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Bound Bogoliubov quasiparticles in photon superfluids
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Bogoliubov’s description of Bose gases relies on the linear dynamics of noninteracting quasiparticles on
top of a homogeneous condensate. Here, we theoretically explore the weakly nonlinear regime of a one-
dimensional photon superfluid in which phononlike elementary excitations interact via their backreaction on
the background flow. The generalized dispersion relation extracted from spatiotemporal intensity spectra reveals
additional branches that correspond to bound Bogoliubov quasiparticles—phase-locked collective excitations
originating from nonresonant harmonic generation and wave-mixing processes. These mechanisms are inherent
to fluctuation dynamics and highlight nontrivial scattering channels other than resonant interactions that could
be relevant in the emergence of dissipative and turbulent phenomena in superfluids.
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The dynamics of quantum many-body systems can be
conveniently described in terms of collective excitations, or
quasiparticles, and their interactions. At low temperature,
when a system is close to its quantum ground state, only few
quasiparticles are excited and collisions between them can be
neglected. Within this limit, Bogoliubov derived the spectrum
of collective excitations in a dilute homogeneous Bose gas [1].
The spectrum is linear at low momenta, which is indicative
of the collective (phononic) nature of the excitations, while
it becomes quadratic at high momenta where the quasipar-
ticles approach the energy of the individual constituents of
the gas. A system the collective excitations of which have
these spectral properties satisfies the Landau criterion for
superfluidity [2].

While noninteracting Bogoliubov quasiparticles provide
the microscopic framework of superfluidity, dissipation in
isolated quantum fluids arises as an effective phenomenon due
to quasiparticle interactions [3,4]. In three-dimensional (3D)
Bose gases, resonant processes involving three Bogoliubov
quasiparticles, known as Beliaev-Landau scattering [5–7],
provide the main channel for the finite lifetime of the ex-
citations [6,8,9]. These three-wave interactions result in the
generation of quasiparticles with different energy and mo-
mentum, while satisfying the Bogoliubov dispersion relation.
Due to the lack of a spectral gap and the convexity of the dis-
persion curve, energy and momentum for these processes are
conserved only in two or more spatial dimensions (see, e.g.,
Ref. [10]). In one-dimensional (1D) systems, quasiparticles
therefore decay only through higher-order scattering [11] or
via interactions with thermal fluctuations [12].
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Compared to the above resonant processes [13–17], non-
resonant interactions of Bogoliubov modes have received less
attention. In nonlinear wave theory, nonresonant interactions
are known to conserve energy and momentum giving rise to
secondary branches in the dispersion relation. Spectral com-
ponents lying on these branches are commonly referred to
as bound waves [18,19], since they are phase locked to free
waves that satisfy the original dispersion relation and cre-
ate them via (nonresonant) harmonic generation or nonlinear
mixing processes [20,21]. Most studies on this topic con-
cern wave-turbulence theory and related experiments [22–26],
where bound waves can explain the observed self-similarity
and universal scaling of energy spectra [27,28].

Here, we show that similar processes occur in the fluctu-
ation dynamics of a 1D photon superfluid, resulting in the
creation of bound Bogoliubov quasiparticles.

In such systems the photons propagating in a nonlinear
medium can be seen as a gas of Bose particles weakly in-
teracting via the material nonlinearity [29–31]. The slowly
varying envelope of the optical field plays the role of the
complex order parameter (macroscopic wave function), and
its fluctuations (small ripples on the transverse optical beam)
obey the Bogoliubov dispersion relation [32]. Important phe-
nomena such as superfluidity and drag-force cancellation
[33], nucleation of quantized vortices past an obstacle [34],
nonequilibrium precondensation [35] and Bogoliubov quasi-
particles [36,37] have been experimentally observed. Recent
experiments also revealed interference effects between Bo-
goliubov modes [38] and signatures of quantum depletion
[39], phenomena observed so far only in ultracold atomic
gases [40,41].

Bogoliubov’s theory of noninteracting quasiparticles aptly
describes all the observed phenomena, highlighting the pro-
found analogy between nonlinear photonics and quantum
gases. However, beyond the Bogoliubov regime, the scattering
and decay of elementary excitations serve as microscopic
mechanisms underlying dissipative and complex macroscopic
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dynamics. These processes remain unexplored for photon su-
perfluids.

