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Abstract

The lipoaspirate fluid (LAF) has recently emerged as a potentially valuable source in regenerative medicine.
In particular, our group recently demonstrated that it is able to exert valuable osteoinductive properties in
vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means
of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, object of the present study. Top-
down analyses required the optimization of the sample pretreatment procedures, to enable the correct
investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples
after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down
approach allowed demonstrating the presence of aloumin and haemoglobin fragments (i.e. VV- and LVV-
hemorphin-7), thymosins B4 and 10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis
regulatory factor, perilipin-1 fragments and S100A6 together with their PTMs. Part of the bottom-up
proteomic profile was reproducibly found in both tested samples. Selected proteins are listed among the
components of adipose tissue, and/or are comprised within the ASCs intracellular content and secreted
proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue
environment. LAF appeared to contain bioactive proteins and peptides and paracrine factors, suggesting a

putative translational exploitation.
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1.0 Introduction

Adipose tissue (AT) is a specialized connective tissue, present in the body in different forms with multiple
functions. Rather than being exclusively a fat storage and energy reservoir, it is currently considered as an
endocrine organ, able to secrete paracrine factors influencing and regulating several biological functions in
both healthy and disease conditions [1, 2].

AT structures comprises fat lobules, made up of differentiated lipid storage cells (adipocytes) supported by
a connective stroma (stromal vascular fraction, SVF). This houses collagen fibers and blood vessels, plus a
wide and heterogeneous cell population. In particular, adult stem cells with mesenchymal-like phenotype,
namely adipose-derived stem cells (ASCs), are known to reside in perivascular location, and makes AT a
valuable resource in regenerative medicine [3].

AT is commonly harvested from subcutaneous depots through lipoaspiration and is used for autologous
transplantation in fat grafting techniques. Lipoaspiration procedures cause the mechanical disaggregation
of fat lobules, which can be separated into three layers, by centrifugation: an “oily” upper layer containing
disrupted adipocytes, a tissue fraction (grossly corresponding to the SVF) in the intermediate layer, and a
fluid/blood fraction. ASCs are commonly isolated from the tissue fraction through enzymatic digestion,
which requires intensive and time-consuming processing, and potentially increases the risk of
contamination. In addition, the costs for clinical-grade collagenase, along with the debated residual toxicity,
hamper a broader exploitation of ASCs in the clinical practice.

ASCs are multipotent stromal stem cells, that share significant molecular and functional features with bone-
marrow stromal stem cells [4]. In particular, they have been proved to be able to differentiate along the
osteogenic lineage in vitro and to induce successful bone healing in vivo [5, 6].

Interestingly, multipotent somatic stem cells have been found also in the fluid portion of lipoaspirates
(lipoaspirate fluid, LAF) [7-9].

LAF can be isolated from lipoaspirate specimens by either centrifugation/washing procedures [10], or using

automated systems, recently described [11, 12]. This portion contains an ASC-like population (named LAF
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cells) suspended in blood/saline fluid, which reasonably contains the secretome of cells comprised in a
lipoaspirate, among other components.

Our group recently described that LAF, separated from lipoaspirate specimens through a closed device,
retains valuable osteoinductive properties in an in vitro co-culture system [12]. Reasonably, these features
can be due to the secretome released by LAF-cells. These observations stimulated the interest in
investigating the proteomic profile of LAF, which represents the aim of the present study, given that no
previous data are currently available to achieve a definite knowledge of LAF composition.

Here we report the results of a pilot investigation on cell-free LAF proteome and peptidome performed by

means of a top-down/bottom-up LC-MS integrated platform.

2.0 MATERIALS AND METHODS

2.1 Materials and Reagents

lodoacetamide (IA), DL- dithiothreitol (DTT), ammonium bicarbonate powder (AMBIC), acetone, glycerol,
sodium dodecyl sulfate (SDS), trypsin (for proteomics analysis), acetonitrile (ACN) and Blue bromophenol
(BpB) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Trifluoroacetic acid (TFA), TrisHCI were
obtained from Fluka (Sigma-Aldrich, Buchs, Switzerland).

Chloroform (RPE grade), formic acid (FA), acetic acid and methanol (MeOH) were purchased respectively
from Prolabo (Fontenay-sous-Bois, France), J.T Baker (Deventer, Holland), Carlo Erba (Milan, Italy) and
Merck (Darmstadt, Germania). All organic solvents were of LC-MS analytical grade. Ultrapure water was

obtained from P.Nix Power System apparatus, Human, Seoul, Korea.

