. First, multi-density crime hotspots are detected by applying a multi-density
clustering algorithm (i.e., CHD) proposed in Cesario et al. [5], where densities, shapes,
and number of the detected regions are automatically computed by the algorithm with-
out any pre-fixed division in areas. Then, a specific regressive model is discovered from
each detected hotspot, analyzing the partitions discovered during the previous step. In
this paper, this is done by exploiting both SARIMA [15] and LSTM [16] models, and
a comparative experimental analysis is presented in terms of error measures. The final
result of the algorithm is a spatio-temporal crime forecasting model, composed of a set
of crime hotspots, their densities, and a set of associated crime predictors, each one rep-
resenting a predictive model to forecast the number of crimes that are estimated to hap-
pen in its specific hotspot. The experimental evaluation of the proposed approach has
been performed by analyzing a large area of Chicago, involving more than two million
crime events (over a period of 19 years). The experimental evaluation, aimed at assess-
ing the effectiveness of the approach over rolling prediction horizons, presents a com-
parative analysis between SARIMA and LSTM regression models, demonstrating higher
accuracy of the first method with respect to the second one. We also provide a com-
parative assessment of the proposed approach with other studies proposed in literature,
drawing a comparison in terms of hotspots detection and crime forecasting accuracy.
Overall, the results show the effectiveness of the approach, by achieving good accuracy
in spatial and temporal crime forecasting over rolling time horizons.

Plan of the paper

The rest of the paper is organized as follows. Section "Related work" reports the most
important approaches proposed in the literature for crime hotspot detection and crime
forecasting. Section "Problem Definition and Proposed Approach" outlines the problem
statement and describes the approach proposed in the paper and reports its steps in
detail. Section "Experimental Evaluation and Results" provides the experimental evalua-
tion of the proposed approach on a real-world scenario by showing a comparative analy-
sis between SARIMA and LSTM performances. The section also shows a comparison
between the results achieved with the presented approach and other methodologies pro-
posed in the literature. Finally, Sect. "Conclusion” concludes the paper and plans future
research works.
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Related work

Recently, crime hotspot detection and crime forecasting have been raised as hot top-
ics within the research community. This section briefly reviews the most representative
research works in both areas.

Crime forecasting

One of the first frameworks proposed in the literature for crime data analysis is Crime-
Tracer [17], which is based on a probabilistic approach to model the spatial behavior of
known offenders within areas they frequent, called activity spaces. This work is based
on the assumption, based on crime pattern theories, that offenders frequently commit
serial violent crimes in places they are most familiar with (namely, their activity space).
Also, the authors claim that taxi flows can provide useful information to correlate activ-
ity spaces, even if they are not geographically connected. Experiments carried out on
real-world crime data have shown that criminals frequently commit crimes within their
activity spaces, rather than venture into unknown territories. CrimeTracer is indeed able
to predict the location of the next crime committed by known offenders but it does not
provide information about the time window for the next crime events. Also, it requires
a dataset with information related to specific offenders, which could not be available in
general.

The work in Catlett et al. [7] presented a predictive approach based on spatial analysis
and auto-regressive models in order to detect high-risk regions in urban areas and to
forecast crime trends in each region. The approach exploits the DBSCAN algorithm to
detect high-risk regions and ARIMA models to fit crime predictors. The approach has
been validated on two crime datasets (i.e., Chicago and New York City areas) comprising
crime events spanning from 2001 to 2016. The study shows good performances on both
datasets, considering a three-year ahead forecasting window, which is a long-term time
horizon. The approach is capable of detecting crime-dense regions having any shapes,
however the main drawback is that DBSCAN detects wide regions or a large number of
outliers, as it cannot tackle the multi-density nature of urban datasets.

The study described in Zhu et al. [3] proposes a hierarchical crime prediction frame-
work, which integrates a modified gated GCN (Graph Convolutional Networks) and
VMD (variational mode decomposition), to holistically predict the short-term crime
patterns in different communities and support proactive policing. The approach is com-
posed of several steps. First, the temporal dependency is decomposed in the frequency
domain, and a network is constructed to capture the spatial relationships within the
sub-frequencies. Then, human mobility traces are exploited to characterize the dynamic
relationships within the network. The experimental evaluation has been focused on the
crime distribution evolution of crimes in Chicago, to predict the short-term criminal
events in the different communities holistically. The study concludes that social inter-
actions based on human activity data can characterize dynamic crime distribution
relationships, as well as spatial crime distribution evolutions. The main strength of the
research study proposed in Zhu et al. [3] leverages on the dynamic relationships between
human mobility and crimes, which represents a relevant methodological difference with
other approaches proposed in literature; in particular, the analysis of human mobility
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allows to characterize also the dynamic distribution and evolution of crimes within and
across areas, which is strongly affected by social interactions among individuals. How-
ever, while the approach exhibits reasonable effectiveness of taking a relationship-based
perspective for crime forecasting, the theoretical description needs further verification
(as also claimed by authors): in fact, as human activity data is multi-source, multi-gran-
ular, and multi-mode, and involves complex relationships, a more refined classifica-
tion of human mobility trends is needed to understand their effects on different crime
evolutions.

A general framework for crime data mining, exploited for some analysis tasks in col-
laboration with the Tucson and Phoenix Police departments, is presented in Chen et al.
[18]. In particular, the paper describes three examples of its use in practice. First, entity
extraction algorithms have been used to automatically identify persons, addresses, vehi-
cles, and personal characteristics from police narrative reports (usually containing many
typos, spelling errors, grammatical mistakes, etc.). Second, a text mining algorithm has
been explored for deceptive identity detection, to discover the real identity of suspects
that have given false names, faked birth dates, or false addresses. Third, a concept-based
approach has been exploited to identify subgroups or key members in criminal net-
works, and to study interaction patterns among them. In our opinion, the main strength
of this study is its innovativeness in providing investigators with a framework for auto-
matically applying crime entity-extraction techniques on crime data, aiming to extract
serial offenders’ behavioral patterns. However, using only crime department data could
limit the applicability and effectiveness of the framework; as also observed in Chen et al.
[18], additional heterogeneous data (i.e., citizenship, secret services, immigration, web,
social) could enable the development of more intuitive techniques for crime pattern and
network visualization, and higher accuracy in criminal activity predictions.

Authors of Liang et al. [19] propose a framework, named CrimeTensor, to predict the
number of crime incidents belonging to different categories within each target region.
The framework, based on tensor learning with spatio-temporal consistency techniques,
aims to offer fine-scale prediction results considering spatio-temporal categorical cor-
relations in crime events. Crime data is modeled as a tensor, and an objective function
is presented, which leverages spatial, temporal, and categorical information. The predic-
tion task is done by applying CANDECOMP/PARAFAC decomposition to find an opti-
mal solution for the defined objective function. The approach is validated by conducting
experiments on two real-world crime datasets, collected in the Xiaogan (China) and
New York City (USA), each one collecting one year of data. The approach can forecast
crimes while distinguishing between different crime types, but it considers only a pre-
defined set of regions. Furthermore, the experimental evaluation has been performed
only on four months of data. Also, the resulting model requires several different infor-
mation (i.e., crimes, regions, demographics, road networks) to be trained.

The work in Zhu et al. [2] presents an approach based on K-means clustering, signal
decomposition techniques, and neural networks to identify crime distribution in urban
areas and forecast crime trends in each area. The approach has been evaluated on a Chi-
cago real-world dataset (collecting crime data from 2011 to 2018). As a main novelty
of the approach, the authors exploited Bidirection Recurrent Neural Networks for the
forecasting task. The results show good accuracy regarding one-day-ahead prediction
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in terms of MAPE. The main strength of this study, as also reported by authors, con-
sists in its experimental results showing that the crime time series in different areas
exhibit a correlation in the long term, but this long-term effect cannot be reflected in
the short period. This contradiction affects a different perception of public safety qual-
ity between police departments and individuals. On the other side, three main issues
could be overtaken: (i) the application of k-means for cluster detection tends to detect
globular-shaped crime hotspots, which could be not completely appropriate in dynamic
environments like metropolitan cities; (i) the number of clusters (six) detected in the
whole City of Chicago can lead to have very large clusters, someone even larger than
the pre-defined administrative police districts of the city; (iii) the crime types and social
impacts of the crime are not considered in the approach, and could add an important
value to the whole process.