In this Letter, we investigate nonresonant interactions be-
tween collective excitations in a 1D photon superfluid. As a
prototype system we consider a model with both local (Kerr)
and nonlocal (thermo-optical) nonlinearities that, depending
on the parameters, can support either massless or massive
Bogoliubov excitations [42,43]. For largely populated Bo-
goliubov modes, the excitation spectrum shows additional
branches corresponding to spontaneously generated bound
Bogoliubov quasiparticles. For massless excitations, the new
spectral components originate from harmonic generation pro-
cesses. On the other hand, massive excitations additionally
undergo Stokes and anti-Stokes scattering with a global
oscillation of the 1D quasicondensate, producing multiple
branches separated by the phonon’s rest frequency. These pro-
cesses provide one of the main channels for the spontaneous
decay of excitations in 1D superfluids.

We start from the paraxial wave equation describing a
monochromatic optical beam in a 1D nonlinear medium [44]

∂zψ = i

2
∂2

xxψ − iψ
∫

dx′�n(x − x′)|ψ (x′, z)|2, (1)

where ψ is the slowly varying envelope of the optical field
normalized to the peak intensity ρ0, the convolution inte-
gral with kernel �n accounts for the refractive index change
relative to the linear refractive index n0, and the spatial co-
ordinates have been rescaled to the optical wavenumber k
[46]. The dynamics take place along the spatial direction x,
orthogonal to propagation direction of the laser beam, while
the propagation coordinate z plays the role of a dimensionless
time variable t (see Ref. [47]).

Linearizing Eq. (1) around a homogeneous background
solution and Fourier transforming both in the dimensionless
time and the spatial coordinate, we obtain �2 = �̂n(K )K2 +
K4/4, where � is the angular frequency of the mode, K its
wavenumber, and �̂n is the spatial Fourier transform of �n.

We consider simultaneous local (Kerr) and nonlo-
cal (thermo-optical) nonlinearities �̂n = (n2 + R̂(K ))ρ0/n0,
where n2 > 0 is the optical Kerr coefficient and R the thermo-
optical response function. Optical responses of this kind are
found in quantum-dot suspensions [48,49], halide perovskites
[50], semiconductor materials [51], and nematic liquid crys-
tals [52]. In atomic superfluids, similar local and nonlocal
terms arise in dipolar Bose gases [53,54].

The functional form of R̂ depends on the geometry and
on the system’s boundaries [55]. Based on previous theoret-
ical works [56–58] and experiments [34,36,59], we assume
a Lorentzian response R̂ = (γ /k2) σ 2

1+σ 2K2 , where σ is the di-
mensionless length scale of the thermo-optical nonlinearity
and γ /k2 its effective strength. The dispersion relation now
reads

�2 = �2
R

σ 2K2

1 + σ 2K2
+ c2

s K2

(
1 + K2

K2
C

)
, (2)

where �R = √
γ

k2n0
ρ0 and, in analogy to purely local photon

fluids (γ = 0), we define the dimensionless sound speed as
cs = √

n2ρ0/n0 and critical wavenumber KC = 2cs, separat-
ing the linear and quadratic regime of the dispersion relation

Eq. (2). Since �2 is always positive, the system is neutrally
stable to perturbations of all wavenumbers, hence supporting
propagating collective excitations (�2 < 0 would correspond
to exponentially growing modes characteristic of linearly un-
stable flows).

For γ = 0, Eq. (2) reduces to the Bogoliubov dispersion
relation for (massless) collective excitations in a weakly inter-
acting Bose gas. On the other hand, for γ > 0 the dispersion
relation becomes nonconvex, and in the limit of σK � 1 de-
scribes massive Bogoliubov quasiparticles with rest frequency
�R [42]. Such a regime can be reproduced by means of
suitable background optical beams comprising wavevectors
only of K � 1/σ (a procedure experimentally implemented
in Ref. [60]) or, similarly, by tuning the ratio between the
system’s size L and the thermo-optical scale σ , as we will
show in the following.

