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Abstract – Digging a site, recording the stratigraphic 

units and interpreting the results in order to 

comprehend the historical processes of the site 

formation are part of archaeological excavation work. 

As archaeologists dig, they consider the extension, 

color, texture, hardness, and composition of the soil 

that they are removing. These processes are time-

consuming, and may be affected by human skill. The 

main idea of this work is to automatize stratigraphic 

unit detection and characterization. To this end, a 

Machine Learning algorithm has been applied to 

digital images of archaeologic excavation sites for 

classifying regions that are similar in color and the 

contours of which represent stratigraphic units. Each 

stratigraphic unit has been characterized in terms of 

texture according to the mean energy. This combined 

approach speeds up the documentation work: since 

the results are readily digitalized during an 

excavation, they could offer a prompt guide for 

archaeologists.  

 I. INTRODUCTION 

The long-term buildup of sequential layers of soil 

material due to geological and human activities is 

commonly referred to as stratigraphy. One of the most 

important parts of post-excavation is represented by the 

study of these layers in order to comprehend the historical 

processes of the site formation. In modern archaeology, 

the basic stratigraphic units are defined according to 

lithological criteria: for example color, texture and 

particle characteristics, rather than to the objects that they 

may contain. Since excavations come across different 

layers at various elevations under the surface, the task of 

the archaeologist is to distinguish the layers during an 

excavation. Since layers fade into each other and are 

rarely completely distinct, this task is challenging and 

difficult.  

In general, after a layer has been completely excavated, 

the walls and floor are cleaned and prepared for 

documentation. The archaeologists take photos of both 

the sides and the bottom of the excavation, and sketch 

what they see in the trench. These drawings delineate the 

extent, shape of the features, artifacts, and layers in the 

horizontal plane. This stage is not only considerably time-

consuming and may be affected by human skill, but it 

also complicates the digitalization of the results. In this 

context, any attempts at automatizing the identification of 

stratigraphic units during excavation work is considered 

challenging.  

This work is mainly focused on exploring the 

possibility of an “automated archaeologist” [1] who is 

capable of recognizing the stratigraphic unit from digital 

images during the excavation. The automatization of this 

procedure is strongly motivated by the need for a prompt 

guide for “human archaeologists”: it could simplify the 

drawing step and hence speed up the documentation of 

the excavations.  

The Machine Learning (ML) approach has been 

considered suitable for classifying regions that can be 

considered similar (cluster identification). In general, the 

learning process of human beings is simulated through 

experience (training): ML algorithms enable machines to 

create generalized rules from empirical data and, based 

on rules that have been learned, to make estimates for 

future data. This tool has positively demonstrated its 

potential in Cybersecurity [2], Financial Trading [3], and 

Healthcare [4], as well as in geological mapping [5-7].  

However, to the authors’ knowledge, ML has never 

been used in archaeology. This strongly motivates our 

approach for speeding up stratigraphic unit identification 

by providing digital images of the excavation site. It is for 

this reason that unsupervised learning has been 

considered among the different types of ML tasks. Its 

main aim is to find patterns and relationships within data 

(e.g. pixels in a digital image), and in this case there are 

no training examples. One of the key approaches of 

unsupervised learning is clustering: similar data points 

are grouped together, and these groups differ 

meaningfully one from the other. Here, we have chosen 

the k means algorithm for clustering images of 

archaeological excavation sites into k regions. This 

algorithm attempts to enhance the color similarity and to 

keep the colors separate from one another as far as 

possible. This approach could help archaeologists in 
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identifying stratigraphic unit during an excavation 

campaign; moreover, it would reduce the time spent for 

digitalizing the results. 

The work is organized as follows: Section II describes 

the images considered for color clustering, the k-means 

algorithm, and the texture analysis performed on the 

clusters. Section III describes the experiments performed 

on the images and the results using the k means and 

texture analysis. Lastly, Section IV presents the 

conclusions as well as the future perspective. 

 II. MATERIALS AND METHODS 

 A. Images for color clustering 

In this work, a mockup that simulates an excavation 

site and two actual archaeological sites have been 

considered for color clustering. Texture analysis was also 

used to characterize these clusters in terms of Haralick 

features such as energy.  

The mockup (Fig. 1) was prepared in such a way as to 

simulate excavation sites characterized by different colors 

and textures. A green plastic dustsheet was spread under 

a wooden box; the box was filled with soil (A) and peat 

(B1-B6). On the soil layer (A), a pebble circle was 

introduced so as to simulate the case of a uniform soil 

background in which the anthropic environment is 

characterized by areas with different colors and textures 

(pebbles). Six different areas were prepared on the peat 

background so as to simulate different combinations of 

texture and color. 