The work in Wang et al. [20] studies crime inference between neighbor areas by
exploiting crime data, POlIs, and taxi flows analyzed by Linear Regression and Negative
Binomial Regression models. The authors evaluated the approach on the Chicago crime
data for five years (2010 and 2015) and considered the city’s administrative boundaries
to partition data. A wide set of experiments was performed to compare the results gath-
ered with different feature combinations. Even if the approach was proven to be effective
in crime inference, the findings show that, on the tested data, the taxi flow distribution is
highly skewed, and this causes a significant forecasting error in some areas.

In Han et al. [21], the authors proposed an approach for predicting daily crimes by
leveraging a combination of Long Short-Term Memory Network (LSTM) and Spatial-
Temporal Graph Convolutional Network (ST-GCN). The algorithm involves topological
maps, crime transitions detected by ST-GCN, and temporal trends extracted by LSTM.
Finally, a Gradient Boost Decision Tree (GBDT) integrates the predicted values from
both modules to create a spatial-temporal model for crime prediction. The experimen-
tal evaluation has been assessed on Chicago crime data. It provides an analysis of 0.32
million crimes over six years, considering only the communities with a large number of
crime cases.

The approach presented in Li et al. [22], named ST-HSL, proposes a Spatial-Temporal
Hypergraph Self-Supervised Learning framework. The approach focuses on the analysis
of sparse crime data, with the aim of tackling the label scarcity issue in crime predic-
tion. Specifically, the authors propose a method to perform spatial-temporal prediction
via Graph Neural Networks, based on a cross-region hypergraph structure learning to
encode region-wise crime dependency within the entire urban space. Additionally, a
dual-stage self-supervised learning approach is designed, with the two goals of (i) cap-
turing spatial-temporal crime patterns at both local and global levels, and (ii) enhanc-
ing the representation of sparse crime data by improving region-specific discrimination.
The experimental evaluation has been carried out by integrating geographic grid-based
regions and crime data on two real-world case studies, i.e., Chicago and New York City,
by also performing a comparative analysis with several state-of-the-art baselines. In
our opinion, the main strength of this approach consists in its capability of perform-
ing spatial-temporal representation with sparse crime data, and the ability of neural net-
work-based models to differentiate spatial-temporal category crime patterns of different
regions and time periods under data scarcity. On the other side, the predefined hotspot
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boundaries in grid-cells could limit the effectiveness of the approach to detect spatial
dynamic distributions of crimes in the area under investigation.

The study presented in Zhou et al. [23] takes inspiration from the fact that, due to
municipal regulations and maintenance costs, it is not trivial for many cities to collect
high-quality labeled crime data, whose availability is crucial for a further data analysis
process. In such cases, authors propose to develop a crime prediction model for a target
city without labeled crime data by learning knowledge from a source city with abundant
data; the basic idea is to use common context data to train a model from the source
city and then fine-tune this model to solve tasks in the target city. However, the authors
highlight that the inconsistency of relevant context data between cities exacerbates the
difficulty of this prediction task. To deal with this issue, the paper [23] proposes an unsu-
pervised domain adaptation model (UDAC) for crime risk prediction across cities while
addressing data scarcity and inconsistency issues. More specifically, the approach is
composed of three main steps. First, given a target city affected by a scarcity of labeled
crime data, several similar source city grids for each target city grid are identified. Then,
based on these source city grids, auxiliary contexts for the target city are built, to make
contexts consistent between the two cities. Finally, a dense convolutional network with
unsupervised domain adaptation is designed to learn high-level representations for
accurate crime risk prediction and simultaneously learn domain-invariant features for
domain adaptation. The approach has been evaluated through experiments performed
on three real-world datasets from New York City, Chicago, and Los Angeles. In our
opinion, the topic investigated by this paper is very interesting, as data scarcity is a major
challenge when training machine- and deep-learning models. However, as also noted by
the authors, this technique could be applied to other fine-grained unsupervised crime
risk prediction, such as predicting crime risk in roads, where the data sparsity problem is
very high [23]. Also, the identification of equal-sized grids in the target and source cities
could statically partition the territory, not considering the evolution of crimes during the
time.

A comparison between several crime prediction and forecasting approaches is pro-
vided in Safat et al. [24]. The paper compares different machine learning algorithms, i.e.,
logistic regression, support vector machines, naive-bayes, k-nearest neighbors, decision
trees, autoregressive integrated moving average models, and long-short term memory
neural networks. The evaluation has been based on crime data gathered in Chicago
(2004—2020) and Los Angeles (1990-2020) cities. The experimental evaluation provides
forecasting results over a five-year window, considering the whole city and not specific
areas within the city.

A systematic review of several research works about crime hotspot detection and
crime prediction is presented in Butt et al. [1]. In particular, the paper analyzes the
impact of clustering techniques on the discovery of crime hotspots, and how time series
analysis and deep learning techniques can be exploited for crime trend prediction. The
review shows that ARIMA and LSTM models are the most used techniques for predict-
ing crime trends in urban environments. The review also highlights the need, for com-
parison purposes, to exploit publicly available data to assess crime prediction results,
and that the most widely exploited measurements for evaluating the effectiveness of
the different approaches are MAE, MAPE, and RMSE, and suggest the use of relative
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performance indexes, such as MAPE, to simplify the comparison between different
approaches.

Table 1 reports a more detailed and critical comparison of the solutions proposed in
the literature, including also our proposed approach MD-CrimePredictor. The compari-
son takes into account several features, as detailed below.

Goal of the approach. This feature describes the topic under investigation and the goal
of the proposal. MD-CrimePredictor and the approaches presented in refs. [2, 3, 7, 17,
21-23] are aimed at detecting crime hotspots (or crime locations) and crime forecasting
models, while the approach proposed in Chen et al. [18] is more focused on deceptive
identity detection and criminal-network analysis.

Data. This feature is related to the data the approaches have been tested on. All
approaches have been evaluated on real-world crime datasets (mainly from Chicago,
Vancouver, New York City, and Phoenix), in some cases integrated with human mobility
data [3, 17, 20] and other contextual data [19, 20].

Methods. This feature differentiates the algorithms on the basis of the methodolo-
gies used for the faced crime analysis task. The approaches presented in refs. [2, 7] and
MD-CrimePredictor exploit density-based clustering algorithms to detect interesting
hotspots, and ARIMA-based and neural networks-based approaches to perform crime
forecasting (with some differences among them). Another set of works exploits pre-
defined area boundaries and Artificial Neural Networks based methodologies to predict
crimes [21-23]. On the other side, the algorithms described in [3, 17, 18, 20] exploit
other techniques, ranging from probabilistic approaches to variational mode decompo-
sitions, entity-detection, and text-mining approaches.

Main features. In addition to the listed comparative categories, we report in Table 1
also a selection of the main features that characterize the revised approaches. The algo-
rithms described in refs. [3, 7] have the good peculiarity of automatically detecting hot-
spots of any shape (e.g., circular, rectangular, irregular), while the approaches proposed
in refs. [2, 7, 17] share the effective capability to perform predictions on rolling forecast-
ing time-horizons. Also, some algorithms differentiate the predicted criminal activities
on the basis of crime categories [18, 19, 22], which could be an added value knowledge
aimed at supporting police prevention activities. Furthermore, some approaches [2, 17,
19-23] deal with only pre-given or specific crime hotspots (activity spaces, grid-cells,
etc.): this may reduce the forecasting effectiveness of such techniques, because they
could not detect dynamic changes in spatial criminal evolutions. Moreover, the approach
described in Catlett et al. [7] detects multi-shape hotspots, but the results exhibit a sig-
nificant number of noise points. Finally, the algorithms described in refs. [3, 17, 19, 20]
rely on the availability and integration of multiple data (i.e., crimes, metro, taxi, demo-
graphic, land use, etc.): from one side the discovery of models correlating urban events
and criminal activities is very interesting, from the other side this could be critical in
cases where a part of such data are not available for the areas under investigation.