To characterize the dispersion relation both in the lin-
ear and weakly nonlinear regime we integrated Eq. (1) for
a numerical time tmax ≈ 2.6 × 104 using a pseudospectral
second-order Strang splitting method with truncating 2/3
dealiasing rule. The integration was performed over a spatial
domain length L ≈ 1638 (N = 215 grid points with spatial
resolution �x = 0.05) with periodic boundary conditions.

To set meaningful values for the nonlinear coefficients,
we consider a colloidal suspension of PbS nanoparticles in
a C2Cl4 solution (5.9 nm size, concentration 6.06 μM) shined
by a laser beam at λ = 1.539 μm. A nonlinear Kerr coef-
ficient n2 ≈ 4.5 × 10−11 cm2/W independent of the optical
intensity up to 25 MW/cm2 has been measured, together
with a linear absorption coefficient α = 2.5 cm−1 and a
change in the refractive index with respect to the temperature
|β| = 0.9 × 10−3 K−1 [49]. The thermo-optic coefficient γ is
given by γ = α|β|/κ , where κ is the thermal conductivity of
the material. Using the thermal conductivity of C2Cl4, κ =
0.103 W/mK [61] and n0 = 1.5, we obtain γ /k2 ∼ 5.9 ×
10−11 cm2/W, close to the observed value of n2. The strength
of these nonlinearities can be precisely tuned, and even im-
proved, up to values of 10−7 cm2/W, by changing the type,
concentration, and size of the nanoparticles, using a different
solvent, or operating at different wavelengths or temperature
[48,49,62]. Here, we take n2ρ0/n0 = 10−6 (a value attainable
for average intensities ρ0 ∼ 22 kW/cm2) and, for simplicity,
we set the thermo-optical coefficient equal to the Kerr one,
i.e., γ /(n2k2) = 1. However, the results we will show below
are not critically dependent on these parameters.

The system is initialized with a linearly chirped, Gaussian
wavepacket on top of a spatially homogeneous background
of fixed amplitude ψ (x, 0) = ρ

1/2
0 (1 + ε(x)) with ε(x) =

w exp(−iK (x)x) exp(−x2/δ2) [see Fig. 1(a)], which allows us
to populate several spatial modes and observe their evolution
in a single realization. A noisy initial condition would yield
similar effects, though we have verified that the resulting dis-
persion curves are generally less defined, especially at higher
wavenumbers. The dispersion relation is extracted from
the two-dimensional (space-time) Fourier spectrum of the
intensity patterns |ψ (x, t )|2.

The results both in the local and nonlocal cases are shown
in Figs. 1(b)–1(e). For σ = 0 the spectrum is gapless and
corresponds to the usual Bogoliubov dispersion relation. For
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FIG. 1. (a) The initial wavepacket ψ (x, 0) constant background
subtracted, see text, with w = 10−5, K (x) = 3x/L, and δ = 400
(black trace), and after a time t = 410 (red trace). Panels (b)–(e)
display the numerical dispersion relations reconstructed from the
two-dimensional (space-time) Fourier spectrum of the intensity pat-
terns |ψ (x, t )|2 obtained from Eq. (1) with t = z, n2ρ0/n0 = 10−6,
γ /(n2k2) = 1; (b) σ = 0; (c) σ = 1; (d) σ = 10; (e) σ = 103. The
dashed lines show the analytical dispersion relation [Eq. (2)].

finite σ instead the dispersion curves are nonconvex and ex-
hibit a dip centered at K = 0. The dip becomes increasingly
sharp as the characteristic length scale of the thermo-optical
interaction σ increases. When 2πσ � L, the condition σK �
1 holds for all modes supported by the system, in particular for
the lower wavenumber Kmin = 2π/L, and a gap forms with
frequency close to �R.

Increasing the initial population of each mode, secondary
branches of collective excitations arise in the dispersion rela-
tion (see Fig. 2). All these branches can be interpreted in terms
of bound Bogoliubov quasiparticles originating from two dif-
ferent nonlinear processes. The first involves the propagation
of higher harmonics of free Bogoliubov modes satisfying
(�n, Kn) = (n�, nK) with n = 2, 3.... At difference with
resonant harmonics, these excitations do not propagate with
their own phase velocity, but with the one of the related
carrier modes �n/Kn = �/K . We notice that by construc-
tion �n(K ) = n�(K/n) and therefore all branches are fully
determined by the dispersion relation of linear excitations
�1(K ) ≡ �(K ). An example is illustrated in Fig. 2(a), where
we show the numerical dispersion relation corresponding to
the local case γ = 0 (massless excitations). Below the main
branch �(K ), a secondary branch given by �2(K ) is formed,
which corresponds to quasiparticles created via a second-
harmonic process. At a fixed K , we have (n − 1) peaks of
bound quasiparticles in the frequency Fourier spectrum that
can be gradually populated depending on the energy injected
into the system. Two of these peaks, corresponding to vertical
cuts of Fig. 2(a) made at the locations indicated by the arrows,
are shown in Fig. 2(b).