2.2 Apparatus

SDS-page 1-DE electrophoresis was performed on Criterion XT 12% polyacrilamide gel (11 cm; Bio-Rad,
Hercules, CA, USA).
HPLC- ESI-MS/MS analysis were carried out on LTQ Orpitrap XL mass spectrometer (Thermo Fisher

Scientific, Waltham, MA, USA) with ESI ion source coupled to an Ultimate 3000 Micro HPLC (Dionex,
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Sunnyvale, CA, USA) equipped with a FLM-3000-Flow manager module. The protein and peptide separation
were performed on Zorbax 300 SB-C8 (3.5 um, 1.0 i. d. x 150 mm) and Zorbax 300 SB-C18 (3.5 um, 1.0i. d.
X 150 mm) chromatographic columns (Agilent technologies, Santa Clara, CA, USA) for top-down and

bottom-up analyses, respectively.

2.3 LAF samples collection and treatment

2.3.1 Sample collection

Lipoaspirate fluid (LAF) was obtained from two female donors (A e B donor-specimens) through
lipoaspiration from the abdominal region. LAF portion was separated from the lipoaspirate using the
MyStem Evo® kit device (see Cicione et al. [12], for details), which allowed obtaining an output sample of
50mL from each specimen. This was subsequently centrifuged at 15000 rpm x 5 min (4°C) to remove the

cellular components. The supernatant was stored at -80°C until further analyzed.

2.3.2 Sample pretreatment

The LAF sample A, underwent four alternative pretreatment procedures, namely methods M1, M2, M3,
and M4 to set up the optimum protein extraction procedure that was therefore applied also to LAF sample
B. M1 was a simple and rapid procedure, already described in our previous paper [13-15]. Briefly, the
samples were thawed at room temperature, acidified with 0.1% (v/v) TFA aqueous solution and added of 2x
volumes of ACN to deplete the most abundant and interfering proteins. After centrifugation, the resulting
supernatant was liquid/liquid extracted with 2x volumes of chloroform to remove possible residual lipids in
the sample.

M2-4 pretreatments were based on fast protein fractionation by precipitation using acetone. Details of the
methods are reported below.

In the M2 method we performed protein precipitation using 4x volume of cold (-20°C) acetone added to a
sample aliquot, vortex-mixed (1min), incubated for 60 min at -20°C and then centrifuged for 10 minutes at

14000 rpm. The supernatant was discarded without dislodging the protein pellet. The remaining acetone
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was left to evaporate at room temperature for 30 minutes. The protein pellet was resuspended in 0.4%
TFA. Chloroform (2x volumes) was added to remove the sample lipid component possibly still present in the
sample. After vortex-mixing (1 min) the sample was centrifuged (13400 rpm x 2 min) at room temperature,
and the aqueous phase was collected.

In the M3 method a preliminary extraction of the lipid fraction from untreated LAF was performed, using 2x
volumes of chloroform, before accomplishing protein precipitation using acetone as described for the M2.
Method M4 consists in a single treatment of protein precipitation with acetone, as described above,
without chloroform treatment. Sample B was subjected to the method M1 of choice.

For 1D SDS-PAGE analysis, the sample was diluted 1:1 (v/v) with SDS buffer (Tris-HCl 0.05 M pH 6.8, 2% SDS,
10% glycerol and 100mM DTT); then it was sonicated 3x10 s, and incubated first at 100°C in a water bath
for 5 min, hence at 37°C for 55 min, in a thermomixer (Eppendorf, Hamburg, Deutschland). After
centrifugation (700xg 25°C, 15 min), two phases were obtained: an organic phase containing the lipid
fraction, and an aqueous phase with hydrophilic proteins. The aqueous phase was used for SDS-PAGE
analysis. Protein quantification in the aqueous phase was performed with 2D-QuantKIT (GE Healthcare Bio-
Sciences Corporation, Little Chalfont, USA). The SDS-PAGE separation was carried out loading 50 pg of
protein on a 12 % Bis-Tris Criterion XT precast gels and proteins were visualized with Coomassie Brilliant
Blue R-250 staining. Gel images were acquired by Quantity One software (version 4.3.1; Bio-Rad, Hercules,

CA, USA).

