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Abstract. The concept of Lagrangian Coherent Structures (LCS) has been applied
to complex magnetic configurations in plasmas in order to find and characterize their
main structural features. LCS allow us to separate regions inside these configurations
where field lines exhibit a different kind of behaviour. In the present article we apply
this technique to the study of configurations that evolve into a self-organized quasi-
single helicity state referring in particular to results obtained in the reversed-field pinch
experiment in Padua.

1. Introduction

The concept of Lagrangian Coherent Structures (LCS) was introduced in the context
of transport processes in complex fluid flows, see Ref. [1]. In a two-dimensional
configuration LCS correspond to special material lines which organize the flow, see
e.g. Refs. [2, 3]. Ref. [4] highlights the fact that LCS provide a generalization
of the dynamical structures observed in autonomous and periodic systems, such as
invariant manifolds, to temporally aperiodic flows. Analogously to the structures in
Ref. [2], LCS separate the flow domain into macro-regions inside which trajectories
exhibit qualitatively different behaviour over the finite time span which characterize the
LCS.

The LCS technique has been used to describe transport processes in a wide range
of systems, as detailed in the Introduction of Ref. [4]. In particular in Refs. [4, 5] LCS
have been applied to the description of particle transport in magnetized plasmas using
the magnetic field lines as a proxy for the structure of the particle trajectories. In Ref.
[6] LCS have been used to show how applying boundary magnetic perturbations with
different helicities gives rise to transport barriers in a reversed pinch configuration. In
the present paper we investigate what kind of information the use of LCS can provide in
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Coherent magnetic structures in self-organized plasmas 2

the investigation of the magnetic field structure characterizing a self-organized, quasi-
single helicity state in the reversed-field pinch experiment in Padua.

This paper is organized as follows. In Sec.2 the Hamiltonian nature of the magnetic
field line equation and the relationship with the dynamics of one-dimensional non
autonomous dynamical systems are described. In Sec.3 the use of the Poincaré sections
and of the LCS is briefly discussed. In Sec.4 we recall the definition of (hyperbolic)
LCS. This section does no contain new material but is needed in order to make the
present article as self-contained as possible. In Sec.5 we recall the physical context of
the present investigation by referring to the process of self-organization of the magnetic
field configuration in the RFP in Padua. In Sec.6 we describe the numerical procedure
adopted in order to find the LCS and show their structure before and after the plasma
self organization into a quasi-single helicity state. Finally conclusions are drawn in
Sec.7.

2. Magnetic field as a Hamiltonian system

As is well known [7, 8, 9, 10, 11, 12], due to their solenoidal nature, the field lines of
a magnetic field in three-dimensional space that does not vanish within the domain of
interest can be described as trajectories of a non-autonomous Hamiltonian system with
one degree of freedom. The role of time is played by a spatial coordinate taken to label
the points along a field line.

The equivalence between the magnetic field lines and the trajectories of non-
autonomous Hamiltonian systems with one degree of freedom has been widely used
in the literature by adopting the concepts that are proper of dynamical systems, see in
particular Refs. [7, 13, 14].

For the reversed-field pinch configuration considered in Sec.5 a convenient
Hamiltonian representation can be obtained by using the so-called “Boozer” coordinates,
given by (ψt, θ, ζ) with ψt the toroidal flux (i.e. the flux of the magnetic field at constant
toroidal angle ζ), θ the poloidal angle and ψp the poloidal flux:

B = ∇ψt ×∇θ −∇ψp ×∇ζ. (1)