The second mechanism for the formation of bound quasi-
particles is the nonresonant mixing between an arbitrary free
Bogoliubov excitation and a dominant mode of the system
(�p, Kp). This interaction results in the emergence of new
spectral components at (�m, Km) = (� ± m�p, K ± mKp),

FIG. 2. (a) Numerical dispersion relation of the intensity patterns of |ψ (x, t )|2 with w = 10−2, K (x) = 4x/L in the local case σ = 0 and
(b) the correspondent frequency Fourier spectra for the wavenumbers K = 0.39 KC and K = 0.58 KC, indicated by the black and blue arrows.
Numerical dispersion relation and frequency spectra for σ = 103 are shown in (c) and (d). Black lines depict the analytical dispersion relations
obtained by Eqs. (2) and (3) with � and K normalized to �R and KC, respectively: dashed lines in (a) and (c) correspond to the main branch
given by Eq. (2) or, equivalently, by �0,1 in Eq. (3). Dotted lines are the second-harmonic branches �0,2. The dot-dashed curves in panel (c) are
the frequency-splitted dispersion branches �−1,1 and �1,1. Other parameters as in Fig. 1.
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with m = 1, 2.... While such a dominant mode does not exist
in the local system, the weakly nonlinear regime of Eq. (1)
for γ > 0 is characterized by a global oscillation of the 1D
quasicondensate. For sufficiently large L, the oscillation fre-
quency is close the rest frequency of the excitations �R. Since
�m(K ) = �(K ± mKp) ± m�p with (�p, Kp) ≈ (�R, 0), the
generalized dispersion relation describing all branches of
bound Bogoliubov excitations is

�m,n(K ) = n�

(
K

n

)
± m�R, (3)

where n is the harmonic index and m identifies the corre-
spondent frequency-splitted sub-branches. Using this notation
the harmonic branches �n(K ) are denoted by �0,n(K ). First
signatures of this structure can be seen in the spectrum in
Fig. 2(c) obtained for γ > 0 (massive excitations). Apart from
the second-harmonic branch, other secondary branches of
bound waves are also visible on each side of the dispersion
relation. For each K , the interaction between free Bogoliubov
excitations and the quasicondensate global mode generates
spectral peaks at distances close to �R [see Fig. 2(d)].
The process is reminiscent of Stokes and anti-Stokes scat-
tering, where the anti-Stokes sideband on the blue side of
the spectrum implies an energy transfer from the quasi-
condensate mode to Bogoliubov quasiparticles (frequency
up-conversion), and vice versa for the Stokes (red) side-
band. Similarly to bound quasiparticles associated to higher
harmonics, excitations on these branches are phase locked
to the corresponding free-wave components (in a frame ro-
tating at frequency m�R they propagate with the phase
velocity of free Bogoliubov modes). The width of the spec-
tral peaks in Figs. 2(b) and 2(d) provides the decay rate
of the quasiparticles. We observe values between 1.2–1.7 ×
10−4 of the order of the frequency spacing between dis-
crete modes (∂�/∂K )Kmin = 2.8–2.95 × 10−4, compatible
with the regime of mesoscopic turbulence [63].