2.4 Top-down/bottom-up HPLC-ESI-LTQ-Orbitrap-MS analyses

2.4.1 Top-down HPLC-MS analysis

Top-down analyses were performed by uHPLC coupled to high resolution LTQ-Orbitrap mass spectrometry
with an ESI source. Proteins and peptides were separated using on an RP-C8 column in gradient elution,
using aqueous FA 0.1% (v/v) as eluent A and ACN/H,O (80:20, v/v) 0.1% FA (v/v) as eluent B applying the

following step gradient: from 5 to 55% B (40 min); from 55% to 100% B (8 min); from 100% to 5% B (9 min)
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at flow rate of 80 puL/min. The injection volume was 20 pL. The following MS parameters were set: capillary
temperature 250°C, source voltage 4 kV, capillary voltage 37 V, tube lens voltage 245 V. The acquisition of
high resolution full scan MS and MS/MS spectra were carried out in data-dependent scan mode (DDS) with
a resolution of 60000 and 30000, respectively, in 300-2000 m/z range of acquisition, selecting the three
most intense multiply charged ions acquired every 3 ms scans and fragmenting them by collision-induced

dissociation (CID) (35% normalized collision energy).

2.4.2 Bottom-up HPLC-MS analysis

For the bottom-up HPLC-ESI-LTQ-Orbitrap analysis, a chromatography RP-C18 column was used.

The analysis were performed using an aqueous solution of FA (0.1%, v:v) as eluent A and ACN/water (80:20,
v/v) with 0.10% FA as eluent B. Chromatographic separation was carried out in a three steps gradient
elution: from 5 to 55% of eluent B (40 min), from 55% to 100% of eluent B (8 min), from 100% of eluent B
to 5% (9 min) at a flow rate of 80 pl/min. The injection volume was 20 pL.

MS acquisition parameters were the same used for top down analysis above reported.

2.4.3 MS Data analysis

The top-down MS and MS/MS spectra collected were elaborated manually using the HPLC-MS apparatus
management software (Xcalibur 2.2 SP1.48, Thermo Fisher Scientific), along with license-free tools for
proteomics analysis (www.expasy.org). The bottom up data were elaborated using Proteome Discoverer
1.4.0.288 (2012, Thermo Fisher Scientific), based on SEQUEST HT cluster as search engine (University of
Washington, USA, licensed to Thermo Electron Corp., San Jose, CA, USA) against Swiss-Prot human
proteome database (uniprot-homo+sapiens+reviewed 2014 08, released August 2014). The setting
parameters were as follows: retention time window 0-61 minutes; minimum precursor mass 300 Da;
maximum precursor mass 10000 Da; total intensity threshold 0.0; minimum peak count 5; Signal to Noise
(S/N) threshold 3.0; precursor mass tolerance 10.0 ppm; fragment mass tolerance 0.6 Da; use average
precursor mass False; use average fragment mass False; maximum retention time difference 0.5 minutes.

Trypsin  was used as proteolytic enzyme. Bottom-up data were processed setting static
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carbamidomethylation (+57.021 Da) on cysteine residues and oxidation (+15.995 Da) on methionine
residues as dynamic modification. The strict target false discovery rate (FDR) value was set to 0.01, while

the relaxed value was set to 0.05.

3.0 RESULTS

LAF samples from different donors (A and B), were analysed by LC-MS for protein characterization, using a
top-down and bottom-up integrated platform. The use of different approaches was successful in
complementing the proteomic data, allowing to characterize both small proteins and peptides with their
PTMs by the top-down strategy and large molecules through bottom-up analysis of tryptic digests.

For top-down analysis, different sample pretreatment procedures were tested on the same sample, namely
LAF sample A, in order to evaluate the optimum protein extraction procedure to be therefore applied to
LAF sample B, since, to the best of our knowledge, this fluid has never been investigated to date from a

proteomic standpoint. The bottom-up analysis was directly applied to untreated LAF samples.

3.1 Top-down proteomic analysis

3.1.1 LAF pretreatment procedure optimization

Four different pretreatment methods (M1-4) have been tested on different aliquots of the LAF sample A
and compared in order to attain the optimal procedure for peptides and proteins extraction for LC-MS
analyses by top-down proteomic approach.

The first method (M1) consists in a simple procedure previously applied by our group to other bodily fluids
[14, 15]. In this procedure the resulting extract represents the acid-soluble fraction of LAF, purified from
abundant proteins and depleted from eventual lipid residues. The other three methods tested, namely
methods M2, M3 and M4, were based on protein fractionation by cold acetone precipitation. They differed

from one another in the liquid/liquid chloroform extraction step, which was applied either after protein
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precipitation and acidic resolubilization (M2), or directly on LAF sample before the protein precipitation
(M3) or not applied at all (M4).

