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Abstract: Adoption of zero-tillage practices with residue retention in field crops has been 

introduced as an alternative soil-management technique to counteract the resource degradation and 

high production costs derived from intensive tillage. In this sense, the biophysical models are 

valuable tools to evaluate and design the most suitable soil-management technique in view of future 

climate variability. The aim of this study was to use the ARMOSA process-based crop model to 

perform an assessment of tillage (T) and no-tillage (No-T) practices of durum-wheat-cropping 

systems in the Campania region (South of Italy) under current and future climate scenarios. First, 

the model was calibrated using measurements of soil water content at different depths, leaf area 

index, and aboveground biomass in the T and No-T treatments during the 2013–2014 season. Then, 

the model was further applied in the T and No-T treatments to future climate data for 2020–2100 

that was generated by the COSMO-CLM model using the RCP4.5 and 8.5 paths. Results of the 

calibration depicted that the model can accurately simulate the soil-crop-related variables of both 

soil-management treatments, and thus can be applied to identify the most appropriate conservation 

agricultural practices in the durum-wheat system. The simulation of soil water content at different 

depths resulted in small relative root mean square errors (RRMSE < 15%) and an acceptable 

Pearson’s correlation coefficient (r > 0.51); and the goodness-of-fit indicators for simulated LAI and 

AGB resulted in acceptable RRMSE (RRMSE < 28%), and high r (r > 0.84) in both soil-management 

treatments. Future climate simulations showed that No-T management will deliver 10% more wheat 

yield than the T, with an annual average 0.31% year−1 increase of soil organic carbon, and an increase 

of 3.80% year−1 for N uptake, which can diminish the N leaching. These results suggest that No-T 

could be implemented as a more resilient management for farming system in view of climate 

uncertainty and scarcity of resources. Therefore, these findings support the potential of the 

ARMOSA model to evaluate the soil-crop response of the durum-wheat system under different 

management conditions and to design appropriate soil-management practices for current and 

future climate predictions. 
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1. Introduction 

The degradation of land and ecosystem services caused by intensive tillage 

agricultural practices has prompted an alternative farming paradigm known as 

conservation agriculture [1]. 

Conservation agriculture (CA) is an aggregate of best management practices that is 

built on three linked principles: minimum soil disturbance (i.e., no-tillage; No-T), 

preservation of a permanent soil organic cover, and crop rotation and diversification [2]. 

These practices are meant to counteract soil degradation and enhance microbial biomass 

and water infiltration by minimum tillage. Meanwhile, mulching could diminish soil 

evaporation and runoff, enhance topsoil organic matter, and improve the stability of 

surface soil aggregates [3–6]. Moreover, No-T practices reduce production costs by 

decreasing fuel consumption and thus, greenhouse emissions [1,7]. 

Consequently, all these practices should sustain and increase crop productivity, and 

water and nutrient use efficiency, which would be translated into raising the farmer’s 

income. However, there is still the belief among farmers that CA practices can cause yield 

penalties, which is preventing their adoption and spread [1,8,9]. Moreover, it is important 

to bear in mind that the benefits of CA previously stated may not be visible in the short 

term, but rather in the medium- and long-term results [7,9]. In addition, much research 

has been carried out about the effects derived from converting to CA, which highlighted 

diverse responses according to local characteristics. Thus, the overall outcomes 

demonstrated the need to design site-specific soil-management practices to translate their 

potential into environmental and economic benefits [7]. 

The CA farming system has grown in recent years at a global scale, with CA cropland 

representing 12.5% of the total global cropland in 2016, with an increased tendency. 

Specifically, CA was implemented in 45% and 32% of the total cropland in USA and South 

America, respectively [1]. In addition, although the Common Agricultural Policy of the 

European Union (CAP, Rural Development Programme 2014–2020) promoted the 

adoption of CA, there has not been a sustained and broad adoption of these practices in 

European agriculture, and CA farmland represents only 5% of the EU’s total cropland [1]. 

Specifically, in the case of Italy, the part of arable land that farmers declared would be 

dedicated to No-T practices represent around 6% of the total Utilized Agricultural Area, 

according to the last available agriculture census [10], which has been grant-supported by 

the rural development programmes of the Italian administrative regions [11]. Therefore, 

these agricultural practices are still in a developing phase in Italy, with constraints for 

implementation in a lack of know-how and the mindset that CA would lead to yield 

penalties [9]. 

The future CAP (2023–2027) has listed CA as an agricultural practice supported by 

the new so-called eco-scheme instrument, as these practices foster climate mitigation and 

prevent soil degradation. Therefore, farmers that promise to implement CA in their 

cultivation practices will be rewarded by this new instrument of the CAP policy [12]. 

The durum-wheat crop cultivated in the Campania region represents 4.4% of the 

national surface (i.e., 1.21 million ha) and 4.5% of the national production (4.2 × 106 kg) 

[10]. In the Campania territory there are three main milling industries, which represent 

3% of the total national industries, with a producing capacity of more than 2 × 105 kg; and 

15 pasta industries, which represent 13% of total national production. In Italy, semolina 

production reached 4.2 × 106 kg in 2020 (an increase of 9% compared to 2019) and 3.85 × 

106 kg were used for pasta making [13]. 

Italy is the second highest-producing country in the world of durum wheat (4.2 × 106 

kg), after Canada (5.2 × 106 kg); and the first in Europe, which accounts for 49.4% (8.5 × 106 

kg) of the total EU production [14]. Among the Italian regions, Puglia (25.2% of the total 

national production) represents the top producer, reaching about one million tons, while 

Campania is listed in the eighth place [10]. 

In the Campania region, the most common method for wheat cultivation is by 

conventional tillage (T), while direct seeding is barely spread and is decreasing [9]. The 
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impact of T is especially considerable in terms of energy and environmental factors in the 

hilly and mountainous areas of Campania because they predispose the land to water and 

wind erosion, that lead to a loss of fertility in cultivated land. 

An increase in the severity and frequency of drought and floods events, changes in 

precipitation, temperature, and the carbon dioxide concentration in the atmosphere have 

been forecast for the Mediterranean region [15–17]. This variability in the climate is 

predicted to have effects on soil water availability, carbon storage, and in crop yields and 

quality. Consequently, it is paramount to study farm management strategies that maintain 

agricultural production at environmental and economically viable levels. Among these 

strategies, CA is being fostered as valuable mitigation and adaptation practices to 

environmental changes that are affecting farming systems [7,18,19]. Farmers have been 

able to adopt CA strategies in different agri-environmental characteristics to cope with 

climate variability [20]. 

Field tillage experiments are time-consuming, expensive, laborious, and require 

specific expertise skills. Thus, properly calibrated crop process-based models may be used 

to evaluate the impact of diverse soil-management techniques on crop productivity and 

water–nutrients dynamics to identify the most appropriate and site-specific soil-

management strategies [1,6,21]. 