Crime hotspot detection

The systematic review presented in Butt et al. [1] reports that for what concerns hotspot
detection techniques, RandomForest and DBSCAN are the most popular approaches
exploited This specific aspect is also analyzed in Cesario et al. [25], which studies how other
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clustering techniques, based on multi-density approaches, outperform classic approaches
to discover urban hotspots. More specifically, the paper compares the DBSCAN, OPTICS-
xi, HDBSCAN, and CHD algorithms against two artificial and one real datasets, by select-
ing the best fitting algorithm parameters through a parameter sweeping approach. The
results of the experimental evaluation on the artificial datasets, made in Cesario et al. [25],
are reported in Tables 2 and 3, where the clustering results are compared by several perfor-
mance indexes (for each index, the best achieved result is reported in bold). The analysis
shows that the HDBSCAN and CHD algorithms are the most effective in detecting clusters
in multi-density dataset, and that CHD performs better than HDBSCAN on the second
dataset (see Table 3). However, other approaches are presented in the literature, specifically
tailored for clustering spatio-temporal data. The work in Nanni et al. [26] presents the TF-
OPTICS algorithm, designed for time-focused clustering. The algorithm processes a set
of spatio-temporal objects, each one represented by a trajectory of values, as a function of
time. TF-OPTICS focuses on computing distances between trajectories by searching for
the best possible time interval. This algorithm, as well as those ones tailored for clustering
trajectories of moving objects, does not suit to the proposed use case, because we focus
on crime events characterized both in time and space, that can not be aggregated in a set
of well-defined trajectories. A more fitting algorithm for clustering spatio-temporal data is
presented in Agrawal et al. [27]. The algorithm, called ST-OPTICS, is density-based, and
exploits two different € parameters, one for clustering points in space and the other for clus-
tering points in time. A comparison between the proposed approach, based on CHD, and
an alternative one, based on the ST-OPTICS algorithm, is provided in the Sect. "Compara-
tive analysis with ST-OPTICS on hotspots detection and crime forecasting".

Main differences and novelty of MD-CrimePredictor

With respect to the summarized works, this paper presents two main novelties. First, it
introduces MD-CrimePredictor, where a multi-density clustering algorithm (i.e., CHD) is
exploited for crime hotspot detection (to the best of our knowledge, this is the first research
study in the crime data analysis domain, showing results on multi-density crime hotspots).
The exploited approach CHD is able to automatically detect multi-density (and multi-
shape) crime hotspots, which differentiates it w.r.t. all the other approaches reviewed here,
thus showing important benefits in the urban data analysis. MD-CrimePredictor relies on
the exploitation of both seasonal regressive (SARIMA) and deep-learning (LSTM) models
for crime forecasting in each discovered hotspot, and, as e second contribution, the paper
furnishes an extensive comparative evaluation between the results given by the two fore-
casting algorithms. Also, to assess the effectiveness of the CHD-based approach for hotspot
detection, we show a comparative analysis of the proposed approach with other studies
proposed in literature, drawing a comparison in terms of hotspots detection and crime
forecasting accuracy

Problem definition and proposed approach

This section presents the problem formulation and the approach proposed in the paper
to forecast crime events in multi-density crime hotspots. Specifically, Sect. "Problem
definition and goals" depicts the problem under investigation and its goals, whereas
Sect. "The multi-crime-predictor approach” details the algorithm proposed in the paper.
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g. 1 The multi-crime-predictor algorithm workflow

Problem definition and goals

We begin by fixing a proper notation to be used throughout the paper. Let
T =<t1,t,...,ty > be an ordered timestamp list, such that ¢, < tj41,Yo<p<p, and
where all #;, are at equal time intervals (e.g., every hour, day, week). Let CD be a crime
dataset collecting crime events, CD =< CD1,CD»,...,CDy >, where each CD; is a data
instance described by < latitude, longitude,t >, i.e., the coordinates of the place and the
time (with ¢ € T') the event occurs at. Now, let us consider a future temporal horizon,
S =<t tey1,... >, with s > H. The goal of the analysis is to discover a set of crime hot-
spots in the city (which can have multi-density distribution of the events) and predictive
models for reliably forecasting the number of crimes in each hotspots at a given times-
tamp £; € S. More specifically, the goal of the proposed approach aims at achieving the
following goals:

1. Discover a set CH of crime hotspots, CH = {CH}, ..., CHg}, where a crime hotspot
CHy is a spatial area which criminal events occur in with an higher density than other
areas in the city;

2. Compute a set X of crime hotspot densities, ¥ = {01, 09, . .., 0}, where each oy, is the
spatial density of events occurred in the hotspot CHj,

= }, where each

. . 1
3. Extract a set Frimes of crime predictors, Ferimes = {F, erimes

crimes’ *

: k
function F,,,,

N € R that are predicted to happen in the crime hotspot CHy € C'H at the times-

: S - R, given a timestamp £; € S states the number of crimes

tamp £;.

The multi-crime-predictor approach

The approach proposed in this paper is sketched in Fig. 1, and its meta-code is reported
in Algorithm 1. The algorithm is composed of three main steps, as described in the
following.

Step 1. Multi-density Crime Hotspots detection. The first step consists in the detec-
tion of multi-density crime hotspots from the original dataset, that is, areas where
crime events occur with greater density than other adjacent areas. The goal of this
step is to detect spatial areas of interest for crime forecasting, in order to conduct
the further analysis over areas rather than single points. This step is performed by
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the DiscoverCrRIMEHOTSPOTS(D) method (line 1 of Algorithm 1), which returns
the set CH = {CHy,...,CHy} of crime hotspots and their corresponding densities
¥ ={o01,092,...,0n}. This task has been modeled as a geo-spatial clustering instance
and has been performed, as described in Sect. "Detection of multi-density crime hot-
spots", using the City Hotspot Detector (CHD) multi-density clustering algorithm [5].
The number of detected hotspots is automatically detected by the algorithm, and their
shapes are traced without any pre-fixed division in areas. The parameter setting for CHD
is chosen by adopting a parameter-sweeping methodology, that is, by running several
instances of the CHD algorithm by varying their input parameters, and choosing the
parameter settings that maximizes a set of internal indexes which comprises Silhouette
(28], DBCV [29], CDBW [30], Calinsky-Harabaz [31], Davies-Bouldin [32].

Step 2. Crime Time Series Extraction. The second step consists in the spatial data split-
ting of the original crime data, based on the clustering model discovered at the previ-
ous step. In other words, the points of the original crime data events assigned to the
i hotspot are transformed in a time series and gathered in the i output dataset, for
i=1,..,K. At the end of this step, K different time series data sets are available, each
one containing the time series of crimes occurred in its associated dense region, aggre-
gated on a weekly basis.

Step 3. Predictive Crime Models extraction. The third step is aimed at extracting a spe-

cific crime prediction model Fci for each i crime hotspot, analyzing the crime data

rime
split during the previous step. This task can be done by applying different regression
techniques. In particular, in our approach this task has been implemented by exploit-
ing both SARIMA and LSTM techniques (which have been resulted the most effective

approaches to this purpose), as described in Sect. "Extraction of crime predictors".