Several images were photographed using a digital 

camera placed at different heights from the soil (1, 4, 7 

m), with a 1280x960 resolution. Moreover, the effect of 

different illumination conditions was considered. The 

same photos were taken in the morning and in the 

afternoon: it was observed that the shadows were limited 

in the photos taken in the morning at a height of 4 m, and 

were therefore preferable for the current work. 

Another set of images was taken during two excavation 

campaigns in Italy. On the first site, two stratigraphic 

units were well recognized: one of them was a portion of 

a wall, in the background there were bricks that probably 

came from the collapse of the roof, and the excavation 

limit was also visible. On the second site, the texture of 

the background appeared smoother than on the first site, 

and the stratigraphic unit could be clearly distinguished 

from the different colors. The images of the first and 

second sites were 1100x1120 px and 1368x912 px, 

respectively. 

 B. Archaeological texture 

The surface of an archeological site is generally not 

uniform. It may contain minute variations in color, 

texture, composition and hardness, some of them are of 

tactile and some of visual nature. Archaeological texture 

is considered as surface attributes having visual or tactile 

variety, that may characterize its appearance. 

In image processing, texture describes the amplitude 

patterns and quantifies the spatial arrangement of color or 

intensities in an image or in a selected portion of it.  

One of the most effective tools for quantifying the 

perceived texture of an image is based on the gray-level 

co-occurrence matrix (GLCM, [8]). 

 Fig. 1. Mockup prepared to simulate different excavation 

sites. A) six pebbles have been laid down on an almost 

uniform soil layer. A peat layer has been partially 

covered by: B1) sand and a circle of 8 pebbles, B2) sand 

and a large quantity of gravel, B3) sand and a small 

quantity of gravel, B4) randomly-placed pebbles, B5) a 

large quantity of gravel, B6) a small quantity of gravel. 

 

The elements of the co-occurrence matrix measure the 

number of times different combinations of pixels pairs of 

a specific gray level occur in an image for various 

directions () and different distances (d) [9]. Given an 

M×N neighborhood of an input image with G gray levels, 

let f(m,n) be the intensity at pixel (m,n) of the 

neighborhood; then, the element (i,j) of the GLCM is 

defined as follows: 

 𝑃(𝑖, 𝑗|∆𝑥, ∆𝑦) =
1

(𝑀−∆𝑥)(𝑁−∆𝑦)
∑ ∑ 𝐴𝑀−∆𝑥

𝑚=1
𝑁−∆𝑦
𝑛=1  (1) 

where 

 𝐴 = {
1 if f(m,n)=i and f(m+∆x,n+∆y)=j

0 elsewhere
 (2) 

and 

 𝑑 = √∆𝑥2 + ∆𝑦2 , 𝜃 = 𝑎𝑟𝑐𝑡𝑔
∆𝑦

∆𝑥
. (3) 

In other words, the matrix element P contains the 

second-order statistical probability values for changes 

between gray levels i and j at a particular displacement 

distance d and at a particular angle .  

In this work, 256 gray levels images and 1 as 

displacement were considered. To avoid dependency of 

direction, a normalized symmetrical matrix was 

computed by summing up the four matrices 

=0°,45°,90°,135° and normalized by dividing each entry 
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by the total number of pixel pairs. Hence, the normalized 

co-occurrence values lie between 0 and 1, and this 

enables them to be thought of as probabilities.  

A number of textural features, can be extracted from 

the co-occurrence matrices. In this work, we focused on 

energy defined as follows: 

 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑃𝑖,𝑗.
2

𝑗𝑖  (4) 

It reflects the grayscale distribution homogeneity of 

images and measures the textural uniformity of an image. 

In other words, it supplies information on the randomness 

of the spatial distribution. Energy assumes its highest 

value when gray level distribution has either a periodic or 

a constant pattern. In a homogeneous image, very few 

dominant gray-tone transitions are expected. The 

corresponding co-occurrence matrix has fewer entries of 

larger magnitude, thus resulting in a large value for the 

energy feature. Since this feature is generally useful for 

highlighting geometry and continuity, it has been 

considered for this work [10, 11].  

The size of the neighborhood partly determines the 

success of a texture-based image analysis. If the window 

size is too large, it could overlap different features and 

introduce spatial errors [12]; on the contrary, if it is too 

small, not enough spatial information can be extracted to 

distinguish between different features. In this work, the 

neighborhood area has been chosen with the same aspect 

ratio of the original image. For each neighborhood size 

selected for this work, ten calculations chosen randomly 

from different areas were performed and their mean 

values was considered. The associated errors were 

estimated as maximum deviations.  