Some studies have employed crop-based models to evaluate the effects of different 

CA practices on crop performance, soil–water balance, and nutrients dynamics under 

different agro-environmental conditions [19,22–24]. However, these studies showed that 

most of the available crop models are not able to simulate accurately the long-term effects 

of the differences between CA and T [25]. Authors argue that this fact may be due to 

missing specific modules (i.e., a tillage module) in the models to depict the effects of CA 

operations on soil variables [4]; and flexibility in defining farm management practices that 

change season by season [25]. 

Process-based crop modeling has been coupled with weather projections to gain 

knowledge on the effects of climate change on agricultural production, and thus identify 

the most appropriate CA strategies [20]. In this way, crop modeling could provide insight 

on mitigations and adaptations to climate change by recognizing proper conservation 

agricultural practices [26]. 

The ARMOSA model is a process-based cropping system model that has been proved 

to be suitable for field crops and to simulate different soil-management practices under 

diverse environmental conditions [7,27,28]. 

The overall objective of the study was to evaluate the effect of two different soil-

management practices—T and No-T—on durum-wheat productivity and soil-related 

variables in the Mediterranean climate in current and future scenarios by using the 

ARMOSA model (Figure 1). 

The specific objectives consisted of (i) calibration of the parameters of the crop 

growth model for durum wheat under T and No-T soil-management techniques in a hilly 

Mediterranean region; and (ii) forecast wheat productivity, soil organic carbon (SOC) 

stock, and nitrogen (N) uptake under two contrasting climate-change scenarios for T and 

No-T soil management. 
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Figure 1. Storyline of the methodology applied. 

2. Materials and Methods 

2.1. Site Description 

The field data acquisition was conducted during the period 2013–2014 (October–

June) in the durum-wheat field located in Scampitella (Campania, Italy 535 m a.s.l.). The 

durum-wheat field (Triticum durum Desf., var. Iride) covers 8.5 ha with a crop density of 

350 viable seeds per m−2. The selected farm is a representative durum-wheat farm in the 

Campania region in terms of farm size, economical dimensions, and agronomic and soil-

management practices [10]. 

The experimental area was located in two sites, with different soil-management strat-

egies, which were used for field monitoring. The T treatment (1.5 ha; 41°08′77″N, 15°33′80″ 

E) involved ploughing in summer at 40 cm depth using a subsoiler, and in autumn at least 

two secondaries tillage using a disk harrow for seedbed preparation. The No-T manage-

ment (No-T) (7.0 ha; 41°08′59″ N, 15°33′79″ E) started in the 2008–2009 growing season. A 

non-selective herbicide treatment was used (i.e., glyphosate at 3 L ha−1) for weed control, 

and after 7–10 days the durum wheat was sown with a specific seeder “Directa” 300 

(:MASCHIO GASPARDO S.p.A., Campodarsego, PD, Italy) for undisturbed soil. 

Before sowing and for both treatments, the basal fertilization was 36 kg N ha−1 and 

42.24 P ha−1 (200 kg ha−1 of di-ammonium phosphate, DAP, 18-46-00), while during the 

initial tillering and stem-elongation stages of the durum wheat, 46 kg N ha−1 (100 kg ha−1 

of urea 46-00-00) and 42 kg N ha−1 (200 kg ha−1 of sulfate of ammonia, SOA, 21-00-00) were 

applied, respectively. In both techniques, the management of crop residues was envis-

aged. The latter were chopped directly in the field by the combine harvester during har-

vesting (21 June 2014) and buried in the T treatment with ploughing and kept on the sur-

face in the No-T treatment. 

The climate is typically Mediterranean, with annual rainfall varying between 600 and 

1000 mm, most of which falls in fall and winter; average monthly temperatures vary from 

7 °C to 27 °C, respectively, from January to July (Figure 2). 
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Figure 2. Daily acquired climatic variables at the weather station located in the experimental site in 

2013 and 2014: (a) maximum (Tmax) and minimum (Tmin) temperatures, (b) precipitation and Har-

greaves-reference evapotranspiration (ETo) [29], and (c) wind speed at 2 m height (u2). 

2.2. Soil Characterization 

A geophysical scan of the farm soils using the electromagnetic induction (EMI) (GSSI: 

Nashua, NH, USA) sensor was performed to investigate the spatial variability of the field 

experimental farm. The EMI sensor allowed us to obtain aggregated information on the 

spatial variability of soils through the volumetric measure of the apparent electrical con-

ductivity of soils. 

The Profiler EMP-400 conductivity meter (GSSI: Nashua, NH, USA, )  was used to 

assess the soil’s apparent electrical conductivity. The Profiler used three frequencies at 5, 

10, and 15 KHz in vertical dipole mode (VDM). The Tx and Rx coils were spaced 1.22 m 

apart with a depth of investigation of 1.95 m. The instrumentation was placed on a PVC 

sled and was towed by a tractor placed at about 5 m to avoid interference phenomena and 

data alteration. The use of the sled maintains a constant distance of the instrument from 

the ground to perform the acquisition faster and more easily. 

The data obtained were filtered to eliminate any outliers, and then were subjected to 

variographic analysis and interpolated by ordinary kriging. 

The pedogenetic horizons recognized in the opening of the soil profiles were sampled 

for the chemical–physical and hydrological analyses in the two plots located in the T and 

No-T field, respectively. Chemical analyses were conducted according to the Official 

Methods for Soil Chemical Analysis developed by the Italian Ministry of Agriculture and 

Forestry Policies [30]. The soil organic matter was determined by oxidation with potas-

sium dichromate solution in the presence of sulfuric acid following the Walkley–Black 

method. The pH values were determined in H2O (soil/water suspension 1:2.5) and in KCl 

1 M (soil suspension/solution 1:2.5). The CEC was determined according to the BaCl2 

method at pH 8.2 and triethanolamine. The total carbonate content was determined by 

acid solubilization and gas-volumetric determination of CO2, which takes place by treat-

ing a fine soil sample with hydrochloric acid and measures with the Dietrich–Fruehling 
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calcimeter. The electrical conductivity was determined on aqueous extract, with water–

soil ratio of 5:1. 

The soil texture was measured by a laser diffractometry granulometer (Malvern Mas-

tersizer 2000:Malvern, Unite Kingdom) ). 

The hydraulic properties were carried out by laboratory analyses on undisturbed 

samples taken in each of the soil horizons. First, soil samples were saturated, then (i) the 

saturated soil water content, θs, was measured by a gravimetric method and (ii) the satu-

rated hydraulic conductivity, ks, was measured using the falling head permeameter [31]. 

Subsequently, after inserting three tensiometers at different depths in the soil sample, 

an automatically recording of the pressure head and the weight of the sample during a 1-

dimensional evaporation process, allowed us to get three h(t) time series for the three dif-

ferent depths where the tensiometers were inserted and one averaged for the whole soil 

sample times series, θ(t) [32]. From this information the water retention curve was ob-

tained by applying an iterative method [33]. Additional points of the dry branch of the 

water retention curve were determined using a dewpoint potentiometer (WP4-T, Decagon 

Devices, Washington, DC, USA). Finally, these water retention data were parameterized 

by fitting measured data to the van Genuchten model [34]. 