The first comparison among the different pretreatments was based on the evaluation of the total protein
concentration by Bradford assay. The highest value, corresponding to 2,00 pg/uL was obtained with M3.
The M2 and M4 methods, also based on protein precipitation, showed a comparable result with total
protein concentration of 0.79 and 1.10 pg/uL, respectively. Finally, M1 showed the lowest concentration
(0,48 pg/uL). The higher protein content obtained with M3 can be explained by the addition of chloroform
before protein precipitation. In fact, the addition of the organic solvent to untreated LAF may facilitate the
breaking down of lipoprotein complex and other aggregates, increasing the total protein content of the
aqueous phase. In M2 the chloroform was added to the soluble acidic fraction resulting from dissolution of
protein precipitate, still in presence of the insoluble pellet, probably containing lipoprotein complexes.
Once pelleted, these complexes result probably less available to the chloroform breaking up action,
explaining the lower total protein content. These results suggest that the total protein content is deeply
influenced by chloroform treatment of the LAF specimen, which yielded better output when performed
before the protein precipitation step. This hypothesis was confirmed by the total protein content obtained
with M4, that was comparable to M2.

The M1 provided the most purified sample representing only the acid-soluble fraction of LAF proteome,
depleted of both (most abundant) high molecular weight proteins and lipids. This explains the lower total
protein content observed in these samples. In this procedure, the chloroform treatment had a dual role: i)
purifying the sample from possible lipids still present and ii) removing the ACN, in order to recover the
undiluted purified acidic agueous phase.

Thereafter, the total ion current (TIC) plots obtained from the alternative methods of LC-MS
chromatographic analysis, were also compared and discussed (Figure 1).

The LC-MS analysis were carried out by injecting for each sample the same total protein content
corresponding to 5 ug. Due to the diverse contents obtained with the application of the different extraction
methods (see previous section), the following dilution (with aqueous 0.4% TFA) have been made: 1:2, 1:8

and 1:3 for M2, M3 and M4, respectively, and 1:1 for M1.
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The extraction methods based on acetone protein precipitation (M2, M3 and M4) showed very similar TIC
profiles in the elution window between 35 and 50 min, where the most intense signals were recorded. The
LC-MS profile, obtained with the first method, showed higher resolved signals in the same retention time
region, probably due to the higher purification of the LAF’s acid-soluble protein fraction, obtained through
the combination of ACN and chloroform pretreatments.

Relevant differences were observed in the 19-35 minutes retention time window, generally characterized
by the elution of peptides and more hydrophilic proteins, as it is shown in the grey magnified views of
Figure 1. In this region all four methods revealed a different TIC profile.

The sample obtained with M3 extraction showed a very poor LC-MS profile. The absence of peaks at
retention time that generally characterizes peptides, could be due to chloroform addition to the unacidifed
untreated LAF sample. This observation could be possibly explained by the different solubility of peptides
based on the pH. The chloroform extraction performed, under physiological pH conditions, on untreated
LAF could increase the rate of partitioning of hydrophobic or less polar peptides into the organic phase.
Indeed, peptides are generally less polar than proteins, being less structured and less hindering
hydrophobic sites to the aqueous environment. Therefore, although showing the highest protein content,
M3 did not result a suitable extraction method for top-down analysis. The other three LC-MS profiles,
related to M1, M2 and M4, showed instead many resolved peaks, within the same elution window (19-35
minutes), belonging to potential peptides and protein presents in the sample. In fact the addition of TFA
before the treatment with chloroform, producing peptides protonation, probably resulted in the increase
of their affinity for the aqueous phase.

Particularly, M2 and M4 provided comparable chromatographic profiles even though characterized by
different intensities. Although generally showing lower signals, the M1 allowed the characterization of
several small proteins and peptides and showed an improved peak resolution in the 35-45 elution window
characterized by the most abundant signals, therefore resulting a good compromise accomplished by a very

rapid and simple pretreatment procedure.
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The combination of both ACN and chloroform extraction in acidic environment in M1, produced a purified
sample suitable for the identification of small proteins and peptides and minor components in a wide
chromatographic elution time range. For these reasons, despite yielding the lowest amount of proteins, M1

proved as the method of choice for LAF proteomic analysis by top-down approach.

3.1.2 Top-down protein identification

The method M1 was therefore applied to both A and B LAF samples in order to provide a preliminary
identification of their intact proteome. The two samples exhibited different LC-MS TIC profiles compatible
with the wide inter-individual variability that characterizes biological specimens (data not shown).