The phase coherence between free and bound Bogoliubov
components can be detected by computing the normalized
third-order correlation function (bicoherence)

B(�i,� j ) = 〈ψ̃ (x,�i )ψ̃ (x,� j )ψ̃∗(x,�i + � j )〉
〈|ψ̃ (x,�i )ψ̃ (x,� j )|2〉〈|ψ̃∗(x,�i + � j )|2〉

,

(4)

where ψ̃ (x,�) denotes the temporal Fourier transform of ψ

and 〈.〉 the averaging over space and time windows of the time
series. The bicoherence quantifies the proportion of quasi-
particle energy for any frequency pair (�i,� j) that is phase
coupled to generate a third quasiparticle at energy �k , such
that �k = �i + � j . The bicoherence for a monochromatic ex-
citation corresponding to a specific Bogoliubov mode (carrier
mode) is depicted in Fig. 3. Points on the diagonal �i = � j

are indicative of phase coherence of a given signal with itself.
The point (1,1) corresponds to self-coherence of the carrier
mode and implies the generation of a bound excitation via
second harmonic process. Self-coherence of such excitation
is found at (2,2). On the diagonal we also observe the points
(−1,−1) and (−2,−2) that represent the negative-frequency
counterparts of the above modes. Note that B(�i,� j ) is sym-
metric about the diagonal and we can thus focus only on half

FIG. 3. Bicoherence for a monochromatic excitation ε(x) =
w cos(3x) in the nonlocal case γ /(n2k2) = 1 and σ = 103 for w =
10−2. All frequencies are normalized to the carrier frequency �0,1.
Since the diagonal is a line of symmetry, B(�i, � j ) is plotted only in
the half plane �i > � j (white-background triangular region).

of the frequency plane (white-background region in Fig. 3).
The point (2,−1) is indicative of a second-harmonic bound
quasiparticle corresponding to the process �0,2 − �0,1 =
�0,1. Similarly, the point A = (�1,1/�0,1, 1) signals the
phase coherence between the carrier Bogoliubov mode and
the anti-Stokes sideband split at about �R with respect to the
carrier frequency. The corresponding process �1,1 − �0,1 =
�R is also highlighted by the existing phase-coherence be-
tween the global mode at frequency �R and the carrier �0,1,
shown by the points B and D. The bicoherence reveals several
other points, some of which represent the negative frequency
counterparts of the scattering processes above described, as
well as higher-order processes. For instance, point C signifies
phase coupling between the global mode �R and the bound
excitation at frequency �0,2, resulting in the generation of a
new quasiparticle at �1,2 = �0,2 + �R.

For largely populated Bogoliubov modes, the excita-
tion energy is distributed over several new branches in the
wavenumber-frequency space. An example is shown in Fig. 4
for the case of massive excitations. While each branch is
exactly described by Eq. (3) with the corresponding indices
and without the need for free parameters (see Fig. 4, inset),
the space-time Fourier spectrum presents a high degree of
complexity, characterized by intersecting bands of bound ex-
citations. Stokes and anti-Stokes branches of order m appear
as organized in bands, each one corresponding to a given
harmonic number n. In Fig. 4 one can distinguish three har-
monic bands (first, second, and third harmonic), each one
consisting of seven Stokes and anti-Stokes branches with m =
−3,−2...3. Such a complicated structure highlights energy-
transfer channels in photon superfluids other than resonant
interactions that, for the nonlocal case, can occur for any
wavenumber even in one dimension.

In conclusion, we studied the weakly nonlinear regime
of a photon superfluid, in which nonresonant phonon inter-
actions give rise to bound Bogoliubov quasiparticles. It is
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FIG. 4. Numerical dispersion relation of the intensity patterns
of |ψ (x, t )|2 in the nonlocal case γ /(n2k2) = 1 and σ = 103 for
w = 6 × 10−2. The black lines show the analytic curves �0,n cor-
responding to the central branches of each band of harmonics �m,n:
n = 1 (dashed line), n = 2, and n = 3 (dotted lines). The inset show
a magnification of a region of the wavenumber-frequency space.