Algorithm 1 MultiCrimePredictor

Require:
D: crime dataset;
Ensure:
CH ={CH;,...,CHg}: a set of K multi-density crime hotspots;

¥ ={o1,...,0K}: aset of K crime hotspot densities;
F = {Fclm.mes, e B oo}t a set of K crime predictors;

1: {(CH1,01),...,(CHk,0K)} < DISCOVERCRIMEHOTSPOTS(D)
2: {Di,...,D§} + BULDCRIMETSDATA(D, CHy,...,CHk)

3: for each k =1,..., K do

4: F; <+ DISCOVERLOCALCRIMEPREDICTOR(Dil)

5 F <« FUEF;

6: end for

7

: return CDR, X, F

Detection of multi-density crime hotspots

The detection of crime hotspots has been done by exploiting the CHD algorithm [5], a
multi density-based clustering algorithm that has been purposely designed for process-
ing urban spatial data and discover multi-density hotspots. The algorithm is composed
of several steps, as reported in Algorithm 2. First, given a fixed k variable, the k-nearest
neighbors distance for each point is computed and exploited as an estimator of the den-
sity of each data point (line 1). Then, the points are sorted with respect to their estimated
density, and the density variation between each consecutive couple of points in the
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ordered list is computed (line 2). The obtained density variation list can show very fre-
quent fluctuations between subsequent values (in particular, in the analysis of real-wold
urban data), thus a moving average filtering over windows of size s is applied to smooth
out such fluctuations and highlight main trends (line 3). The data points are then parti-
tioned into several density level sets (each one characterized by homogeneous density
distributions), on the basis of the smoothed density variations (line 4). Then, a different
€ value is estimated for each density level set (line 5). Finally, each set is analyzed by the
DBSCAN algorithm (lines 7-12). Specifically, each instance takes as input the specific €
value computed for the analyzed density level set. The set of clusters detected for each
partition constitutes the final result of the CHD algorithm. More details about CHD can
be found in [5]. Moreover, in Cesario et al. [25] CHD has been proven to be effective in
detecting clusters characterized by different densities in urban spatial datasets.

Algorithm 2 The CityHotspotDetector algorithm

Require:
D: urban event dataset;
k : an integer value to compute the k-neighborhood density;
w : a coefficient for the density variation threshold;
s : smoothing window size;
Ensure:
UH = {uhi,uha,...,uhg}: a set of H city hotspots;
¥ ={o1,02,...,0m}: a set of H hotspot densities;
: kDistList + CoMPUTEKDIST(D, K)
denVarList < COMPUTEDENSITY VARIATION(kDist List)
smoothDenV arList < MOVINGAVERAGEFILTERING(denV arList, s)
7 < p(smoothDenVarList) + w - o(smoothDenV ar List);
densityLevelSetsList < PARTITIONDENSITY VARIATION(D,smoothDenV ar List,T);
: epsList + COMPUTEEPSVALUES(densityLevel SetsList);
: for each ¢; in epsList do
DLS; < densityLevelSet[i]
(uhe,,0¢;) < DBSCAN(DLS;, €;, k)
10: UH < UH U uhe,
11: Y+ X Uog
12: end for
13: return (UH,X)

oXNITRONMH

Extraction of crime predictors

Given a specific crime hotspot, the DiSCOVERLOCALCRIMEPREDICTOR() method (line
4 in Algorithm 1) extracts a regressive model to forecast the number of crimes that will
happen in its specific area. In this paper, this has been performed by exploiting SARIMA
(Seasonal AutoRegressive Integrated Moving Average) and LSTM (Long Short-Term
Memory) models. Such models and their principles are briefly summarized in the
following.

SARIMA models

Multiple regression models have been defined with the goal of forecasting a variable of
interest using a linear combination of predictors [33]. In particular, in an auto-regression
model, the variable of interest is forecasted using a linear combination of its past values
(the term auto-regression indicates that it is a regression of the variable against itself),
while a moving average model uses past forecast errors in a regression-like model. Some-
times, as a preliminary step to the regressive analysis, time series need a differencing



Cesario et al. Journal of Big Data (2024) 11:75 Page 17 of 39

transformation to stabilize the mean of a time series and so eliminating (or reducing)
trend and seasonality. A combination of differencing, auto-regression and moving aver-
age methods is known as AutoRegressive Integrated Moving Average model (more fre-
quently referred by its acronym ARIMA) [33], formally defined in the following.

Let us consider the time series {y; : £ = 1...n}, where y; is the value of the time series at
the timestamp ¢. Then, an ARIMA(p, d, q) model is written in the form

d d d
yi ) =c+ ¢1y§_)1 +...+ ¢py§_)p +6iee1+...+ eqet—q te

where:
« 5D is the d"-differenced series of y;, that is: @ — y@~1 _ A, =D —y D,
(d) _  (d-1) (d-1) (d _  (d-1) (d-1) ,
Ye =t V-1 s Ve—p = Vt—p T Ve—p-7v
e ¢1,...,¢pare the regression coeflicients of the auto-regressive part;
o 01,...,60,are the regression coefficient of the moving average part;
e €1,...,6_gare lagged errors;

» e is white noise and takes into account the forecast error;

+ cisa correcting factor.

The regression model above described is referred as ARIMA(p, d, q), where the order of
the model is stated by three parameters: p (order of the auto-regressive part), d (degree
of first differencing involved) and g (order of the moving average part). A useful notation
commonly adopted when treating this kind of models is the ’backshift notation’ [34—36],
that is based on the B operator. The B (B%) operator on y; has the effect of shifting the
data back one period (d periods). This is very useful when combining differences, as the
operator can be treated using ordinary algebraic rules. By using the ’backshift’ operator,
the full model can be written as:

(1—¢1B—...—¢B")YA =By, =(1—0B—...—0,B)e,

whose details are out of the scope of this work and a formal demonstration can be found
in [33-35].

In order to deal with seasonality, the classical ARIMA processes have been general-
ized and extended by the SARIMA (i.e., Seasonal ARIMA) models. A SARIMA model
is formed by including additional seasonal terms (modeling a seasonal component that
repeats with a given periodicity) in the classic ARIMA models previously introduced.
The seasonal part of the model consists of terms that are very similar to the non-sea-
sonal components of the model. In the final formula, the additional seasonal terms are
simply multiplied with the non-seasonal terms. A seasonal ARIMA model is referred as
SARIMA(p,d, q)(P, D, Q)m, where m is a periodicity factor.

The SARIMA model can be written as [15]:

d D
bpBYPp(B™) \] \/ y: = 0,(B)YOQ(B™)e,
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where p and g represent non-seasonal ARIMA order, P and Q represent seasonal
ARIMA order, d is the number of time differences and D is the number of sea-
sonal difference. B is the backshift operator and is defined such that y,B* = y,_.

¢p(B) = (1 —¢1B— ... — ¢pBP) is the AR operator and 6,(B) = (1 — 1B — ... — 6,B%)
is the MA operator. ®p(B") = (1 — ®,,B" — ... — ®p,BP™) is the seasonal AR opera-
torand ®gB") =(1—-0,B" —... - @QmBQ’”) is the seasonal MA operator. y;, which

has both seasonal and non-seasonal components, is differenced d times (length one)
and D times (length m). vd = (1 — B)? is the non-seasonal differencing operator and
VZ = (1 — B™)P is the seasonal differencing operator. ¢; is the random shocks that are
not autocorrelated.

Once the differencing order has been chosen ie. 4 and D values, the estimation of
the best model order and the regression coefficient values is performed by applying the
Hyndman-Khandakar’s algorithm. Briefly, the algorithm performs a step-wise search to
traverse the model space and discover the optimal combination of p, ¢, P and Q values,
which is based on the minimization of the AIC (Akaike’s Information Criterion) [33].
Then, the estimation of the regression parameters of both seasonal (i.e., ¢1,...,¢, and
61,...,04) and non-seasonal part (91, ..., P,and Oy, ..., O,) is obtained by maximizing
the MLE (Maximum Likelihood Estimation) [33], i.e., the probability of fitting the data
that have been observed.