Table 1 lists the proteins and peptides identified, in the two LAF samples, by top-down proteomic analysis,
with corresponding experimental molecular mass (M,), chromatographic retention time (R;), Uniprot
accession, protein name, and characterized PTMs data.

The acid-soluble fraction of LAF, besides albumin fragments, showed the presence of several hemoglobin
fragments belonging to both the - and a-globin chains, some of them with documented biological activity,
such as the M, 1194.62 and 1307.70 peptides, known under the name of VV- and LVV-hemorphin-7,
respectively. They are non-classical opioid peptides specific of central nervous system (CNS) exhibiting
other numerous biological actions assuming a possible role in blood pressure regulation, learning and
memory, intracellular calcium variation and protein phosphorylation [16, 17]. A role in cellular homeostasis
[18] and tumor cytotoxic and antiproliferative capacity [19] have been also reported together with a
potential prognosis biomarker role in posterior cranial fossa pediatric brain tumors [20]. The latter was also
recognized for the other hemoglobin fragments of M, of 3274.75, 3325.70, 3472.77 and 3900.96 also
identified in LAF.

LAF resulted also to contain thymosin beta 4 (TB4) and beta 10 (TB10) peptides and their C-terminal
truncated forms. TR4 is the major G-actin sequestering peptide [21] involved in regulation of G-actin

polymerization/depolymerisation process and cytoskeleton organization [22]. In addition to promote
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angiogenesis, wound healing and tissues repair [22, 23], TB4 also exhibits an anti-inflammatory role [24].
Recent papers also evidenced a role of TB4 in relation to odontogenic differentiation [25], tooth
development [26] and bone formation [27, 28]. Conversely, the inhibition of osteogenic differentiation
towards promotion of the adipogenic one in mesenchymal stem cells has also been reported [29]. The TB4
e TP10 C-terminal truncated form have been already characterized by our group in different tissues,
however, their biological role is still unclear [30].

Along with the full length protein, also for ubiquitin protein, different C-terminal des-GG and des-RGG
proteoforms were detected. Their role is still under investigation: both forms have been identified by a
group of us in in paediatric brain tumour tissues [31] and, in a previous study the des-GG was reported to
mark a specific breast cancer histotypes [32].

Figure 2 shows the distribution of B-thymosins and ubiquitin proteoforms within the two analysed LAF
specimens. Generally the entire forms resulted prevalent over the relative truncated proteoforms with the
exception of sample A where the C-terminal des-RGG truncated ubiquitin was largely present.

S100A6 was already identified in ASCs secretome studying their osteoinductive effect and potential use in
osteoporosis therapy [33] and acyl-CoA binding protein resulted among the proteins mainly upregulated in
SVF secretome during adipogenesis [34]. The des-Met N-terminal proteoform of S100A6, N-terminal
acetylated on Ala residue, is not yet reported in Uniprot database. The protein was characterized by
sequencing a portion of its C-terminal, and by comparing theoretical/experimental MS® spectra. This
confirmed the hypothesis of N-terminal acetylation, possibly explaining the delta mass observed with
respect to the theoretical M, value.

S100A6 belongs to S100 Ca** binding protein family with different action at both intracellular and
extracellular level [35]. S100A6 (calcylcin) was reported to regulate osteoblastic function and to be a
potential target for regulating bone formation since its capability in stimulating cells to sense extracellular
cations [36]. More recently, in a study on the inhibitory effect of bone marrow MSC derived adipocyte on
osteoblastogenesis, S100A6 was identified as one of the main proteins possibly related to bone formation

[37]. In a study testing the effect of transplanted human ASCs on bone regeneration in osteoporotic mouse
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model, the S100A6, identified in cells secretome was ascribed as responsible for the observed effect via the
presence of paracrine factors [33].

Top-down analysis of LAF also identified two different C-terminal fragments (387-423 and 386-423) of
alpha-1-antichymotrypsin, or SERPINA3, the perilipin-1 fragment 458-493 and three fragments of
adipogenesis regulatory factor (2-70, 2-72 and 2-73) all presenting the loss of initial methionine and

carrying N-terminal Ala acetylation, PTMs not reported in Uniprot database.

3.2 Bottom-up proteomic analysis

Bottom up proteomics of LAF samples was based on monodimensional SDS PAGE separation in coupling
with LC-ESI-LTQ-Orbitrap MS of digested bands. Figure 3 shows the gel electrophoresis separation of the
two LAF samples. The two samples exhibited a similar separation pattern, however different band
intensities were observed.