 C. K means color clustering algorithm 

The design of algorithms that enable computers to 

develop types of behavior based on empirical data (such 

as from databases or sensors) is commonly referred to as 

ML. It represents a powerful tool for a variety of 

problems, from pattern recognition to the visualization of 

high-dimensional and cluster identification. The aims of 

ML research are to learn automatically to identify valid 

and potentially useful patterns and to make intelligent 

decisions based on data.  

In this work, we have considered unsupervised ML to 

model the hidden structure or distribution in the 

unlabeled data in order to learn more about the data.  

One of the main approaches of unsupervised learning is 

clustering. It assigns a set of inputs into subsets called 

clusters, so that each subset ideally shares some common 

characteristic and is able to place any new input within 

the appropriate cluster. Clustering is therefore suitable for 

the identification of different patterns in data. In image 

processing, it can be used to divide a digital image into 

different regions for border detection or object 

recognition. In particular, it has been applied for different 

purposes in medicine [13-17], biology [18, 19], document 

clustering [20, 21], agriculture [22, 23], geophysics [24, 

25], remote sensing [26, 27], security and crime detection 

[28], marketing and consumer analysis [29, 30], and also 

automatic image annotation [31]. K means is one of the 

simplest unsupervised algorithms that can be used to 

solve a clustering problem in digital images. 

 

Fig. 2. Block diagram of a k means algorithm for color 

clustering. 

 

The procedures used in this work follows a simple and 

fast way to cluster a given dataset through a certain 

number of clusters established a priori. A block diagram 

of the algorithm has been outlined in Fig. 2. For each 

cluster, the main idea is to define a centroid (barycenter) 

in an ingenuous way. As different locations of the 

centroids may cause different results, the best choice is to 

place them far away from each other as much as possible. 

The next step is to consider each point in the dataset and 

to associate it with the nearest centroid. This step is 

concluded and an early groupage is completed when no 

point is pending. New k centroids are then recalculated as 

the barycenters of the k clusters obtained in the previous 

step. The centroids are calculated according to the 

Euclidean distance between the color dimensions and the 

centroids. Once new k centroids have been calculated, a 

new linking has to be established between the same 

dataset and the nearest new centroid (minimum distance). 

The iteration stops when k centroids location no more 

change. 

As described above, clustering is the algorithm that 

enables dataset points to be grouped with some similarity 

along a dimension, while the points that differ from each 

other are kept further apart. In the case of digital images, 

the dimension used is generally color, because the human 

vision system chooses color, rather than shapes and 

texture, as the main discriminant feature.  

In this work, the RGB images of excavation sites have 
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been clustered using k means in such a way that the 

different regions of the image are marked by k colors and 

the boundaries are revealed by separating the different 

regions. The outputs of the algorithm are k images in 

which all the non-zero pixels represent the object in the 

cluster. By assigning an 8-bit number to each pixel in a 

cluster, a composite image (in a false color) is then 

produced: this helps the drawing of the stratigraphic unit 

contour using standard edge-detection techniques. 

 III. RESULTS AND DISCUSSIONS 

One of the main issues of the k means algorithm is the 

number of clusters: an underestimation of the k number 

may result in a poor color clustering and hence a poor 

stratigraphic unit identification. Some preliminary tests 

were performed in order to establish the best number of 

colors.  

In Fig. 3 the color clustering obtained on a portion of 

area A with different k values is shown. The images have 

been presented in matrix fashion: the first row represents 

the initial image (1000x1000 pixel); from the second to 

the fifth rows, the color clustering obtained with k=2, 3, 

4, and 5, respectively. For each row, a gray image that 

represents the composite image has also been inserted 

into the last column. It is interesting to observe the two 

colored images obtained for k=2: the wooden box and 

soil were considered as belonging to the same color 

cluster, and both the plastic dustsheet and the pebbles 

circles, to the other. In the corresponding composite gray 

image, the contour of the wooden box is hardly visible; 

hence, the underestimation of the colors number is 

reflected in a mistaken identification of the contour. This 

also holds true for k=3 and k=4. A suitable number of 

colors for the best clustering is achieved with k=5. In this 

case, the anthropic environment (pebbles) is clearly 

separated from the background (dustsheet and soil); the 

contour of pebbles circle and of the wooden box can thus 

be accurately drawn.  

Once the color clusters have been obtained, it is 

interesting to characterize them in terms of mean texture. 