LSTM

The LSTM model is a recurrent neural system designed to overcome the exploding/
vanishing gradient problems that typically arise when learning long-term dependencies,
even when the minimal time lags are very long [16]. The LSTM architecture consists of
a set of recurrently connected sub-networks, known as memory blocks. The idea behind
the memory block is to maintain its state over time and regulate the information flow
through non-linear gating units [37]. The output of the block is recurrently connected
back to the block input and to all of the gates. As shown in Fig. 2 LSTM has an internal
state variable, which is passed from one cell to the subsequent, and modified by the fol-
lowing Operation Gates [37]:

+ Forget gate: it is a sigmoid layer that takes the output at ¢ - I and the current input at
time ¢, concatenates them and applies a linear transformation followed by a sigmoid:

O =W, "1+ by)

+ Input gate: it takes the previous output and the new input and passes them through
another sigmoid layer, so this gate returns a value between 0 and 1.

i = o (Wilh" ™Y, 2" + by)
This value is multiplied with the output of the candidate layer:
CY = tanh(W [h"™V, 2" + be)

The candidate layer applies a hyperbolic tangent returning a candidate vector to be
added to the internal state, which is updated as follows:
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Fig.2 LSTM architecture

O = fOC® 4 OcO

The previous state is multiplied by the forget gate and then added to the fraction of
the new candidate allowed by the output gate.

+ Output gate: it controls how much of the internal state is passed to the output and it
works in a similar way to the other gates:

0 = o (W,o[h"V, %] + b,)

hD = 0O tanh(C®)

Once the number of layers, the number of nodes/units and the activation function
per layer have been chosen, the estimation of the best model weights is performed by
applying the backpropagation algorithm, i.e. one of the most popular neural network
algorithms exploited to compute the necessary correction of weights that have been set
randomly at first. Briefly, the algorithm can be decomposed in the following steps [38]:

o Feed-forward computation: given an input for the network, the output is computed
by evaluating the network layer by layer, from the input to the output layers.

+ Back propagation: the error (loss) of the output layer is computed by comparing it
with the reference. Once the layer error has been identified, it is exploited to com-
pute the error for the previous layer, thus propagating it backward. This is repeated
for all the layers back to the input one.

o Weight updates: as the errors in all the network layers have been computed, the
weights are changed in order to reduce the error, by exploiting the gradient descent
algorithm.

The algorithm is stopped when the changes in the value of the chosen loss function
become lower than a given threshold value.
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Experimental evaluation and results

To assess the performance and usefulness of the algorithm described above, we con-
ducted an extensive experimental analysis by running several experiments in a real-
world case study represented by a large area of Chicago. Our analysis aims to identify the
most significant multi-density crime hotspots and build efficient prediction models that
can forecast the number of future crimes likely to occur in each hotspot. We also present
a comparative analysis between SARIMA and LSTM forecasting models. The rest of this
section is organized as follows. Section "Data description” describes the area selected
for the analysis and the gathered data, Sect. "Crime hotspots: results and discussion"
reports the results in terms of multi-density crime hotspots, and Sect. "Crime forecast-
ing models: results and discussion" describes the evaluation of the regressive models, i.e.,
SARIMA and LSTM, comparing the achieved accuracy to predict crimes in the detected
hotspots. Sect. "Comparative analysis with ST-OPTICS on hotspots detection and crime
forecasting” furnishes a comparative evaluation of CHD and ST-OPTICS, establishing a
contrast in crime prediction accuracy between hotspots based on CHD and those based
on ST-OPTICS. Finally, Sect. "Comparison with other crime forecasting approaches on
the Chicago Crimes dataset" reports a comparison of the performances between MD-
CrimePredictor with other crime forecasting approaches [21-23] proposed in literature.

Data description

The data that we used to train the models and perform the experimental evaluation has
been gathered from the Chicago Data Portal, a publicly available data search and explo-
ration platform designed and currently managed by the City of Chicago.! In particular,
crime data have been gathered from the ‘Crimes—2001 to present’ dataset, a real-life col-
lection of instances describing criminal events that occurred in Chicago from 2001 to
the present. Each crime is described by several attributes (e.g., type of crime, location,
date, community area).”

In this work, we focus our experiments on a large area of Chicago, whose bounda-
ries and collected geo-localized crime events are shown in Fig. 3a and b, respectively.
The chosen region encompasses several city neighborhoods, each one experiencing dif-
ferent population and commercial activity growths, with different crime densities over
their territory (so making it interesting for multi-density crime analysis). Its perimeter
is about 50 KM and its area is approximately 157 KM?2. Starting from the ’Crimes—2001
to present’ dataset, we collected all crime events within the bounded area over 19 years,
from January 2001 to December 2019. The total number of collected crimes is 2,306,670,
while the average number of crimes per week is 2328. The total size of the whole dataset
is 167 MB.

Figure 4a and b show a preliminary view of the collected crime data, which provides
some insights about data trends and distribution. In particular, Fig. 4a plots the num-
ber of collected crimes versus the time of observation. The plot immediately reveals
some interesting insights. First, it is evident that the number of crimes is decreasing
over the time period, showing a general clear decreasing trend from 2001 to 2015 in

! https://data.cityofchicago.org/.
% https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g.
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the data, and a stable trend from 2015 to 2019. Second, a recurring seasonal pattern
within each year is easily discernible, whose magnitude appears to get smaller as the
total number of crimes in the series decreases. By observing the plot, we can see that
the number of crimes tends to rise in the late Spring, achieves their peak in the Sum-
mer, decreases in the Autumn, and generally declines in the Winter. Figure 4b plots
the distribution of the average number of crimes by month, thus providing a clearer
picture of the seasonality pattern hidden in the data. The histogram shows significant
seasonal variations in the number of crimes during the year. In particular, the number
of criminal events is highest in July (with 11,380 crimes on average), and lowest in
February (with 8234 crimes, on average).
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To perform the regression task and its validation, we split the original dataset into
two partitions: the training set and the test set. The first is used to discover the rela-
tionships inside data, while the second is used for evaluating whether the discovered
relationships hold generally. In our case, the overall crime data set has been split with
respect to the number of years: the training set contains the crime data of the first 15
years (2001-2016), while the test set holds the crime data of the last 3 years (2017-
2019). As described in the following sub-sections, we trained the knowledge model
(i.e., crime-dense regions and crime predictors) on the training set, and we used the
trained model to forecast the crime events on the test set, so to assess the quality of
the predictions in each hotspot.

Crime hotspots: results and discussion

As described in Sect. "The multi-crime-predictor approach”, crime hotspots are detected
by applying the CHD algorithm. However, in order to detect high-quality crime-dense
regions, it is necessary to tune the key parameters of the algorithm so as to improve
the results’ performance. Specifically, the CHD algorithm requires setting k, w, and s. In
particular, the values of w and & have a direct influence on the quality of the results, and
thus it is critical to choose their value to achieve the right balance among separability,
compactness, and significance of detected hotspots. To show the best results achievable
by the algorithm, we adopted a parameter-sweeping methodology, that is, we run sev-
eral instances of the algorithms by varying their input parameters. Then, we select the
best result, in terms of clustering quality achieved by the algorithm, which best suits our
application scenario and the considered dataset. In particular, in our case, the cluster-
ing quality can be computed by internal validation measures [39], which evaluate the
goodness of a clustering structure without respect to external labels. To do so, the fol-
lowing set of internal indexes are here adopted: Silhouette [28], DBCV [29], CDBW [30],
Calinsky-Harabaz [31], Davies-Bouldin [32], which are used in literature to evaluate the
clustering quality in terms of compactness, separation, number of clusters and density
when no external information is available [39].

The first set of experimental results is reported in Fig. 5, which shows the perfor-
mance achieved by the CHD algorithm with @ varying from —0.3 to —0.25. In par-
ticular, Figure 5a shows how the aforementioned internal indexes, evaluating the
clustering quality, vary with respect to w values. We can observe that the quality of
detected hotspots is very sensitive to w, whose best value, in this case, can be clearly
estimated as equal to w* = —0.27. On the other side, Figure 5b shows how the num-
ber of noise points (blue curve) and the number of detected hotspots (red curve)
vary with respect to w values. Noise points are data instances that do not meet the
criteria for falling into any of the detected clusters (and are considered outliers by
the algorithm), while the number of detected hotspots depends on the algorithm’s
ability to find a balanced trade-off between separability and compactness properties.
We can observe that for w*=—0.27, the number of detected noise points is 18,929,
while the number of detected clusters is 200.