The LC-MS analysis of the separately digested bands of each sample followed by Proteome Discoverer 1.4
MS data elaboration, filtering for two peptides per proteins and high confidence identification, allowed the
identification of several protein species, in part shared by both samples. Figure 4 shows the relative Venn
diagrams (Venny 2.0.2”Computational Genomics Service) and the name and Uniprot accession number of
common (i.e. found in both samples) and exclusive (found individually in A or B sample) proteins. Out of the
89 proteins identified, 46 resulted commonly characterized in both samples, while 17 and 26 resulted
exclusive of sample A and B, respectively.

In addition, Figure 5 shows the gene ontology (GO) classification of the molecular function and biological
process obtained by PANTHER (Protein ANalysis THrought Evolutionary Relationships version 9.0) for the
common (panels A, B) and exclusive (panels A and panels B) identified proteins.

The prevalent molecular function annotation, of both common and sample-exclusive proteins, was
‘catalytic activity’. Biological processes annotations were more diversified, but showed a large

predominance of metabolic and cellular processes. By comparing the GO data of the exclusive proteins, a
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wider variety of molecular functions and biological processes seems to characterize the sample B (Figure 5
panels B ) with respect to sample A (Figure 5 panels A).

Among the large number of common proteins identified, several have been reported to be directly or
indirectly involved in osteogenic processes or bone related disorders, such as ferritin light chain [38, 39],
peroxiredoxin-2 [40, 41], glyceraldeide-3-phosphate dehydrogenase [40], lumican [42, 43], haptoglobin [44,
45], vitamin D-binding protein [45, 46], 14-3-3 protein epsilon and gelsolin [47], serotransferrin [41],
complement C3 [40, 41, 45, 48-50], annexin Al and A2 [47, 50-54], and vimentin [40, 55].

Noteworthy, different isoforms of vimentin, which is involved in the formation of lipid droplets, have been
characterized in ASCs [56], ASCs secretome [57] and adipose tissue suggesting a role for this protein in
metabolism alterations under different nosological conditions [58].

Although annexins are generally considered intracellular proteins, the A1, A2 and A5 types were also found
in the extracellular compartment and in blood [59]. This is consistent with their identification in the LAF.
Indeed, several other proteins, within our list, have been already described in the adipose tissue
components, being either expressed by cellular component or part of their secretome.

Different cytokeratins, belonging to the keratin type | and Il cytoskeletal family, have been identified in
both tested LAF samples. In a previous study, the same proteins have been found highly expressed in
visceral adipose tissue, with respect to subcutaneous depots, and produced by mesothelial cells of the
peritoneum surrounding fat lobules [58].

The adipokine retinol binding protein 4, identified in sample A, and the related alcohol dehydrogenase 1B,
identified in both samples, have been found expressed in visceral adipose tissue [58]. Moreover, retinol
binding protein 4, fatty acid binding protein, peroxiredoxin-1 an peptidyl-prolyl-cis-trans-isomerase A, were
reported in SVF-derived secretome and upregulated during adipogenesis [56]. Retinol binding protein,
transthyretin, albumin and serpins have been identified in ASCs secretome [60] together with lumican and
beta actin [33]. The annexin Al and A5, keratin type Il cytoskeletal | and type | cytoskeletal 10, alpha
crystallin B chain, beta actin and haemoglobin alpha and beta globin chain resulted abundant and

differentially expressed in mature adipocytes of aged-versus-young obese individuals [61].
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Lumican, clusterin, annexin A2 and retinol binding protein 4 have been numbered among the 68 most
conserved proteins in ASC secretome [62]. Finally, gelsolin and haptoglobin were also identified in ASCc

secretome [57].

4.0 DISCUSSION

The biological properties of LAF, along with the fast and easy isolation procedures, make this fluid suitable
and attractive for regenerative medicine applications, as a “minimally manipulated tissue” in grafting
procedures [12].

The characterization of adipose tissue proteome and secretome has recently gained an increasing
attention. The first study on human adipose tissue secretome appeared in 2007 [62]. Since then, several
papers have been published focusing on proteomic characterization of either whole adipose tissue, or
mature adipocytes, or SVF, or its individual cellular components (including progenitors, preadipocytes,
endothelial cells, adipose derived stem cells (ASCs) and blood cells) as recently reviewed [2, 57, 58, 62],
however, to the best of our knowledge, no data have been reported up to date for LAF.

In all these studies, proteomic analyses followed the bottom-up approach by mono- or bidimensional gel
electrophoresis and MALDI or LC-MS/MS characterization, also performing quantitative analysis and
correlations to diseases.