2.3. Field Monitoring 

The dates defining the crop phenological stages and the corresponding BBCH deci-

mal code for the growth stages of durum wheat, following the Zadocks scale [35], are 

indicated in Table 1 for the crop-growing season of the study. The planting date of the two 

fields took place on 26 October 2013 using the Iride cultivar of durum wheat, and the 

harvest date took place on the 21 of June 2014 in both fields (i.e., 236 days after sowing, 

DAS). 

Table 1. Days after sowing (DAS) and BBCH of the crop growth stages. 

Crop Growth Stages 

Season Sowing Emergence Tillering 
Stem 

Elongation 

Ear 

Emergence 
Flowering 

Begin Grain 

Filling 

Physiological 

Maturity 
Harvest

2013–2014 0 31 103 141 165 184 206 224 236 

BBCH scale 00 09 29 35 55 65 73 89 99 

Table 2 illustrates the several variables measured in the experimental field. 

A weather station (Watchdog 2900ET—Spectrum Technologies) was set up next to 

the experimental site for the hourly automatic acquisition of precipitation, air temperature 

at 2 m height, relative humidity, wind velocity, and solar radiation. 

Plant biophysical characteristics (e.g., leaf area index, aboveground biomass) were 

measured starting from the tillering stage of wheat and up to harvest following the phe-

nological stages indicated in Table 1 to characterize the response of the plant to the two 

cultivation methods. 

Eight aboveground biomass samples were taken from an area of 0.51 m2 (1.02 × 0.5 

m), which included six contiguous rows. The sampling at harvest was taken from an area 

of 1 m2 within each test area and used to measure the following parameters: height of the 

plant (cm, excluding awns), total weight of biomass and grain (g m−2), and harvest index 

(weight of grain/total weight of biomass × 100). 

The leaf area index (LAI) was measured by using LAI Licor 2000(LI-COR Inc.: Lin-

coln, NE, USA). Three random subareas of each experimental field were selected of 0.09 

m2 (0.3 × 0.3 m), for a total number of nine samples in each field. 

Once the LAI measurements were completed, the plant material collected was used 

for the estimation of the aboveground biomass (AGB) by drying in an oven at 65 °C until 

a constant weight was reached. Until April 11th, the plant material was mainly leaves. Af-

ter this date, when stems and spikes were well-differentiated, the plant was separated into 
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the different fractions. The total aboveground biomass was obtained by adding up the 

component fractions. 

Rooting depth was measured on 7/2, 18/3 and 30/4/14 by trenching in the soil. Subse-

quent excavations did not show substantial differences compared to the observation on 

30/4, therefore the measurements of the rooting depth were discontinued. 

Three random test areas of 21 m2 each (7.0 × 3.0 m) were selected in each field to 

measure at harvest the grain yield (kg ha−1 adjusted to 13.0% moisture). 

Two automatic stations were set up for data acquisition of soil water content by using 

the time domain reflectometry (TDR) technique. The stations adopted consisted of a 

Campbell TDR100 time domain reflectometer, to which are connected, through a system 

of SDMX50SP Campbell coaxial multiplexers, 12 probes. 

The TDR probes were installed at 0–15, 20, 30, 40, and 50 cm depth according to the 

recognized pedological horizons. The probes were self-built and calibrated to determine 

the exact length of the cable and the electrical length, thus the probes were of the three-

wire type with steel waveguides varying between 10 cm and 15 cm in length. The data 

acquisition and recording were carried out by a CR10X Campbell datalogger(Campbell 

Scientific: Logan, UT, USA ). The waveforms were collected every 4 h starting from 

18/11/2013 until 26/6/2014. 

Table 2. Field measured variables to be used in the model simulations. 

Field Monitoring 

 Variable Method Frequency 
Number of 

Measurements 
Type 

Meteorology

Minimum/maximum air 

temperature (°C) 
Local meteorological 

station 
Daily 730 Continuous Relative humidity (%) 

Global solar radiation (MJ m−2) 

Precipitation (mm) 

Reference evapotranspiration 

(mm) 
Hargreaves ETo method Daily 730 Continuous 

Soil 
Volumetric soil water content (m3 

m−3) 

Time domain 

reflectometry sensor 
Daily 

460 (T) 

548 (No-T) 
Continuous 

Crop 

Leaf area index (m2 m−2) LAI Licor 2000 
At each phenological 

stage 
6 Discontinuous

Aboveground biomass (Kg ha−1) Oven drying 
At each phenological 

stage 
9 Discontinuous

2.4. Climate Scenarios 

Future climate scenarios were obtained by using the high-resolution regional climate 

model (RCM) COSMO-CLM [36] employing a spatial resolution of about 11 Km at Euro-

pean level with optimization at Italian scale, able to employ a spatial resolution of 0.0715° 

(about 8 km). These last model data were validated, resulting in agreement with different 

regional high-resolution observational datasets, in terms of average temperature and pre-

cipitation [37] and in terms of extreme events [38]. 

In particular, two different simulations were performed by employing two standard 

IPCC (Intergovernmental Panel on Climate Change) RCP4.5 and RCP8.5 greenhouse gas 

(GHG) concentrations [39]. Specifically, the RCP4.5 scenario shows stabilization in the 

GHG emissions, while the RCP8.5 scenario has a rapid increase of the GHG concentration. 

The initial and boundary conditions for running RCM simulations with COSMO-CLM 

were provided by the general circulation model CMCC-CM [40], whose atmospheric com-

ponent (ECHAM5) has a horizontal resolution of about 85 km. For both future climate 

scenarios, the period considered in the simulation was 2020 to 2100 and the solar global 

radiation was calculated using the RadEst 3.00 software (FAO, ISCI: Rome, Italy) [41]. 

Specifically, the Campbell/Donatelli radiation model implemented in RadEst was used. 



Agronomy 2022, 12, 331 8 of 25 
 

 

Observed weather data over the period 2000–2020, provided by the Protezione Civile 

della Regione Campania (http://centrofunzionale.regione.campania.it/) accessed on 20 

Semptember 2021 was used as reference climate to check the climate scenario forecast. For 

that period, the annual mean rainfall was about 829 mm and the mean air temperature 

was about 13.4 °C, with reference to the Ariano Irpino site (Campania region, Italy), which 

is at 28 km distance from the experimental site and at the same elevation.  

2.5. ARMOSA Model 

Model Description 

The ARMOSA model simulates soil- and crop-related variables in response to agri-

cultural management and pedoclimatic conditions. The model runs at a daily time step 

and consists in three main modules: (1) crop growth and development; (2) soil water dy-

namics; (3) C and N cycling. 

The crop-growth simulation was based on the gross C absorption following the 

WOFOST approach [42] with a substantial improvement: the canopy was divided into 

five layers with different light interception. For each crop, 65 parameters needed to be set. 

During previous model applications [43–45], most of these parameters’ values had been 

set. In the present study, the most sensitive parameters (i.e., potential gross C adsorption, 

specific leaf area index (LAI), four cardinal temperatures for crop growth) were set using 

the measured data from the field experiment with an objective function based on yield 

and LAI. As for the crop development, the model calculates the growing degree days 

(GDD), the development rate (used in the assimilate partition and LAI estimation), and 

the vernalization factor. BBCH scale is used to indicate the crop stages. In this analysis, 

the GDD requirements and the base temperature, optimal minimum and maximum tem-

perature, and cut-off temperature for each stage were defined based on the observed dates 

of the durum wheat. The crop development is based on GDD, which were calculated by 

applying a trapezoidal rule that is similar to the rule described by [46]. Photosynthates 

partitioning among plant organs is specific for each BBCH stage. 