As reported above, we have run several experimental tests to find the parameter set-
tings capable of detecting the highest-quality city hotspots. For such a reason, in the fol-
lowing, we present the results achieved by fixing w = —0.27, k = 64, s = 5000, which
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Fig. 5 CHD clustering quality, num. of hotspots and num. of noise points vs w, with k = 64 and s = 5000

have been assessed to best suit our application scenario and the considered dataset by
the previous analysis.

Now, let us analyze more in detail the crime hotspots detected in the considered
scenario. As reported in Sect. "The multi-crime-predictor approach”, the clus-
tering algorithm exploited in this work first partitions the original data in several
density level sets (each one characterized by homogeneous density distributions on
the basis of density variations), then analyzes each density level set through a spe-
cific density-based clustering algorithm to detect proper clusters in each partition.
The final hotspots (i.e. totally 200) discovered by the algorithm are shown in Fig. 6,
where a different color represents each region. Interestingly, this image shows how
crime events are clustered on the basis of a density criterion; for example, the algo-
rithm detects several significant crime regions clearly recognizable through different
colors: a large crime region (in red) in the central part of the area along with seven
smaller areas (in green, blue and light-blue) on the left and right side, corresponding
to zones with the highest concentration of crimes. The five most relevant crime hot-
spots (CH#197, CH#198, CH#8, CH#21, and CH#15) are zoomed-in on the left and
right sides of Fig. 6. Many other hotspots are detected, representing areas having
minor crime-densities w.r.t. the highlighted ones, or local high-density crime zones
surrounded by low-density ones. Table 4 shows several statistics about the whole
area and the five most numerous crime hotspots. Overall, these regions cover about
22% of the whole area extension and about 55% of the crime events detected in the
whole area between 2001 and 2019.

Finally, in order to make a comparative analysis among classic density-based algo-
rithms and multi-density approaches for hotspots detection, we report here a com-
parative table (Table 5) showing the results of four algorithms (two classic approaches:
DBSCAN and OPTICS-Xi, and two multi-density approaches: CHD and HDBSCAN).
Table 5 shows, for each algorithm, the selected input parameters and some statistics
related to the achieved results (i.e., number of detected hotspots, percentage of noise
points, Silhouette evaluation measure) on the Chicago crime dataset exploited in this
paper and described in Sect. "Data description”. By observing the results in Table 5,
we can observe that HDBSCAN and CHD achieve higher clustering qualities than
DBSCAN and OPTICS-Xj; in fact, HDBSCAN and CHD (multi-density algorithms)
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Table 4 Descriptive statistics—whole area and crime hotspots

Cluster Extention (km?) Extention (%) Perimeter Crimes(#) Crimes(%) Crime
density (n. of
crimes/km?)

Whole Area  156.77 100.00 49.57 2,306,670 100.00 14,713.72
CH#197 12.57 8.02 534 565,790 24.53 45,011.14
CH#198 10.24 6.53 4.27 352,674 15.29 34,440.82
CH #8 545 348 259 170,740 740 31,32844
CH #21 4.83 3.08 222 102,763 4.46 21,275.98
CH#15 1.53 0.98 1.53 84,039 3.64 54,927.45

Table 5 Comparative results achieved by DBSCAN, OPTICS-Xi, CHD and HDBSCAN to detect crime
hotspots, on the Chicago crime dataset [25]

Input parameters # Hotspots # Noise Silhouette index
points (%)

DBSCAN € = 500, minPoints = 60 78 12.6 -028
OPTICS-Xi & =0.05, minPoints = 60 279 719 - 046
CHD o = —027k = 64,5 = 5000 181 57 -023
HDBSCAN min_cluster_size = 200, minPoints = 60 61 346 -0.19

assess on silhouette values equal to —0.19 and —0.23, respectively, which are better
than DBSCAN and OPTICS-xi’s results, whose clustering qualities assess on —0.28
and —0.46. Such results show that multidensity clustering (i.e., HDBSCAN and CHD)
is able to distinguish and identify proper hotspots in urban environments better than
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classic density-based techniques. Moreover, focusing on the two multi-density algo-
rithms CHD and HDBSCAN results, we can observe that CHD achieves a slightly
lower silhouette than HDBSCAN, but it labels a very lower percentage of noise points
(5.7%) with respect to HDBSCAN (34.6%). For such a reason, CHD resulted the best
algorithm to be exploited in our crime data analysis case study. A more detailed anal-
ysis about the comparison among such algorithms is reported in [25].

Crime forecasting models: results and discussion

As described in Sect. "The multi-crime-predictor approach”, the next steps of the
algorithm consist of (i) transforming the original crime data set in several time
series, and (ii) training local crime predictors for each crime hotspot. In particular, as
described in Sect. "Extraction of crime predictors”, the extraction of crime regressors
has been performed by applying SARIMA and LSTM models on each hotspot. Spe-
cifically, we present here the details of the regressive models obtained by both algo-
rithms for the whole area and the three largest crime hotspots, i.e., CH#197, CH#198,
and CH#8. Then, we will show the predictive performance of the models on the test
set for all hotspots.

The regressive models extracted by SARIMA are reported in Table 6. For each area,
the table shows the order of the models, the final autoregressive formulas (in back-shift
notation), and the final coefficient values. It is worth noting that the predictive crime
models differ among the hotspots, showing that each area presents specific crime trends
and patterns, thus making the discovery of different predictive models reasonable.

The models extracted by LSTM are reported in Table 7. For each area, neural net-
works are trained with 4 layers, ReLu [40] activation function, a number of epochs
equal to 50, and a customised batch size and number of units/nodes per layer. In each
of the models presented, the mean absolute error (mae) loss function is considered.
One of the most important factors in neural network training is the learning rate,
a customized hyperparameter with a small positive value between 0.0 and 1.0 [41].
The rate at which weights are changed during the training is known as the step size
or learning rate. A learning rate of 0.01 produced superior results in the NN models
reported here than other learning rates. Even in the case of LSTM models, each hot-
spot has specific crime trends and patterns.

In order to assess the effectiveness and accuracy of the regressive functions, we per-
formed an evaluation analysis on the test set consisting of the last three years of data
(i.e., years 2017-2019). In particular, for each crime hotspot and for the whole area,
their associated SARIMA and LSTM models have been exploited to predict the num-
ber of crimes that are likely to happen in that hotspot, week by week. Figures 7 and
8 show observed, SARIMA-forecasted and LSTM-forecasted data (plotted in blue,
orange and green, respectively), for the whole area and the crime hotspot CH#197
(the largest one), respectively. We consider here four prediction horizons on the test
set, from one to four-week ahead. We note that forecasts generally adhere very well
to the observed data over the whole test set period. However, the forecasting accuracy
clearly decreases (in particular for LSTM) with the increase of the prediction horizon.
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Table 6 Details of the SARIMA models trained for the whole area and the top 3 largest crime
hotspots in Chicago

Whole area
Model: SARIMA(3,1,3)(1,1,2)s, MLE = —5903.48, AIC = 11826.96
Backshift notation: (1 =618 — 6282 — ,83)(1 — ©18°2 — ©,8'%) ¢,
YT =418 — 428 — 6389 (1 — ®182)(1 — B)(1 — 67)
Coefficient values: ¢1 = —0.0286, ¢, = 0.7987,¢3 = —0.0589, 0§y = —0.6755,6, = —0.8928,