A different protein expression was found in visceral and subcutaneous adipose tissue depots [64] and in
mature adipocytes of obese individuals in relation to age [61]. Kheterpal et al [65] compared the SVF and
mature adipocytes proteome by 2-DE in coupling to nanoLC-Q-TOF analysis evidencing the prevalence of
common proteins over the exclusive ones.

The shotgun proteomics study of SVF and subcutaneous depot adipocytes, demonstrated the role of
secretory factors, mostly involved in Wnt and TGF-§ signalling pathways, in regulating the adipogenic
process [34]. Several proteins characterized in SVF secretome resulted upregulated during adipogenesis. A
differential expression of several secreted proteins was also found during differentiation of preadipocyte

into mature adipocytes by iTRAQ-based quantitative proteomics [66].
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Particularly, K. Lee and co-workers [33] studied the ASCs protein expression and secretome in relation to
the osteoinductive effect observed after their transplantation in ovariectomized mice: several proteins and
cytokines related to osteogenesis and bone regeneration processes have been identified.

The acellular LAF originally analysed in this study, may be rationally considered as the fluid acellular fraction
of liposuctioned adipose tissue, hence containing a heterogeneous cocktail of biologically active molecules.
To the best of our knowledge, no proteomic investigation on LAF has been up to date reported. The
proteomic and peptidomic analysis of LAF, performed by an LC-MS top-down/bottom-up integrated
platform, evidenced the presence of several protein and peptide components, involved in a variety of
biological processes, which may reasonably explain the osteoinductive properties of LAF previously
observed [12].

Some of the proteins identified in LAF in this study, have been already described as components of the
whole adipose tissue, SVF, or part of the ASCs intracellular and secreted proteome. This evidence may
originally demonstrate that LAF features a molecular profile that is consistent with its tissue environment.
In particular, we have demonstrated that it contains bioactive proteins and peptides produced by adipose
tissue cytotypes - including somatic stem cells of the stroma - and relevant paracrine factors of different
origins, which may account for putative exploitation in regenerative medicine applications.

The two proteomic platforms applied in this study provided complementary information for the
characterization of the LAF proteome allowing to investigating the entire proteome also focusing on protein
PTMs relevantly modulated during health/pathological transition states and at the basis of the missing
correlations between the genes and their expression product. The top-down strategy, analysing protein and
peptides in their intact naturally occurring state, identified several peptides belonging to haemoglobin
fragments, some exhibiting specific biological properties, together with B-thymosin peptides, important in
wound healing processes [24], S100A6 and other proteins together with their PTMs. The bottom-up
approach, analysing trypsin digested fragments, supported and complemented the top-down findings
allowing the characterization of higher molecular weight proteins, some of them reported in literature to

be correlated to osteogenesis or bone diseases.
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Some of the identified proteins in LAF have been already characterized in the secretome of ASCs,
extensively studied for their regenerative properties on bone. The osteogenic properties exhibited by LAF
would therefore confirm the already outlined role of adipose tissue cells secretome in containing
osteogenic stimulating factors.

These data, besides providing a preliminary insight into the LAF proteome, represent the starting point for
further experiments. Based on our results, upcoming experiments could be devoted to the isolation and
characterization of LAF protein fractions, to be tested in vitro to obtain a functional validation of their
biological properties. In particular, the identification of protein components involved in osteogenesis or
related processes, could pave the way to future possible exploitation of LAF as a bioactive fluid in the

design and development of novel cell-free bone regenerative medicine applications.
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Figure legends

Figure 1
LC-ESI-LTQ-Orbitrap-MS Full scan TIC profiles of LAF sample A obtained by M1-M4 pretreatment
procedures (for experimental details see the Materials and Methods section). For each profile an enlarged

view of the elution window 19-35 min is also shown.

Figure 2

Distribution of the thymosin beta 4 (Tbh4), thymosin beta 10 (tb10) and ubiquitin (Ubiqg) proteoforms in LAF

sample A and B. In X-axis the peak area values of the relative extracted ion current (XIC) plots are reported.

Figure 3

Monodimensional SDS PAGE separation of LAF sample A and B. (for detailed experimental conditions see

the Materials and Methods section).

Figure 4

Lists (name and Uniprot accession number) and Venn diagram (Venny 2.0.2”Computational Genomics
Service) of the common (i.e. found in both samples A and B) and exclusive (found individually in A or B

sample) proteins identified in LAF samples.