Water content was simulated for each soil layer by a daily bucket module where the 

soil profile is divided into layers, usually 5 cm thick. Each layer accumulates water until 

it reaches the field capacity; above this level, the model tries to transfer the water in excess 

to the layer below within the limit of the hydraulic conductivity. The water that cannot 

infiltrate the lower layer (because it exceeds the hydraulic conductivity, or the lower lay-

ers is already at saturation) is retained up to the saturation level. The water that tries to 

infiltrate from the top into a layer that is already at saturation point bounces back and 

(proceeding from the bottom to the top of the profile) can remain above the soil surface 

for the rest of the day. This module calculated the daily soil water content in each 5-cm 

layer as the results of the water input (rain and irrigation), water uptake by roots, and 

percolation. The simulation was strictly dependent on soil properties. 

C- and N-related processes were simulated for each soil layer and implemented fol-

lowing the approach of the SOILN model [47], with the difference that each input of C 

and N was considered independently, with each one having its own decomposition rate 

and fate. The input could be of three types, to which correspond three types of organic C 

and N pools: stable, litter, and manure. Crop residues, being the input of the litter pool, 

decompose based on the tillage type, depth of soil incorporation, crop type, and organs. 

Mineral pools are carbon dioxide, ammonium, and nitrate. Mineral and organic pools 

were daily calculated for each layer as the results of soil processes, which are immobiliza-

tion, mineralization of the organic pools C and N, nitrification, crop uptake, nitrate leach-

ing, denitrification, atmospheric deposition, ammonium volatilization, and nitrous oxide 

emissions. The processes were driven by the temperature and water level, which affected 

the microbial activity. The inputs were manure (e.g., dairy or swine slurry, dairy dung, 

digestate, sewage sludge) or litter (i.e., crop residues or green manure). The soil 
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temperature was simulated according to [48] and [49] (SWAT model); it was mainly 

driven by crop biomass, litter, the stable fraction of SOC, and SWC. 

The model input requirements in the current study considered the following data: 

(a) Soil data: soil properties (i.e., sand—%, silt—%, clay—%, bulk density—Mg m−3, 

SOC and N in stable, litter, and manure fractions—kg ha−1, van Genuchten–Mualem equa-

tion parameters) are required for each pedological horizon. The horizons were further 

split into 5-cm layers for the daily estimation of the soil-related variables. In each layer, 

the state variables were water availability and percolation, evaporation, soil organic C and 

N in the three main pools (i.e., stable, litter, manure), ammonia, and nitrate. ARMOSA 

computed the daily values of bulk density and van Genuchten–Mualem equation param-

eters as affected by SOC content and tillage operations. 

(b) Daily weather parameters were required as input data to compute the reference 

evapotranspiration (mm d−1) with the Hargreaves-reference evapotranspiration equation 

[29]. The required parameters were rainfall (mm), minimum and maximum air tempera-

ture (°C), wind speed at 2 m height (m s−1), and solar global radiation (MJ m−2). 

(c) Crop data: the crop rotation had to be set and for each crop sown and harvested, 

dates had to be entered. The input for crop-residues management was the percentage of 

residues biomass retained and the soil depth of incorporation. 

(d) Tillage date, type (perturbation and mixing effect), and soil depth had to be de-

fined for each tillage event. 

(e) Fertilization: either mineral or organic fertilizers had possibly been applied. The 

amount of kg N ha−1, day of the year (DOY) of application, depth of application, the type 

of fertilizer (ammonium and nitrate content, C/N ratio for organic fertilizers) had to be 

set. 

2.6. Model Parametrization and Calibration 

The model was calibrated for the prediction of the soil water content (SWC), leaf area 

index (LAI), and the aboveground biomass (AGB) collected in the two experimental sites 

located in Scampitella (South of Italy). Therefore, the ARMOSA model was calibrated us-

ing the set of measured data collected on the tillage (T) treatment and on the no-tillage 

(No-T) treatment of the durum-wheat-cropping system during the 2013–2014 crop grow-

ing season. 

The calibration methodology followed a trial-and-error procedure to minimize, with 

an iterative process, the error propagation in the simulated processes, as described in [50]. 

The trial-and-error procedure consisted, first, of finding the soil hydraulic parameters in 

the T and No-T management treatments for the different soil depths, until the variation of 

the differences in SWC sim—SWC field became negligible with few deviations from one 

iteration to the successive. This calibration of hydraulic properties was required for field 

applications to consider the well-known deviation between laboratory-measured and 

field-measured hydraulic properties [51–53]. 

Secondly, the same method was developed for the crop phenological stages and crop 

parameters in the T and No-T treatments, until low estimation errors were obtained, with 

negligible differences in successive iterations for the phenological dates, LAI, and AGB 

field data. Therefore, the same values of the crop calibrated parameters were used in the 

T and No-T treatments. 

The performance of the model was assessed graphically and using the following 

goodness-of-fit indicators, which were employed and suggested in former modeling stud-

ies [27,50,54]. 

For all the indexes, Oi and Pi relate to observed and predicted values for all studied 

variables and ��  and ��  are the mean of the observed and predicted variables, respec-

tively. 
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(a) the Pearson’s correlation coefficient (r) [55] is a measure of the degree of association 

between simulations and observations. It varies between 0—-no agreement and 1—

full agreement between the simulated and observed data: 

� = �
∑ (�����)�

��� (�����)

�∑ (�����)��
��� �

�.�
�∑ (�����)��

��� �
�.��, (1)

(b) the relative root mean square error (RRMSE) [56] is a measure for the accuracy of the 

predictions, which needs to be equal or close to 0, evidencing a perfect match between 

the simulated and observed variables. 

RRMSE = �
�

�
∑ (�����)�

���

��
�

�.�

, (2)

(c) the average absolute error (AAE) represents the average error size associated with 

the estimations, and it varies between 0—perfect match and positive infinitive—no 

match between the simulated and measured values: 

AAE =
1

�
� |�� − ��|

�

���
 (3)

(d) the percent bias (PBIAS) [57] indicates the trend of the model predictions to be larger 

or smaller than the equivalent observed: positive values indicate an underestimation 

bias, while negative values correspond to an overestimation bias and values close to 

zero indicate the absence of trends: 

PBIAS = 100
∑ (�����)�

���

∑ ��
�
���

, (4)

(e) the efficiency index (EF) proposed by [58] varies between negative infinity and 1.0, 

whose positive values indicates that the model is a better forecast than the average 

of measured values: 

EF = 1 −
∑ (�����)�

���

∑ (�����)�
���

, (5)

The calibrated model was run with the two climate scenarios RCP4.5 and RCP8.5, 

and the crop phenological stages were modified according to the climate trend observed 

(i.e., higher temperatures and lower rainfall events). Previous research predicted an elon-

gation of the crop-growing season in future periods, and thus the model needs to be mod-

ified accordingly for future scenarios [18,59]. 