In particular, the energy (Haralick feature) has been 

calculated with different neighborhood sizes in the 

dustsheet and soil regions. The results are summarized in 

Fig. 4. The curves with lower neighborhood sizes show a 

downward trend, and with higher neighborhood sizes, the 

mean energy values tend to be constant. These values 

could be considered as the mean texture of those colors 

clusters and can be used to characterize the different 

regions and, hence, the stratigraphic unit.  

It is interesting to note that the mean energy of the 

dustsheet is always higher than that of the soil. This 

corresponds to a higher degree of uniformity in the image 

and, therefore, to a smoother texture. 

Analogous tests were performed on the other areas of 

the mockup: for B areas, the best color clustering was 

achieved with k=4. In Fig. 5 the composite images 

obtained for six portions of the B areas with k=4 have 

been reported. The analyzed areas are indicated as in Fig. 

1. 

In the B1 case the color clustering has clearly separated 

the anthropic environment from the background. This 

represents a demanding case for color clustering, because 

there is no strong color difference between sand, gravel 

background, and the pebbles circle as there is in the A 

and B4 areas. 

 

Fig. 3. Color clustering of a portion of area A. The first 

row represents the original image; the color clusters for 

k=2, 3, 4, 5 are presented in rows 2, 3, 4 and 5, 

respectively. Each row ends with a gray image 

(composite) that is calculated by assigning an 8-bit 

number to each color cluster.  

 

 

Fig. 4. Mean energy calculated with different 

neighborhood sizes and the same aspect ratio as in the 

original image (1000x1000). 
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Fig. 5. Color clustering with k=4 of the six portions of 

area B (left) and composites images (right). 

 

Fig. 6. Excavation sites: on the left is the original image 

of site 1 with overlaid contours that were obtained with 

k=5; on the right are the results obtained for the second 

site with k=4 color clustering. 

 

This suggests that the algorithm could be useful also in 

the case in which the main differences are in texture 

rather than in color. In the case of B2, the background is 

fairly uniform (gravel partially covered by a sand layer): 

it shows almost the same texture, but with different 

colors. 

The clustering has pointed out the two areas quite well, 

even if it is not possible to draw a contour. The same 

holds true for the cases B3, B5 and B6, in which different 

combination of peat, gravel and sand were considered for 

the background. 

Moreover, color clustering was also performed on 

images of two excavation sites. Fig. 6 shows the original 

images with, overlaid, the regional contours obtained by 

means of edge-detection. 

The contours obtained highlight two stratigraphic units 

for site 1: a portion of a wall (4) and a region with 

different texture (5) placed between the wall and the 

excavation limit (3). The stone (1) is also identified. This 

is interesting, since the algorithm may spread its 

potentiality to findings that are not actually stratigraphic 

units, but are naturally of interest to archaeologists. The 

contour of site 2 highlights a stratigraphic unit (1) that 

seems to have a coarser texture than that of the 

background (2). 

The color clusters are characterized in terms of texture 

by calculating the corresponding mean energy. As each 

neighborhood area should be included in the color 

clusters, it is not possible to perform a texture analysis 

with larger neighborhood sizes. For this reason, we 

considered for the image of site 1 (1100x1120 pixel) an 

area of 44x45 pixel and for the image of site 2 

(1368x912), an area of 68x46 pixel. These two sites are 

extremely interesting because different combinations of 

texture and colors can be observed.  

The results summarized in Fig. 7 suggest that each 

cluster could be characterized by different texture values 

(mean energy). In site 1, the two stratigraphic units 

(labelled with cluster 4 and cluster 5) have approximately 

the same texture even if they are chromatically different. 

Clusters 3 and 5 seem similar in terms of color, but show 

different textures.  

 

Fig. 7. Mean energy of color clusters of site 1 (left) and 

site 2 (right). 

 

In site 2, clusters 1 and 3 have similar colors and 

textures. This suggests that, when combined with color 

clustering, texture analysis can provide another level of 

information for interpreting and characterizing 

stratigraphic units during an archaeological excavation. 

 IV. CONCLUSIONS 

In this work, images of archaeological excavation sites 

have been analyzed with the use of an unsupervised ML 

algorithm.  

The results obtained with the k means algorithm and 

edge detection represent the first demonstration that 

stratigraphic units can be readily and properly identified. 

Moreover, the textural uniformity calculated in these 

regions by means of energy proves to be useful for 

characterizing stratigraphic unit.  

The combination of ML and texture analysis can 

become a good practice for speeding up the 

documentation work of archaeologists and could open the 

way towards the creation of an “automated 

archaeologist”.  
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