03 = 0.5949, ®; = 0.9862,0; = —1.7097,0, = 0.7109
Crime Hotspot 197

Model: SARIMA(1,1,3)(1,1, )55, MLE = —4861.32, AIC = 9736.64
Backshift notation: (1 =618 =682 — 6,83 (1 — ©18°2) ¢,
M =B (1 — @89 (1 - B)(1 —B)
Coefficient values: ¢1 = 0.7560,0; = —1.5868, 6, = 0.6273,63 = —0.0215, &1 = 0.0657,
®; = —-0.8027,
Crime hotspot 198
Model: SARIMA(1,1,2)(2,1,1)s5, MLE = —4503.01, AIC = 9020.01
Backshift notation: (1=6:B—6:8)(1 — ©18°) ¢,
YT U6 (1 — @187 — 9,8 (1 — B)(1 — 6
Coefficient values: ¢ = —081866; = 0.0241,6, = —0.7394, d; = 0.11817, P, = 0.0340,
®; = -09027
Crime hotspot 8
Model: SARIMA(2,1,0)(3,1,3)s2, MLE = —4216.93, AIC = 8451.87
Backshift notation: (1 — @185 — ©,8'% — @38'%0) ¢
= (1 = ¢1B—2B2)(1 — ®18°2 — 8104 — 1816)(1 — B)(1 — B?)
Coefficient values: ¢1 = —05384, ¢, = —0.2661, &1 = —1.5079, ¥, = —0.8666, 3 = 0.0336,

07 =0.5728,0; = —0592503 = —0.9798

Table 7 Details of the LSTM models trained for the whole area and the top 3 largest crime-dense
regions in Chicago

Cluster Layers Units Activation Epochs Batch size LR Loss Loss value
Whole area 4 25 relu 50 26 0.01 mae 91.77
CH#197 4 50 relu 50 13 0.01 mae 26.59
CH#198 4 100 relu 50 13 0.01 mae 21.78
CH #8 4 100 relu 50 52 0.01 mae 12.99

Now, let us give a quantitative evaluation of the performance of the regressive mod-
els and their effectiveness in making predictions on the corresponding test sets. To
this end, we computed six error measures (MAE, MAPE, MSE, RMSE, MaxError,
MeanError), which are commonly used in regressive analysis literature to quantify
forecast performance [12].

Table 8 reports the values of the error measures described above achieved by
SARIMA and LSTM models for the whole area and the three largest detected crime
hotspots. Looking at the values reported in the table, we can make the following
observations.

The smaller hotspot, the lower MAE. Looking at the values in the table, we can
observe that MAE values decrease when hotspot areas are smaller and smaller. In
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fact, considering one-week-ahead forecasting, the MAE achieved by SARIMA mod-
els monotonously decreases from 77.44 (whole area) to 24.42, 21.09, and 12.59 (three
largest crime hotspots, ordered by decreasing size), and similarly for all other fore-

casting horizons. LSTM forecasts show decreasing MAE values as well. The trend is
clearly recognizable in Fig. 9, which plots the MAE achieved by both SARIMA and
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Fig. 9 MAE for each hotspot. Mean Absolute Error (MAE) for the whole area and the top 5 largest crime
hotspots, achieved by SARIMA and LSTM

(d) four week-ahead

LSTM for the whole area and the top five largest crime hotspots. The chart clearly
shows that the smaller the hotspot, the lower the error. This is a reasonable outcome,
that is, predictions are more precise when hotspot areas are smaller, thus providing
city administrators and police officers with more detailed information for strategizing
how to distribute resources and efforts among the various parts of the city.

Higher forecasting accuracy when the forecasting horizon is shorter. For example,
the MAE assessed by LSTM-forecasts, by considering the whole area, monotonously
increases from 91.06 (for one-week-ahead forecasts) to 97.86, 113.70 and 140.41 (for
two-, three- and four-week ahead forecasts), and similarly all other indices and areas.
This is a reasonable result, considering that forecasts are based on the previous historical
trends: the more away is the forecasting timestamp from the most recent historical data,
the less accurate the forecast. The increasing trend can also be seen in Fig. 10, which
shows the MAE versus several weekly forecasting horizons. The increasing trend is more
evident for the whole area and the largest cluster, and it is particularly marked for the
LSTM-based forecasts.

SARIMA models outperform LSTM model (for large hotspots). Percentage errors
(MAPE column) show that the adopted SARIMA models (Table 6) forecast the
number of crimes with an average error ranging from 5.09% (whole area, one-week
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Fig. 10 MAE vs n. of weeks. Mean Absolute Error (MAE) versus the number of weeks in the test set, achieved

by SARIMA and LSTM, for the whole area and the top 3 largest crime hotspots

ahead) to 13.37% (crime hotspot #8, four-week ahead), which appears to be a very

interesting result. On the other side, LSTM models assess MAPE values rang-

ing from 5.93% to 12.81%, respectively. For a more complete view of these results,

Fig. 11 shows the MAPE versus several weekly forecasting horizons. From the plot,

we can observe that percentage errors of both SARIMA and LSTM models increase

when the prediction horizon is longer and longer, and that generally SARIMA mod-

by observing

Also,

the values in the Table 8 and Fig. 11, we can observe that the lower the hotspot area,

els outperform LSTM regressors (but for the smaller hotspot)

the higher the percentage error. However, the MAPE index, as defined above, does

The growth in forecasting

not take into account the coverage level of each hotspot

errors is compensated by a more precise identification of the specific area where

crime events will occur, thus giving more exhaustive information to city administra-

tor and police officers for planning how to distribute resources and efforts in the dif-

ferent regions of the city.

Finally, to understand whether the forecast errors can be approximated to normally

distributed with mean zero and variance o2, we show in Fig. 12 the distribution of resid-

uals (with overlaid the normal curve with the same mean and standard deviation as the
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set, for the top 2 largest crime hotspots, for one-week ahead forecasting

distribution of forecast errors) for the two largest crime hotspots detected by SARIMA
models. In particular, the figure presents the histograms of the forecast errors over one-
week ahead forecasts, which show that the distributions of forecast errors are slightly
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Fig. 13 QQ-plot. QQ-plot for the top 2 largest crime hotspots

shifted towards positive or negative values compared to a normal curve (it should be
centered on 0, in the ideal case). This is also confirmed by observing the Normal QQ
plot (quantile-quantile plot) shown in Fig. 13, which can be exploited as a graphical tool
to assess if residuals plausibly follow a normal distribution. Both plots graphically con-
firm that the residuals follow a normal distribution, as expected.

Comparative analysis with ST-OPTICS on hotspots detection and crime forecasting

To make our evaluation more accurate and complete, we performed a comparative
analysis of the proposed approach, based on CHD for hotspot detection, with a similar
approach based on ST-OPTICS [27], which is a density-based clustering algorithm spe-
cifically designed to analyze spatio-temporal data. ST-OPTICS was selected among oth-
ers since it was purposely designed for clustering datasets characterized by time-based
features, and thus is not directly comparable with the other spatial clustering algorithms
previously mentioned (see Table 5). In a nutshell, ST-OPTICS is a modified version
of the OPTICS algorithm, achieved by extending the notion of density-reachability. It
exploits two radiuses, €1 and €3, where the €1 defines the reachability with respect to spa-
tial attributes, and €3 defines the reachability w.r.t. non-spatial (temporal) attributes; on
the basis of such definitions, a point p; is considered in the neighborhood of p; if the
distance between p; and pj is less than €; w.r.t. spatial attributes, and less than e, w.r.t.
non-spatial attributes. The ST-OPTICS implementation we exploited is publicly avail-
able,® and it takes as input parameters (€3, min_pts, &), where ¢, is a threshold value on
the maximum radius w.r.t. the non-spatial attributes, min_pts is the minimum number
of neighbors required to define a core-point, and £ determines the minimum steepness
on the reachability plot that constitutes a cluster boundary. The reachability plot takes
into account both spatial and non-spatial radiuses. It is also worth noting that min_pts
and & are exploited as in the well-known OPTICS-£ algorithm.