As a matter of fact, in this study, the sowing and harvesting dates were kept the same 

as those observed in the monitoring year. The flowering stage was anticipated and the 

time for grain maturity reduced to elongate the wheat growth cycle by adjusting the ther-

mal requirements in growing-degree days from the tillering to the flowering stage and 

from watery ripeness to physiological maturity. 

The following output parameters were analyzed in the model application: predicted 

grain yields, SOC content, N uptake, and water- and nitrogen-stress indexes; to verify 

their long-term trends and stabilities under the two soil-management techniques. 

The one-way ANOVA model was applied to data, considering annual results as rep-

licates, to find differences between T and No-T, and the homogeneity of variances was 

tested using Levene’s mean-based test [60] following the suggestions of [61]. 
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3. Results 

3.1. Soil Survey Results and Plot Definition 

A preliminary scan of the two fields was performed by EMI sensors to investigate the 

soil variability in both fields and, thus, define the experimental plots. 

Most of the area—excluding some spots—showed similar values of ECa between the 

range 60–80 ms cm−1. This homogeneous response of the soil profile cannot be directly 

reflected in a soil homogeneity, because the ECa is an integrated value that depends on 

many factors such as soil texture, layering, water content, and salinity—different combi-

nations of which can produce similar results. Therefore, two profiles were open in zones 

showing the same value of ECa, respectively in the T and No-T field (black circles in the 

Figure 3), on the base of this first hypothesis on homogeneity. 

 

Figure 3. Maps of apparent electrical conductivity (ECa) measured at the Scampitella field. 

Both soil profiles are Calcic Vertisols according to the World Reference Base (WRB) 

classification system [62]. In Table 3 the main characteristics of the soil profiles are re-

ported. Only minor differences arose between the two profiles in genetic horizons, pH, 

carbonates, and CEC. Hence, the possible differences in the results obtained in the two 

experimental plots cannot be attributed to differences in soils but—reasonably—only to 

the different tillage of the upper layer, i.e., conventional and no-tillage. 

Table 3. Soil profile characteristics for T and No-T experimental sites. 

Site Soil Profile Depth pH (H2O) O.C (%) CaCO3 (%) E.C (ms cm−1) C.E.C (meq/100 g) 

T 

Ap1 0–10 8.4 1.4 12.4 275 39 

Ap2 10–40 8.4 1.3 10.9 183 33 

Bss1 40–65 8.7 0.9 12.3 315 36 

Bss2 65–90 8.8 0.8 18.9 392 29 

Bss3 90–105 8.8 0.6 20.5 564 34 

Bw 105–120 8.8 0.6 18.7 697 24 

CB 120–150 8.8 0.5 24.9 789 28 

No-T 

Ap1 0–10 8.1 1.2 10.5 252 33 

Ap2 10–45 8.3 1.1 10.1 177 33 

Bss1 45–100 8.4 0.7 13.3 372 31 

Bss2 100–120 8.5 0.7 17.4 317 31 

2Bss 120–130 8.5 0.5 18.2 271 31 

2CB 130–160 8.5 0.4 22.2 271 23 

2C 160–170 8.6 0.5 29.1 247 18 

O.C = Organic carbon; E.C = electric conductivity; C.E.C = cation exchange capacity. 
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According to these preliminary results, the experimental plots of T and No-T were 

selected near to the profiles, and their location is reported in Figure 3 with a black circle. 

3.2. Parameter’s Calibration of the Durum Wheat Crop Growth Model 

The ARMOSA model was calibrated using SWC measurements, LAI, and AGB in 

both T and No-T treatments for the entire crop-growing season. 

Figure 4 shows the match between measured and simulated SWC values during the 

crop-growing season 2013–2014 at 0–15-cm (n = 123), 20-cm (n = 133), 40-cm (n = 194), and 

50-cm (n = 194) depths regarding the T treatment. The results show that the temporal var-

iations of both measured SWC and estimated SWC are reasonably well-described for the 

whole period and for the four depths. Moreover, the model responded well to the peaks 

and absence of rainfall events. 

 

Figure 4. Soil water content measured with TDR (SWC measure, ●) and simulated with ARMOSA (SWC 

sim, —) for (a) 0–15-cm, (b) 20-cm, (c) 40-cm, and (d) 50-cm depths during the crop-growing season 

2013–2014 in the T treatment. 

The calibration indicators for the four soil depths and the entire soil profile are re-

ported in Table 4. Overall, the goodness-of-fit indicators performed well for the four soil 

depths and along the soil profile, with slight differences between the more superficial and 

the deepest soil layer. The Pearson’s correlation coefficient r values were high in the 0–15-

cm, 20-cm, and 50-cm depths (r = 0.91–0.88) and acceptable in the 40-cm depth (r = 0.51), 

which indicates that the model represented with good accuracy the variability of the SWC 

in each layer. 

The model underestimates the SWC at 20 cm with a PBIAS of 13.1%, while smaller 

PBIAS values (0.6–2.4%) were found in the other depths with no trend of under- or over- 

estimation of the simulated values. Estimation errors are small in all depths, as indicated 

by the RRMSE < 16% and AAE < 0.05 m3 m−3. The Nash and Sutcliffe efficiency index EF 

was high for the superficial layer (EF = 0.79), acceptable in the 20-cm layer (EF = 0.23), and 
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negative for the deepest layers (EF = −0.05; −0.43), which means that the mean square error 

was higher than the measured data variability. 

Table 4. Calibration indicators relative to the SWC (SWCsim) simulated with the ARMOSA model 

compared to the SWC obtained from TDR measurements (SWC measure) for 0–15-cm, 20-cm, 30-cm, 

40-cm, and 50-cm depths and for the entire soil profile (0–50 cm) in the T and No-T treatments. 

 Depths (m) 
Treatments 

T No-T 

r 

0–15 0.90 0.83 

20 0.88 0.82 

30 NA 0.79 

40 0.51 NA 

50 0.91 −0.49 

0–50 0.86 0.83 

PBIAS (%) 

0–15 2.4 −6.7 

20 13.1 7.8 

30 NA 1.1 

40 1.4 NA 

50 0.6 0.4 

0–50 3.5 0.9 

RRMSE (%) 

0–15 8.04 12.11 

20 15.83 12.56 

30 NA 9.2 

40 8.73 NA 

50 4.92 3.11 

0–50 9.34 9.1 

AAE (m3/m3) 

0–15 0.02 0.03 

20 0.05 0.03 

30 NA 0.03 

40 0.03 NA 

50 0.02 0.01 

0–50 0.03 0.03 

EF 

0–15 0.79 0.55 

20 0.23 0.32 

30 NA −0.47 

40 −0.43 NA 

50 −0.05 −1.15 

0–50 0.59 0.59 

As in the T treatment, calibration results showed good agreement between simulated 

and measured SWC data at 0–15-cm (n = 125); 20-cm (n = 128), 30-cm (n = 169), and 50-cm 

(n = 186) depths for the No-T treatment. The simulated SWC followed the temporal SWC 

measured (Figure 5), and the statistical indicators depict similar ranges as the ones for the 

T treatment (Table 4). 