Figure 5
Gene Ontology (GO) molecular function and biological processes classification of the common and exclusive
proteins identified in the analyzed LAF samples. Panels A, B: protein identified in both LAF samples A and B.

Panels A: proteins exclusive of LAF sample A. Panels B: proteins exclusive of LAF sample B.
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Table 1. Proteins and peptides identified LAF by top-down LC-MS proteomic analysis

M, (Da) R_‘ Unipr?t Protein name PTMs sample sample
(min) | accession A B
1194.62 |25.40| P68871 |Hemoglobin chain B Fragment (34-42) - v v
1307.70 |27.59| P68871 |Hemoglobin chain B Fragment (33-42) - v v
2540.28 | 21.04 H7C013 | Albumin Fragment (27-48) - - 4
2752.43 | 24.86| H7C013 |Albumin Fragment (27-50) - v v
2936.56 | 26.96 H7C013 | Albumin Fragment (27-52) - - 4
3217.79 | 37.55 P69905 | Hemoglobin chain a Fragment (107-137) - - v
3274.75 |29.25| P68871 |Hemoglobin chain B Fragment (2-32) - v v
3325.70 |24.10| P69905 |Hemoglobin chain o Fragment (2-33) - v 4
3386.83 |31.34| P68871 |Hemoglobin chain B Fragment (2-33) - v v
3426.84 |34.81| P69905 |Hemoglobin chain a Fragment (111-142) - v v
3472.77 |27.57| P69905 |Hemoglobin chain a Fragment (2-34) - v v
3574.86 |21.28| 060240 | Perilipin-1 Fragment (458-493) - v v
3900.96 |30.05| P68871 |Hemoglobin chain B Fragment (112-147) - v v
4351.35 | 32.44 P01011 a-1 Antichymotrypsin Fragment (387-423) - v -
4464.43 | 32.44 P01011 a-1 Antichymotrypsin Fragment (386-423) - v -
4563.44 |35.07| P68871 |Hemoglobin chain B Fragment (2-42) - v
4733.41 | 20.38 P63313 | Thymosin B10 truncated(-IS C-terminale) ﬁ:iteg:::;? v
474442 | 19.66 | P62328 |Thymosin B4 truncated(-ES C-terminale) ﬁ:iteg:::;? v v
493353 [20.78| P63313 |Thymosin B10 ﬁlcte;‘r’:ifr';? v v
4960.49 |19.66| P62328 |Thymosin B4 ilcteg:::;? v v
7074.53 | 43.94| Q15847 |Adipogenesis regulatory factor Fragment (2-70) Acetzl;tion v -
7349.70 | 43.94| Q15847 |Adipogenesis regulatory factor Fragment (2-72) Acetzl;tion v -
7406.70 | 44.00| Q15847 |Adipogenesis regulatory factor Fragment (2-73) Acetzl;tion v v
7429.84 | 32.83 P68871 | Hemoglobin chain B Fragment (43-111) - - v
7758.03 | 30.72 P69905 | Hemoglobin chain o Fragment (34-104) - - v
7827.07 |31.75| P69905 |Hemoglobin chain o Fragment (35-106) - - v
7974.14 | 31.75 P69905 | Hemoglobin chain o Fragment (34-106) - - v
8087.22 | 32.48 P69905 |Hemoglobin chain o Fragment (34-107) - - v
8289.50 |30.55| POCG48 |Ubiquitina truncated(-RGG C-terminale) 4 v v
8400.44 | 33.60 P69905 |Hemoglobin chain a Fragment (34-110) - - v
844560 |30.55| POCG48 |Ubiquitin truncated (-GG C-terminale) - v v
8559.64 | 30.55 POCG48 | Ubiquitin - 4 v
9949.01 |30.65| P07108 |Acyl-CoA-binding protein ilcteg:::;? v v
des Met1l
10084.48 | 42.75 P06703 | S100A6 Acetylation v -
N-terminal
11173.88 | 40.21| P69905 |Hemoglobin chain a Fragment (34-137) - v
11311.86 | 37.59 P68871 | Hemoglobin chain B Fragment (43-117) - v
11653.18 | 39.21| P69905 |Hemoglobin chain a Fragment (34-141) - v v
11809.28 | 39.25 P69905 | Hemoglobin chain o Fragment (34-142) - - v
14961.75 | 41.67| P69905 |Hemoglobin chain o C‘_jte:rﬁ:ﬁal v
15116.92 | 38.62 | P69905 |Hemoglobin chain a - v v
15857.27 | 38.62 | P68871 |Hemoglobin chain B - v v
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