From the definition of magnetic field lines we obtain two equations in Hamiltonian
form

dθ
dζ

=
B · ∇θ
B · ∇ζ

=
∂ψp
∂ψt

, (2)

dψt
dζ

=
B · ∇ψt

B · ∇ζ
= −∂ψp

∂θ
, (3)

with ψp(ψt, θ, ζ) the Hamiltonian, ψt the canonical momentum, θ the canonical
coordinate, and ζ the “time”. The choice of ζ as the time variable has been made
in analogy to the one made in Refs. [4, 5] in order to allow for a direct comparison. We
recall however that in the case of a reversed-field pinch configuration this choice is only
possible for r < rrev, i.e., in the region inside the radius rrev where the toroidal field
reverses.
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3. Poincaré sections and Lagrangian Coherent Structures in
non-autonomous dynamical systems with one degree of freedom

Non-autonomous periodic systems with one degree of freedom can be conveniently
studied by means of the Poincaré section (stroboscopic map) method which makes it
possible to reduce the dimensionality of the problem, see e.g. Refs. [15, 16, 17] and
to reveal whether the motion of initial conditions is regular or chaotic. Furthermore,
invariant manifolds of the map can be used to partition phase space into regions where
trajectories have a qualitatively different behaviour on a given time-scale, e.g. bounded
or unbounded [18, 19, 20]. These structures play a fundamental role in governing
transport processes in non-autonomous dynamical systems and, in particular, they
determine the so-called lobe dynamics [21, 22, 23, 24]. Hyperbolic LCS instead, provide
a different technique, based on the definition and identification of material lines that
are characterized by their property of maximally attracting or repelling nearby material
lines, which allows us to generalize these concepts to the study of dynamical systems
defined over a finite amount of time without requiring their periodicity. This property
of the LCS was exploited in Refs. [4, 5] in order to study the transport of particle in a
magnetic configuration evolving in physical time and to ascertain how the appropriately
defined LCS depend on the particle velocity.

As indicated by the field line equations (2,3), here we consider magnetic
configurations that are periodic along the angle ζ that plays the role of the time.
Although the Poincaré map can be used to study the system, the LCS technique makes
it possible to further partition the regions characterized by chaotic trajectories into
sub-domains where initial conditions have a qualitatively different behaviour on the
time intervals which characterize the LCS. Therefore the calculation of the invariant
manifolds is not required. We recall that as the time interval that defines the LCS
increases these structures converge to the invariant manifolds mentioned above, see Ref.
[2], and acquire their typical features.

4. Lagrangian Coherent Structures (LCS)

In this section we recall the definition of LCS that apply to a dynamical system (not
necessarily Hamiltonian) in a 2D phase space x with continuous differentiable flow map

φtt0(x0) = x(t, t0,x0). (4)

Two neighbouring points x0 and x0 + δx0 evolve into the points x and x + δx under
the linearized map

δx = ∇φtt0 δx0. (5)

Given a curve γ0 = {x0 = r(s)} at each point x0 ∈ γ0 we define the unit tangent vector
e0 and the normal vector n0. In the time interval [t0, t] the dynamics of the system
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advects the material line γ0 into γt and x0 ∈ γ0 into xt ∈ γt. The linearized dynamics
maps the tangent vector e0 into et which is tangent to γt and is given by

et =
∇φtt0(x0) e0

[e0Ct
t0(x0) e0]1/2

, (6)

where Ct
t0

(x0) ≡
(
∇φtt0

)T ∇φtt0 is the Cauchy-Green strain tensor and T stands for
transposed. This symmetric tensor describes the deformation of an arbitrarily small
circle of initial conditions, centred in x0 caused by the flow in a time interval [t0, t]. Let
ξmax and ξmin be the two eigenvectors of Ct

t0
(x0) corresponding to the real and positive

eigenvalues λmax and λmin. In the case of a Hamiltonian system phase space conservation
implies that λmin λmax = 1. The curves with tangent vector along ξmin and, respectively,
ξmax are called strain lines of the Cauchy-Green tensor. In general the mapping does not
preserve the angle between vectors and therefore usually the normal vector nt differs
from ∇φtt0n0. Using the orthogonality condition n0 · e0 = n0∇φt0t ∇φtt0e0 = 0 and
inserting Eq. (6) we obtain the expression for nt which is given by

nt =

(
∇φt0t

)T
n0

[n0C−1(x0)n0]1/2
, (7)

where C−1(x0) = Ct0
t (x0) and the time interval marks have been suppressed as will be

the case in the following formulae when not explicitly needed.
We define the repulsion ratio ρtt0(x0,n0) as the ratio at which material points, in

other words points advected by the flow, initially taken near the point x0 ∈ γ0, increase
their distance from the curve in the time interval [to, t]:

ρtt0(x0,n0) = nt∇φtt0(x0)n0. (8)

Using the previous definitions, ρtt0(x0, n0) can be expressed either in terms of n0 or of
nt as

ρtt0(x0, n0) = [n0C
−1(x0)n0]

−1/2 = [ntC(x0)nt]
1/2. (9)

Similarly, the contraction rate Ltt0(x0) is proportional to the growth in time of the vector
tangent to the material line

L(x0, e0) = [e0C(x0) e0]
1/2. (10)

4.1. LCS as maximal repulsion-attraction material lines

Here we adopt the definition of a Hyperbolic LCS as given in Ref. [3]. An LCS over
a finite time interval [t0, t0 + T ] is defined as a line along which the repulsion rate is
pointwise maximal. This leads, as shown in Refs. [3, 14], to the following definitions.
A line satisfying the following conditions at each point:

a) λmin < λmax, λmax > 1, (11)

b) e0 = ξmin (12)
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the tangent vector is along the eigenvector associated with the smallest eigenvalue,

c) ξmax ·∇λmax = 0 (13)

the gradient of the largest eigenvalue is along the curve, is called a repulsive Weak
Lagrangian Coherent Structure (WLCS).
A WLCS which satisfies at each point the additional condition

ξmax ·∇2λmax · ξmax < 0 (14)

is called a repulsive Lagrangian coherent structure. Attractive LCS are defined as
repulsive LCS of the backward time dynamics.

5. Self-organized reversed-field pinch configurations

The self-organization process into a global magnetic helical structure has been shown to
be a characteristic feature of the plasma dynamics in reversed-field pinches (RFP). This
was shown first within 3D nonlinear magnetofluid numerical simulations [25], and it was
then observed in high current RFP experiments [26, 27]. This self-organization process is
identified with the nonlinear saturation of a single MHD instability [28] which breaks the
toroidal axisymmetry, forces the magnetic field lines to wind around a single helical axis
and impose a quasi-2D symmetry. This phenomenon allows the chaos, naturally induced
by the overlapping of the various magnetic islands associated with the secondary MHD
instabilities, to be healed. This brings beneficial effects in terms of increased plasma
temperature in the helical core of the plasma, measured in experiments [29].
In Sec.6.2 and 6.3 we will compute the LCS using data obtained from numerical
simulations describing the establishment of a helical symmetry. In the present section
we recall the numerical MHD model through which these data are obtained and then
describe the structure of LCS in two important moments of the plasma evolution: shortly
before and soon after the establishment of the helical symmetry.

5.1. MHD model

The following set of dimensionless visco-resistive MHD equations [25, 30]
∂v

∂t
+ v · ∇v = J ×B + ν∇2v, (15)

∂B

∂t
= ∇× (v ×B − ηJ), (16)

∇×B = J , ∇ ·B = 0, (17)

is solved numerically in cylindrical geometry. Here v represent the velocity field, B is
the magnetic field and J is the current density. The dimensionless plasma resistivity is
denoted by η, while ν indicates the plasma viscosity. Although the plasma pressure is
neglected, this model has been shown in Ref. [31] to capture the major physical effects
observed in RFP’s. In addition it predicted alternative helical magnetic configurations,
then observed in the RFX-mod experiment in Padua, that can be obtained by helically
modulating the boundary conditions of the radial component of the magnetic field [32, 6].
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Coherent magnetic structures in self-organized plasmas 6