The r coefficient was near to 1.0 in the more superficial depths, which indicates a 

good linear correlation between the simulated and measured data sets in the first three 

depths investigated (r = 0.83–0.79). Contrarily to that observed in the T treatment, the r 

index at 50 cm is lower than those in the upper layers. The PBIAS results were acceptable 

and did not perform any significant over- or underestimation trend of the model output 

in any of the soil layers. Estimation errors RRMSE and AAE were in the same range as the 

ones in the T treatment for each soil layer investigated. 
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In the same line, the EF index performed similar values that those in the T treatment 

output, which depicted satisfactory EF in the upper layers (EF = 0.55–0.32) and negative 

value in the lower layers (EF = −0.47;−1.15). 

 

Figure 5. Soil water content measured with TDR (SWC measure, ●) and simulated with ARMOSA (SWC 

sim, —) for (a) 0–15-cm, (b) 20-cm, (c) 30-cm, and (d) 50-cm depths during the crop-growing season 

2013–2014 in the No-T treatment. 

Measurements of LAI and AGB for the whole crop-growing season in the T and No-

T management methods were used for further calibration of ARMOSA. Figure 6 

represents simulated LAI and AGB obtained with the calibrated model parameters 

compared with the measured LAImeasure and AGBmeasure data, and Table 5 reports the 

statistical indices outcomes from the model calibration. The results illustrate that the 

simulated LAI and AGB adequately fits the measured variables. 

Table 5. Calibration indicators associated with the LAI (LAIsim) and AGB (AGBsim) simulated with 

the ARMOSA model compared to the LAI (LAImeasure) and AGB (AGBmeasure) obtained from field 

measurements for durum wheat under the T and No-T management methods. 

 LAI AGB 

 T No-T T No-T 

r 0.84 0.92 0.96 0.98 

PBIAS (%) −18.2 13.3 1.3 11.4 

RRMSE (%) 28.07 24.11 15.92 16.27 

AAE (m2/m2) 0.84 0.70 836 1370.12 

EF −0.74 0.74 0.93 0.91 

The model calibration indices (Table 5) are acceptable for LAI and good for AGB 

predicted values. In both treatments, the Pearson’s correlation coefficient r is high (0.98–

0.84) for LAI and AGB, which reflects high correlation of the simulated and measured 
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variables. In the same way, the estimation errors RRMSE and AAE are acceptable for the 

LAI and small for the AGB variable. 

 

Figure 6. Crop leaf area index (LAImeasure, ) and aboveground biomass (AGBmeasure, ) measured 

and (LAIsim −; AGBsim −) simulated with ARMOSA for durum wheat under T (a,c) and No-T (b,d) 

management during the crop-growing season 2013–2014. 

The PBIAS is small for the AGB variable and LAI in the No-T but indicates an 

overestimation by the model of the LAI measured values (−18.2%) in the T treatment. This 

may be related to the fact that the LAI measured values in the No-T management were 

1.25–1.50 times higher than the ones in the T management, which may cause the 

overestimation of the LAI in the No-T management. 

Similarly, the EF index regarding the LAI calibration in the T is negative (−0.73), 

which could be due to the small difference between the minimum and maximum 

measured values of LAI. The predicted values could not simulate the small range of 

measured values, but the simulated curve fitted the pattern of the measured values. 

On the other hand, the EF index of the AGB prediction is high (EF = 0.93–0.91), which 

shows that the simulations of AGB have a small error with respect to the variance of 

observations. 

According to this statistical evaluation, the calibration of ARMOSA for durum wheat 

cultivated with T and No-T was performed satisfactorily, even better than similar 

experiments [3,4,21]. 

3.3. Simulations with Climate-Change Scenarios 

The simulation results obtained by the ARMOSA model for the two climate scenarios 

during the 2020–2100 period, three timeframes (2020–2040, 2040–2070, 2070–2100), and the 
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two soil-management treatments are presented in Figure 7 as box-plot graphs. The 

average yields of the No-T treatment are 5.2% and 11.4% higher than the T treatment yield 

in the 4.5 and 8.5 climate-change scenarios, respectively, when considering the period 

2020–2100. The difference of the average yield between the two soil-management 

techniques is not statistically significant (p > 0.05) in the RCP4.5 scenario but is statistically 

significant in the RCP8.5 scenario (p < 0.05). 

 

Figure 7. Boxplot of durum-wheat grain yield under T and No-T management in the analyzed 

climate scenarios and their respective time periods (a) 2020–2100, (b) 2020–2040, (c) 2040–2070, and 

(d) 2070–2100. 

The yield difference between the two soil-management treatments becomes more 

pronounced as time advances, and is always higher in the No-T treatment. For instance, 

yield difference reaches the minimum in the two scenarios during the 2020–2040 

timeframe (0.37% and 4.12% in the 4.5 and 8.5 RCP scenarios, respectively), and it will be 

maximum during 2040–2070 in the RCP8.5 scenario (15%) and in 2070–2100 considering 

the RCP4.5 scenario (12%). 

It could be observed from Figure 7 that the yield variability is slightly higher in the 

No-T management in comparison to the T in both scenarios and for each timeframe 

considered. However, this difference is not statistically significant (p > 0.05) in any case 

considered, as shown by the Levene test. In addition, the largest variability of the average 

yield is observed in the RCP8.5 scenario in both soil-management techniques. 

The evolution of the total SOC in the first 30 cm of soil along the future period for 

both climate scenarios (Figure 8) is improved when the No-T treatment is implemented in 

durum wheat in this pedoclimatic context. The SOC content remains constant during the 

first years of implementation of the No-T management, then starts to increment constantly 

with an average annual growth rate of 0.19% year−1 in the RCP4.5 scenario and 0.20% 
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year−1 in the RCP8.5 scenario, until it reaches a constant value. On the contrary, the use of 

T management in durum wheat will produce a constant reduction of the soil carbon 

content with an average annual growth rate of −1.32% year−1 in the RCP4.5 scenario and 

−1.35% year−1 in the RCP8.5 scenario, until it reaches a minimum value around 10,000 kg 

ha−1 SOC. 

 

Figure 8. Simulated total soil organic carbon (SOC) at 30 cm under T and No-T for the RCP4.5 (a) 

and RCP8.5 (b) climate-change scenarios during the period 2020–2100. 

As a matter of testing, we calculated the relationship of the SOC in both treatments, 

ISOC = SOCT/SOCNo-T, as measured at the beginning of the experiment in 2013, measured 

after 8 years in 2021, and modeled for both RCP scenarios for 2013 and 2021. The results 

are reported in Table 6. 

Table 6. ISOC between T and No-T SOC in the 2013 and 2021 seasons, measured and simulated for 

both climate scenarios. 

Measured 

2013 

Simulated 2013 

RCP4.5 

Simulated 2013 

RCP8.5 

Measured 

2021 

Simulated 2021 

RCP4.5 

Simulated 2021 

RCP8.5 

108% 75% 75% 84% 62% 60% 

Consequently, the different trends in the SOC in the two soil-management systems 

of durum wheat under these pedoclimatic conditions can be predicted by the ARMOSA 

model for future climate projections. 