important to highlight that bound quasiparticles are the mani-
festation of the backreaction of collective excitations on the
underlying superfluid. The excitations perturb the initially
homogeneous flow, and this modulated flow subsequently
alters their propagation, giving rise to an effective interac-
tion mechanism. The resulting bound excitations, which are
revealed by a structure of extra branches in the dispersion
relation, could be detected and characterized by existing
experiments in both paraxial Kerr [38,39] and polaritonic
fluids of light [64], or in quantum nonlinear optical se-
tups [65], where they could emerge at the few-photon level.
Beyond the optical domain, a compelling direction lies in
the exploration of two-component atomic superfluids, where
the coexistence of massless and massive phonon excitations
has been experimentally observed [66]. Bound quasiparticles
evidence channels other than resonant interactions for the
emergence of dissipation and complex dynamics in 1D Bose
gases. Recent experiments with surface gravity waves have
shown that bound waves could explain the observed scal-
ing of turbulent energy spectra [27,28]. Bound quasiparticles
could act similarly in the context of Bogoliubov wave turbu-
lence, where the backreaction on the underlying condensate,
at the origin of these secondary excitations, determines the
dynamics [67,68].
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[35] N. Šantić, A. Fusaro, S. Salem, J. Garnier, A. Picozzi, and R.
Kaiser, Nonequilibrium precondensation of classical waves in
two dimensions propagating through atomic vapors, Phys. Rev.
Lett. 120, 055301 (2018).

[36] D. Vocke, T. Roger, F. Marino, E. M. Wright, I. Carusotto,
M. Clerici, and D. Faccio, Experimental characterization of
nonlocal photon fluids, Optica 2, 484 (2015).

[37] Q. Fontaine, T. Bienaimé, S. Pigeon, E. Giacobino, A. Bramati,
and Q. Glorieux, Observation of the bogoliubov dispersion in a
fluid of light, Phys. Rev. Lett. 121, 183604 (2018).

[38] Q. Fontaine, P.-É. Larré, G. Lerario, T. Bienaimé, S. Pigeon, D.
Faccio, I. Carusotto, E. Giacobino, A. Bramati, and Q. Glorieux,
Interferences between Bogoliubov excitations in superfluids of
light, Phys. Rev. Res. 2, 043297 (2020).

[39] C. Piekarski, W. Liu, J. Steinhauer, E. Giacobino, A. Bramati,
and Q. Glorieux, Measurement of the static structure factor in a
paraxial fluid of light using Bragg-like spectroscopy, Phys. Rev.
Lett. 127, 023401 (2021).

[40] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss, T.
Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Light-
cone-like spreading of correlations in a quantum many-body
system, Nature (London) 481, 484 (2012).

[41] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S.
Gupta, D. E. Pritchard, and W. Ketterle, Excitation of phonons
in a bose-einstein condensate by light scattering, Phys. Rev.
Lett. 83, 2876 (1999).

[42] F. Marino, Massive phonons and gravitational dynamics in a
photon-fluid model, Phys. Rev. A 100, 063825 (2019).

[43] M. Ciszak and F. Marino, Acoustic black-hole bombs and scalar
clouds in a photon-fluid model, Phys. Rev. D 103, 045004
(2021).

[44] R. W. Boyd, Nonlinear Optics (Academic, Orlando, 2008).
[45] P.-E. Larré and I. Carusotto, Propagation of a quantum fluid of

light in a cavityless nonlinear optical medium: General theory
and response to quantum quenches, Phys. Rev. A 92, 043802
(2015).

[46] While a quantum treatment is not necessary to explain these
phenomena, the problem could be addressed within the quan-
tum description of paraxial light propagation in purely local
Kerr media, developed in [45].

[47] The physical propagation coordinate zph = z/k can be inter-
preted as an effective time variable τ = (n0/c)zph, where c is
speed of light in vacuum (see, e.g. [42]). Accordingly, t = ωτ ,
where ω = ck/n0 represents the angular frequency of the laser
beam.

[48] I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van
Thourhout, Spectroscopy of the nonlinear refractive index of
colloidal PbSe nanocrystals, Appl. Phys. Lett. 89, 193106
(2006).

[49] A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van
Thourhout, P. Kockaert, and Z. Hens, Role of interband and
photoinduced absorption in the nonlinear refraction and absorp-
tion of resonantly excited PbS quantum dots around 1550 nm,
Phys. Rev. B 85, 115318 (2012).

[50] H.-W. Chen, D. P. Gulo, Y.-C. Chao, and H.-L. Liu, Characteriz-
ing temperature-dependent optical properties of (MA0.13FA0.87)
PbI3 single crystals using spectroscopic ellipsometry, Sci. Rep.
9, 18253 (2019).

[51] Y. V. Kartashov, V. A. Vysloukh, L. Torner, Engineering soliton
nonlinearities: From local to strongly nonlocal, Opt. Lett. 34,
1543 (2009).