To perform the comparative analysis between the results achieved by ST-OPTICS and
CHD, we first evaluated the characteristics of the most five relevant hotspots detected
by the two algorithms, and then the forecasting performance achieved for crime pre-
diction in each hotspot. The dataset exploited for the comparative analysis is that one

3 ST-OPTICS implementation on Github (https://github.com/eren-ck/st_optics) [42]
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Fig. 14 Hotspots detection: ST-OPTICS clustering quality, num. of hotspots and num. of noise points vs &,
withk = 64ande; = 24

described in Sect. "Data description”, and predictions have been compared versus differ-
ent forecasting horizons.

As a first result, ST-OPTICS has been applied to discover spatial hotspots from the
geo-referenced crime data. In order to detect high-quality crime-dense regions, an
input parameters tuning has been done to achieve the best results of the algorithm. In
particular, the clustering quality has been evaluated by computing the internal indexes
(Silhouette, DBCV, CDBW, Calinsky-Harabasz, Davies-Bouldin) adopted in Sect. "Crime
hotspots: results and discussion”, by varying & from 0.05 to 0.1 and €3 from 4 to 24 (with
step size equal to 4). The results are reported in Figure 14a, which shows the performance
achieved by varying &, fixed €2 = 24 and k = 64 (which corresponded to the optimal per-
formance within the faced scenario). In particular, Figure 14b shows that the best qual-
ity of detected hotspots is achieved for £* = 0.07. Comparing such results with those
reported in Sect. "Crime hotspots: results and discussion”, we notice that CHD performs
better than ST-OPTICS considering Silhouette, Calinsky-Harabasz and Davies-Bouldin
indexes, while ST-OPTICS is better on the DBCV index. On the other side, Figure 5b
shows how the number of noise points (blue curve) and the number of detected hotspots
(red curve) vary with respect to & values. We can observe that for £*=0.07, the number of
detected noise points is 23,947, while the number of detected clusters is 49. With respect
to CHD, ST-OPTICS detects an higher number of noise points (23,947 versus 18,929)
and a lower number of hotspots (49 versus 200). The results shown below only refer to the
run with the best combination of parameters (i.e, £=0.7, €2 = 24, k = 64).

The comparative forecasting performance analysis on the hotspots detected by ST-
OPTICS and CHD has been done by focusing on the five most numerous clusters
returned by the two algorithms. In particular, as SARIMA models have shown higher
predictive accuracy in Sect. "Experimental evaluation and results", we exploit here these
regressive models to compare the achieved results. Table 9 reports the values of four
error measures (MAPE, MAE, MSE, RMSE) achieved by SARIMA models on the five
largest hotspots detected by ST-OPTICS and CHD (sorted by decreasing size), ver-
sus one-, two-, three- and four-week-ahead forecasting horizons. Looking at the val-
ues reported in the table, we can observe that the first two largest clusters detected by
ST-OPTICS (clusters #0 and #4) and CHD (clusters #197 and #198) are very different
in terms of number of points, while the other ones have comparable sizes. Also, by
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Fig. 15 MAPE achieved by SARIMA model, for the top 5 most numerous clusters detected by ST-OPTICS and

CHD

comparing MAPE, MAE, MSE and RMSE, we can observe that forecasts achieve gener-
ally lower errors on the hotspots detected by CHD than on those ones detected by ST-
OPTICS. This result, in part due to the lower numerosity of the clusters, shows higher
forecasting accuracy on the hotspots detected by CHD. As a more complete view of
the MAPE results, Fig. 15 shows the MAPE versus several weekly forecasting horizons.
From the plot, we can observe that percentage errors are lower on CHD-detected hot-

spots than on ST-OPTICS-detected hotspots (except for the largest cluster).

Comparison with other crime forecasting approaches on the Chicago Crimes dataset

With the aim of making a comparative analysis for crime forecasting more accurate and
complete, we report here some comparative results between MD-CrimePredictor and
some other approaches selected from the crime forecasting literature (i.e., [21-23]).
Specifically, to ensure a fair and consistent comparison, we selected four algorithms
that have been specifically applied to the Chicago crime data, i.e., the same dataset we
exploited to evaluate MD-CrimePredictor as well. The approaches have been com-
pared in terms of MAPE, which is a scale-independent metric (making it suitable for

comparisons between different datasets or models) largely used in the crime forecasting
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Table 10 Comparative results on crime forecasting with other approaches proposed in literature on
the Chicago crimes dataset, for one day-ahead forecasts

Id References Model Training period Forecasting period #days MAPE

#1 Reference [21] Long-Short Term Mem-  Jan 2015-Dec 2019  Jan 2020-Mar 2020 69 0.39
ory and Spatial-Temporal
Graph Convolutional

Network

#2 Reference [22] Spatial-Temporal Convo-  Jan 2016-Aug 2017 Sep 2017-Dec 2017 105 047
lution Encoder

#3 Reference [23] Dense Convolutional Jan 2015-Jun 2015 Jul 2015-Dec 2015 184 0.23

Network with Unsuper-
vised Domain Adaptation
(no feature construction)

#4 Reference [23] Dense Convolutional Jan 2015—Jun 2015 Jul 2015-Dec 2015 184 0.14
Network with Unsuper-
vised Domain Adaptation

#5 MD-CrimePredictor CHD and Seasonal Jan 2001-Dec 2018  Jan 2019-Dec 2019 365 0.12
Auto-Regressive Inte-
grated Moving Average
(SARIMA)

performance evaluation [1]. Table 10 summarizes the results of the comparison, showing
for each approach (i) the exploited models, (i) the period of the Chicago crimes dataset
exploited as training set, (iif) the period of the dataset exploited as test set, (iv) the total
number of forecasted days, and (v) the related MAPE index for one-day-ahead forecasts,
as reported in the corresponding references [21-23] (reviewed in Sect. "Related work").
By observing the table, it is worth noting that the MD-Crime-Predictor has been tested
considering the longer time horizon (365 days), while the other approaches have been
tested on time horizons no longer than 6 months (184 days for the approaches proposed
in [23]). As a second thought, it can be seen that MD-CrimePredictor over-performs
the other methodologies w.r.t. the MAPE index (0.12), resulting slightly more effective
than the second best result reported in the table (0.14). The comparison confirms the
goodness of the presented approach, even when considering short (one-day-ahead) time

windows.

Conclusion

This paper presented the design and implementation of MD-CrimePredictor (Multi-
Density Crime Predictor), an approach based on multi-density clustering and regressive
models to automatically detect high-risk crime areas in urban environments, and to reli-
ably forecast crime trends in each area. First, the algorithm detects multi-density crime
hotspots by applying a multi-density clustering algorithm, where densities, shapes, and
the number of the detected regions are automatically computed by the algorithm with-
out any pre-fixed division in areas. Then, a specific regressive model is discovered from
each detected hotspot, analyzing the partitions discovered during the previous step. The
final result of the algorithm is a spatio-temporal crime forecasting model, composed of a
set of crime hotspots, their densities, and a set of associated crime predictors. Forecast-
ing models are extracted by exploiting both SARIMA and LSTM models, and a com-
parative experimental analysis is presented in terms of error measures. The experimental
evaluation of the proposed approach, performed on a large area of Chicago (involving
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more than two million crime events), has shown higher accuracy of the first method
with respect to the second one. We also offer a comparative evaluation of CHD in con-
trast to ST-OPTICS, making a comparison regarding crime prediction accuracy between
hotspots identified through CHD and those identified through ST-OPTICS. Moreover,
we have also presented a comparative analysis with other crime forecasting methods
proposed in the literature, and specifically tested on Chicago crime data. Overall, the
results show the effectiveness of the approach proposed in the paper, by achieving good
accuracy in spatial and temporal crime forecasting over rolling time horizons.

In future work, other research issues may be investigated. First, we further explore the
application of other multi-density approaches for the detection of crime hotspots, with
the aim to perform a comparative evaluation between different clustering algorithms
(multi-density vs classic density-based approaches) in crime spatial analysis. Second, we
will study how other urban events can affect crime trends, and how such data can be
correlated to criminal activities.
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