The N uptake will be much higher when the No-T technique is used, depicting an 

annual average change of 3.55% year−1 in the RCP4.5 scenario and 3.18% year−1 in the 

RCP8.5 scenario, which at the same time will reduce the N leaching (Figure 9). The No-T 

system will not experience N stress, although the uptake is higher in this management 

(Table 7). On the other hand, the system under T will not absorb as much N as the No-T, 

depicting 1.57% year−1 and 1.73% year−1 of average annual change, respectively for the 

RCP4.5 and RCP8.5 scenarios; and thus, it won’t be able to produce much more yield, as 

explained previously. 
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Figure 9. Simulated nitrogen uptake under T and No-T for the (a) RCP4.5 and (b) RCP8.5 climate-

change scenarios during the 2020–2100 period. 

Table 7. Simulated average water-stress index and average nitrogen-stress index under T and No-

T for the RCP4.5 and RCP8.5 climate-change scenarios during the 2020–2100 period. 

 Average of Water-Stress Index Average of Nitrogen-Stress Index 

T RCP4.5 0.66 0.96 

No-T RCP4.5 0.58 1.00 

T RCP8.5 0.68 0.94 

No-T RCP8.5 0.61 1.00 

Table 7 shows the N and water stresses that the crop system will experience in the 

future period. Neither technique will give any important stress. The difference in water 

stress between the two techniques will be small, although there may be more stress in the 

No-T treatment because the crop system will produce more, and, thus, consume more 

water. The residues kept in the soil decrease the evaporation process and the crop may be 

able to use water more efficiently, which may lead to a higher water consumption, and, 

thus, a slightly higher water-stress index. 

4. Discussion 

4.1. Performance of ARMOSA with Durum Wheat under Tillage and No Tillage Techniques 

The crop-growth ARMOSA model was successfully calibrated as suggested by the 

goodness-of-fit indicators, for durum wheat cultivated with T and No-T soil-management 

techniques. Therefore, the model—for this pedoclimatic environment— could function as 

a good predictor of the durum-wheat yield as well as the SWC, N-leaching, and change 

in SOC dynamics to evaluate the effects of different soil management. 

Specifically, the model performed better for the SWC in the 0–15-cm, 20-cm, and 30-

cm depths, while for the 40-cm and 50-cm depths the model showed negative EF values, 

which indicates that it was not able to accurately predict the variance of the measured 

variable in both soil-management treatments. The negative EF value in the deepest soil 

layers could be explained by the fact that the soil bucket model better represents the pro-

cesses within the root system, because the model simulates the root’s water uptake and 

the transpiration, but it does not simulate the drainage. Consequently, the bucket model 

could present more difficulties in modeling the processes that occur in the deepest soil 

layers. 

The model results for SWC are comparable in terms of accuracy with previous stud-

ies that simulated SWC using different process-based models for wheat and field crops 

cultivated following T and CA. For instance, Perego et al. (2013) [27] found close statistical 

indicators (r = 0.68, RRMSE = 6.28, EF = 0.52) when calibrating and validating ARMOSA 
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for SWC at different depths in the Lombardia plain (North Italy). Near the same experi-

mental area, Bonfante et al. (2010) [63] compared three physically based models (SWAP, 

MACRO, and CropSyst) on two sites that were cultivated with maize using conventional 

and minimum tillage. The authors found similar goodness-of-fit indicators to the ones in 

our study—specifically, the EF was negative in the deepest soil layers, which was at-

tributed to the simplification of the complex water flow mechanisms through the soil pro-

file by the models. In addition, the authors found higher absolute errors at the 0–15-cm 

depths as in this study, which was related to the higher inaccuracy of the TDR in the su-

perficial layers [63]. 

Liu et al. (2013) [6] found a slightly higher number of estimation errors (nRMSE = 

15.3–20.0%) than the in this study, in calibrating the DSSAT model in a soybean–maize 

crop rotation cultivated with T and CA. The authors stressed that the poorer agreement 

in some simulation years can be related to potential outliers in the SWC measurements. 

In the same line, Devkota et al. (2015) [4] evaluated the DSSAT model in a rice–wheat 

rotation under zero tillage and water-saving strategies in Central Asia. The authors re-

ported a close number of estimation errors (nRMSE = 6–8%) compared with this study for 

different soil depths. 

Shafeeq et al. (2020) [21] predicted the SWC in the 0–45 cm of the soil profile during 

the flowering stage of durum wheat using HYDRUS 2D, with similar goodness-of-fit in-

dicators to those used in our study. However, these authors presented fewer measured 

data (n = 18) of SWC than in our study, with measurements taken solely during the flow-

ering stage. Consequently, ARMOSA could be used as a tool to see the changes that di-

verse soil management may cause in the SWC at different soil depths. 

The ARMOSA calibration indicators for LAI and AGB that were obtained in this 

study are generally comparable with previous simulation studies for durum wheat and 

field crops under T and CA. Perego et al. (2013) [27] used ARMOSA to predict crop vari-

ables for field crops in six different sites from the Lombardia plain (Italy), with similar 

goodness-of-fit indexes for AGB (r = 0.97, RRMSE = 11.18, EF = 0.94) and LAI maximum 

value (r = 0.72, RRMSE = 8.24, EF = 0.37). 

Bechini et al. (2006) [64] parameterized the CropSyst model [65] for winter wheat by 

using data sets of four monitoring sites from the Lombardia plain. The calibration indica-

tor RRMSE for the AGB was in the same range as the one in our study, (RRMSE = 9–30%) 

but AGB was underestimated during the growth period (PBIAS = 21%). The authors at-

tributed this underestimation of crop growth rates to the linear relationship adopted by 

the model between the average air temperature and radiation dependent biomass accu-

mulation, which may not represent accurately a biological phenomenon. 

Ahmed et al. (2016) [18] evaluated the CERES and APSIM [66] models for five wheat 

cultivars under rainfed conditions in Pakistan. The authors reported comparable estima-

tion errors (RRMSE < 10%) for the maximum LAI and AGB. 

Comparable to our study, Corbeels et al. (2016) [22] calibrated the DSSAT model [67] 

for maize grown with T and was validated in the No-T with mulch treatment. The authors 

reported high overestimation (PBIAS = −51%) in simulating the AGB of maize during the 

calibration process. The authors argued that this could be due to the large variability in 

the measured AGB for a certain season, which feature the DSSAT model was not able to 

capture. 

As depicted in the Figure 6, the LAI measured was higher in the No-T by 1.5 units, 

which difference has been acceptably well-reproduced by the model output in the calibra-

tion process. Similar outcomes were reported by Shafeeq et al. (2020) [21] in durum wheat 

under No-T and residue management. The predicted values could not simulate the small 

range of measured values, but the simulated curve fitted the pattern of the measured val-

ues. Using the same model, Valkama et al. (2020) [28] found low EF and correlation coef-

ficient when calibrating and validating ARMOSA with SOC content for different soil-

management treatments in Almalybak (Kazakhstan). The authors suggested that the rea-

son could be that the fewer measurements did not capture the trends of soil carbon 
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evolution. Therefore, the ARMOSA model is able to reproduce the changes in crop fea-

tures that the No-T and T applications could produce. 