[52] M. Warenghem, J. F. Blach, and J. F. Henninot, Thermo-
nematicon: an unnatural coexistence of solitons in liquid
crystals? J. Opt. Soc. Am. B 25, 1882 (2008).

[53] A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S.
Giovanazzi, Comparing contact and dipolar interactions in a
Bose-Einstein condensate, Phys. Rev. Lett. 97, 250402 (2006).

[54] I. Tikhonenkov, B. A. Malomed, and A. Vardi, Vortex solitons
in dipolar Bose-Einstein condensates, Phys. Rev. A 78, 043614
(2008).

[55] A. Minovich, D. N. Neshev, A. Dreischuh, W. Krolikowski,
and Y. S. Kivshar, Experimental reconstruction of nonlocal
response of thermal nonlinear optical media, Opt. Lett. 32, 1599
(2007).

[56] C. Conti, M. Peccianti, and G. Assanto, Route to nonlocality
and observation of accessible solitons, Phys. Rev. Lett. 91,
073901 (2003).

[57] N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Shocks in
nonlocal media, Phys. Rev. Lett. 99, 043903 (2007).

[58] S. Bar-Ad, R. Schilling, and V. Fleurov, Nonlocality and fluctu-
ations near the optical analog of a sonic horizon, Phys. Rev. A
87, 013802 (2013).

[59] C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo,
Observation of a gradient catastrophe generating solitons, Phys.
Rev. Lett. 102, 083902 (2009).

L032006-6

https://doi.org/10.1103/PhysRevLett.105.144502
https://doi.org/10.1103/PhysRevE.105.L063101
https://doi.org/10.1146/annurev-fluid-021021-102043
https://doi.org/10.1103/PhysRevFluids.3.054801
https://doi.org/10.1103/PhysRevFluids.4.074801
https://doi.org/10.1098/rspa.2014.0320
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRevA.60.4114
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1103/PhysRevA.94.013849
https://doi.org/10.1103/PhysRevLett.120.055301
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1103/PhysRevLett.121.183604
https://doi.org/10.1103/PhysRevResearch.2.043297
https://doi.org/10.1103/PhysRevLett.127.023401
https://doi.org/10.1038/nature10748
https://doi.org/10.1103/PhysRevLett.83.2876
https://doi.org/10.1103/PhysRevA.100.063825
https://doi.org/10.1103/PhysRevD.103.045004
https://doi.org/10.1103/PhysRevA.92.043802
https://doi.org/10.1063/1.2385658
https://doi.org/10.1103/PhysRevB.85.115318
https://doi.org/10.1038/s41598-019-54636-7
https://doi.org/10.1364/OL.34.001543
https://doi.org/10.1364/JOSAB.25.001882
https://doi.org/10.1103/PhysRevLett.97.250402
https://doi.org/10.1103/PhysRevA.78.043614
https://doi.org/10.1364/OL.32.001599
https://doi.org/10.1103/PhysRevLett.91.073901
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevA.87.013802
https://doi.org/10.1103/PhysRevLett.102.083902


BOUND BOGOLIUBOV QUASIPARTICLES IN PHOTON … PHYSICAL REVIEW RESEARCH 6, L032006 (2024)

[60] T. Roger, C. Maitland, K. Wilson, N. Westerberg, D. Vocke,
E. M. Wright, and D. Faccio, Optical analogues of the Newton-
Schrödinger equation and boson star evolution, Nat. Commun.
7, 13492 (2016).

[61] D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed.
(CRC press, Boca Raton, Florida, USA, 2001).

[62] J. Yan, X. Shen, Z. Xu, G. Chen, H. Zhang, and C. Cheng,
Ultra-broad band and tunable optical limiting based on photo-
refraction of PbSe quantum dots, Opt. Laser Technol. 120,
105693 (2019).

[63] V. S. L’vov and S. Nazarenko, Discrete and mesoscopic regimes
of finite-size wave turbulence, Phys. Rev. E 82, 056322 (2010).

[64] F. Claude, M. J. Jacquet, I. Carusotto, Q. Glorieux, E.
Giacobino, and A. Bramati, Spectrum of collective excitations
of a quantum fluid of polaritons, Phys. Rev. B 107, 174507
(2023).

[65] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Quantum non-
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