5.2. Numerical setup

Equations (15-17) are solved in a cylindrical geometry (r, θ, z) with aspect ratio
R0/a = 4, where a = 1 is the cylinder radius and 2πR0 the periodicity of the cylinder
in the axial direction. Resistivity increases towards the edge while viscosity is uniform.
The magnetic Lundquist number S = τR/τA = 3 × 104, while the viscous Lundquist
number, M = τν/τA = 3 × 101, here τA is the Alfvén time and τR, τν are the resistive
and viscous time scales respectively. The boundary conditions are no-slip for the velocity
field (i.e. vθ(a) = vz(a) = 0) and ideal wall for the magnetic field (i.e. Br(a) = 0). The
equations are Fourier-transformed in the poloidal and in the axial directions with m for
the poloidal number and n the axial number.

5.3. Magnetic field dynamics

The numerical simulation is initiated from an axis-symmetric, unstable equilibrium,
with pinch parameter Θ = Bθ(a)/〈Bz〉 = 1.6, that is slightly perturbed. In a first stage,
around t = 600 τA (first vertical blue line in Fig.1), only two relevant MHD modes are
present, corresponding to those with the highest growth rate. The largest one hasm = 1

and n = 9, meaning that it creates a structure of islands winding nine times around
the axis of the cylinder. The other mode has m = 1 and n = 10. Despite their small
amplitude at t = 600 τA, the magnetic islands associated to the modes interact and a
macroscopic chaotic region appears between them (see Fig.2).
As the plasma dynamics evolves, the islands grow increasing the region characterized
by chaotic magnetic field lines. At t = 750 τA (second vertical blue line in Fig.1), the
amplitude of the m = 1, n = 9 mode becomes so large that the effect of secondary
perturbations is negligible and the mode can impress its helical symmetry to the whole
configuration.
After t = 790 τA, chaos is strongly reduced in the whole domain, as the m = 1, n = 9

mode remains the dominant one, as can be seen in Fig.4 and 5. Interestingly, though
the intensity of the secondary perturbations to the helical state continues to increase
after t = 750 τA (see red line in Fig.1), a magnetic chaos healing process occurs despite
the presence of remnant spurious modes, contrary to a naïve application of Chirikov
criterion [33] reading “the larger the amplitudes and the number of Fourier components,
the more chaotic the dynamics”. A more detailed description of this simulation can be
found in Ref. [34].

6. LCS in the self organizing RFP configuration

lIn this section we apply the definition of the LCS given in Secs.4 and 4.1 to the
snapshots, taken at t = 600 τA and at t = 750 τA of the evolving RFP magnetic
configuration as illustrated in Fig. 1. First we describe the numerical algorithm used
and then we discuss the effects of the transition to the quasi single helicity state on the
LCS.
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Coherent magnetic structures in self-organized plasmas 7

Figure 1: Temporal evolution of the axial component of the magnetic field associated
with the dominant mode at the plasma edge (continuous black line). Temporal evolution
of the m = 1 secondary modes is plotted with a red line. The first two blue vertical
lines indicate the time of the two snapshots used in the calculation of the Lagrangian
Coherent Structures, shown in Fig.2 and 4 respectively before and after the formation
of the quasi-helical state. The third vertical blue line at t = 1000 τA describe a snapshot
in which the chaos healing process is completed.

6.1. Algorithm description

In order to compute the LCS, the numerical algorithm requires a grid of initial conditions
and the evolution of such initial conditions under the action of a vector field for a time
span T . These data are then used to compute the gradient of the flow map φTt0 in
Eq.(4). Once this matrix is obtained, it is straightforward to compute the Cauchy-
Green tensor defined below Eq.(6) and its eigenvalues (λmin, λmax) and eigenvectors
(ξmin, ξmax) (additional details on the computation of the Cauchy-Green tensor in a
general curvilinear geometry are given in the Appendix). Finally, it is possible to
construct curves that follow the eigenvectors and to evaluate whether they are or not
Lagrangian Coherent Structures by inspecting the validity of the conditions given in
Sec.4.1. However, trying to compute the LCS over the whole domain is numerically too
demanding. As shown in Ref. [35], a convenient strategy is based on the calculation of
the local maxima of the Finite Time Lyapunov Exponents (FTLE) field σ, defined as