A key point in using the ARMOSA model to investigate the possible impacts of the 

two trials (T and No-T) relies on the detailed field investigation of the soil spatial varia-

bility. Many of the papers reported above are missing a deeper knowledge of the soil dif-

ferences between the experimental fields. These researches assume a priori homogeneity 

of the soil and therefore, they mix the management effects with the soil variability. In ad-

dition, papers applying statistical techniques to reduce the spatial variability (e.g., ran-

domized blocks) produce a smoothing of the results, thus hampering the model calibra-

tion. 

Even if our analysis indicates the No-T system as an interesting approach, the 

farmer’s decision was based on the use of the herbicide glyphosate. Nevertheless, the sci-

entific community has been working for years in developing alternatives to this herbicide, 

based on natural products and improved management techniques. A set of alternative 

techniques to perform CA without glyphosate are already available [68]. Moreover, in 

Europe, where cropping of GMO crops is not allowed, the glyphosate can be used only in 

pre-sowing, when it is easier to replace its use with mechanical weeding, or with very 

shallow tillage, such as disk harrowing. 

4.2. Application of ARMOSA in T and No-T Managements under Two Future Climate-Change 

Scenarios 

The future climate-change scenarios project an increase in temperature and decrease 

in rainfall in the south of Italy [69]. Therefore, finding feasible solutions to carry resilient 

and sustainable agriculture becomes imperative. 

The application of the ARMOSA crop-based model in durum wheat cultivated with 

T and No-T managements forecast higher average yields when the No-T is used in both  

the RCP4.5 and RCP8.5 scenarios. This difference in yield will be 5% higher for the 4.5 

scenario (p > 0.05) and 11% in the 8.5 scenario (p < 0.05) for the 2020–2100 period. The 

bigger and more statistically significant yield difference in the RCP8.5 compared to the 

RCP4.5 could be related to the prediction of higher increase of annual temperature and 

reduction in precipitation in the RCP8.5, as highlighted in previous studies about the 

climate-change effects on wheat yield [20,44,70]. In this way, No-T management may 

become more crucial as the climate forecast becomes more extreme. 

Moreover, similar results on yield difference between soil-management techniques 

have been reported in literature [3,19,71]. In the same line as in our study, Bahri et al. 

(2019) [3] used the APSIM model to predict the effect of T and No-T with residue retention 

on wheat productivity in Tunisia in future climate scenarios. The study concluded that 

No-T with residue retention can increase wheat yield by 15% compared to T under cli-

mate-change conditions. 

Simulations depicted slightly higher yield variability in the No-T compared to the T 

treatment in each of the timeframes analyzed, although the variability experienced in the 

No-T management becomes narrower with time. This finding is consistent with the results 

reported in Bhari et al. (2019) [3], who predicted higher yield instability, and, at the same 

time, higher yield increase in wheat systems cultivated with CA practices than the ones 

with T, which presented more stability of yields, but a yield decrease over time. 

This lower yield variability in the T management may be explained by the fact that T 

is mainly implemented to increase and stabilize crop productivity by homogenizing the 

agroecosystem. T breaks up the soil surface and makes uniform the soil substrates to 

which it is applied, while fields under No-T practices are smoothed and compacted by the 

weather conditions [72]. In this sense, the T management may act as a buffer to the weather 

variability and produce more stable yields. Consequently, these results show how the two 

soil-management techniques respond differently under the same pedological and mete-

orological conditions. 
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Results of the simulations evidenced an increase of about 0.20% year−1 in the evolu-

tion of SOC in the first 30 cm and 3.5% year−1 of N uptake in the durum wheat cultivated 

with No-T. On the other hand, the T management would cause a decrease of 1.33% year−1 

of SOC and lower N uptake of 1.6% year−1 for the 2020–2100 period. This result agrees 

with the outcome of Valkama et al. (2020) [28], whose authors calibrated and validated 

ARMOSA with SOC measurements in three different sites (i.e., South of Finland, South of 

Kazakhstan, and North of Italy) that were cultivated with conventional and CA principles. 

The authors highlighted a decline of SOC in T systems (with an annual range between 

1.17–0.6% year−1) whereas the SOC slightly increased in No-T treatment (0.35–0.45% 

year−1) in field crop systems in the three experimental sites. In addition, the authors 

pointed out the significant role of cover-crop-based farming systems in SOC storage, 

which will increase it with an annual sequestration rate of 0.71–0.95% year−1. 

Moreover, the effects of intensive soil T on the N cycling and N losses through leach-

ing, which may lead to a higher N stress index in wheat-cropping systems, have been 

reported in several studies carried on future climate periods [3,4]. 

The improved water use efficiency of field crops under CA, which can be reflected in 

a higher water-stress index, has been observed previously in the Mediterranean climate 

[3,19,73]. 

Therefore, the T system is not a sustainable management system, judging by the evo-

lution of the SOC content and N leaching in the future period, while on the other hand, 

using the No-T management will enhance the SOC accumulation and prevent N losses. In 

this way, the No-T system with residues on the soil in durum wheat will constitute a 

proper management method to lower the N leaching and to enhance the content of SOC. 

These characteristics enhance to sequestrate atmospheric CO2 emissions, improve soil fer-

tility, and soil water-holding capacity, and thus, as observed previously, will increase crop 

yield [7,28,59]. 

Consequently, cropping systems with enhanced soils characteristics derived from 

No-T management are more resilient to the effects of climate change, as reflected by the 

results of this study. 

5. Conclusions 

The ARMOSA model was effectively calibrated for the durum-wheat crop system 

grown under tillage and no-tillage techniques in the Campania region, using SWC data, 

LAI, and AGB measurements. Estimation errors were small, with RRMSE averaging 

10.67% for SWC at different depths, 26% for LAI, and 16% for AGB simulations. In addi-

tion, the model was further applied for the T and No-T management methods using the 

RCP4.5 and RCP8.5 climate-change scenarios. These simulations depicted the importance 

of implementing No-T management in durum-wheat cultivation to counteract climate 

change. The No-T will maintain higher yields than the T technique, will preserve and im-

prove SOC along the years, and enhance the N uptake, thus diminishing N leaching. 

Therefore, these results suggest the appropriateness of ARMOSA model to quantify 

the effects of different soil-management techniques on soil-crop related variables of du-

rum wheat system under current and future climate. 

Further studies are suggested to include the three principles of CA in the model sim-

ulations—for instance, diverse crop sequences and associations, permanent soil cover, and 

minimum soil disturbance. The potential role of adopting simultaneously these principles 

is crucial to achieve C sequestration, and to improve soil moisture and nutrient availabil-

ity, among other matters. 

However, the most suitable soil-management techniques are site-specific to achieve 

more benefits. In this sense, simulation models such as ARMOSA are important instru-

ments to assist decision-making in a certain context to assess the effectiveness of soil-man-

agement techniques prior to their implementation, also in the view of future climate 

change. 
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