σ(x0, t0, t) =
1

2|t− t0|
lnλmax(x0, t0, t) (18)

and the use of the points where the local maxima of the FTLE field are located as the
starting points for the integration along the eigenvectors.
The integration of Eq.(12), with initial conditions given by previously selected maxima
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Coherent magnetic structures in self-organized plasmas 8

of the FTLE field, is performed by using a fourth order Runge-Kutta method.
After the integration, we check whether the curves we have obtained satisfy Eqs.(13,
14). Eq.(13) is the most delicate to verify because most Lagrangian Coherent Structures
lie along the ridges of the FTLE field (18) where the gradients of the FTLE field are
difficult to compute numerically. Therefore we relax this condition and, instead of
ξmax ·∇λmax = 0 we impose ξmin ×∇λmax = 0. These two conditions are equivalent
since the eigenvectors of the Cauchy-Green tensor are orthogonal. Actually at each
point ri along the integrated curve we require that || ξmin(ri) ×∇λmax ||≤ T where
T is an acceptance threshold. If a point does not fulfil this condition we explore the
neighbouring grid points to check whether we are indeed very close to a ridge where
the quantity ∇λ may change suddenly direction. The above procedure allows us to find
Weak Lagrangian Coherent structures, as defined below Eq.(12). We can further restrict
the search of the LCS by applying the condition given by Eq.(14) which ensures that
the selected curve is the most repelling material line among neighbouring material lines
(for additional details see Ref. [14]).

6.2. LCS before the formation of the quasi-helical state

An investigation of the structure of the magnetic configuration at t = 600 τA ,before the
formation of the quasi-helical state, has been already presented in Ref. [36] in terms of
a different definition of LCS (see Ref. [37]) based on the so called “second derivative
ridges” of the FTLE field in Eq.(18). For a discussion of the difference between the two
definitions, and of the shortcomings of the definition in terms of the ridges of the FTLE
field, see e.g. Sec.V-B of Ref. [4]. As a difference from the case shown in Ref. [36] we
adopt the definition of the LCS given in Sec. 4 and compute them with the algorithm,
described above in Sec. 6.1 and analysing the differences in the results. To do so, first we
consider the Poincaré map and the LCS for the magnetic configuration corresponding to
the snapshot at t = 600 τA, Fig.2. We observe that the LCS structures in Fig.2 emanate
from hyperbolic points: some of them surround the magnetic islands, separating the
chaotic region from a regular one, while others are found in the chaotic region of the
magnetic field. We focus on these ones, and show, in Fig.3, that they provide a sharp
division between a series of separate regions that cannot be easily located by inspecting
the Poincaré plot. In the figure we show that magnetic field lines starting at the opposite
sides of an LCS remain separated, at least for a finite time τ̄ (here corresponding to
∼ 100 toroidal turns), which is much longer than the dynamical scale (measured by
the Alfvèn time, τ̄ / τA ∼ 103) and longer than the collisional time scales (measured by
the electron-ion collision time τ̄ / τei ∼ 101). Thus LCS mark in a clear way barriers
to the transport of magnetic field lines. The results shown here and in Refs. [36, 6]
indicate that Lagrangian Coherent Structures may provide a good candidate to explain
the formation of electron internal transport barriers observed in the reversed-field pinch
experiment in Padua (RFX-mod device) [38, 32, 29].
We note here that in Fig.2 and 3 we plotted, for graphical simplicity, only repulsive
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Coherent magnetic structures in self-organized plasmas 9

Figure 2: Poincaré map and LCS of the magnetic configuration corresponding to the
snapshot taken at t = 600 τA, i.e. before the formation of the quasi-helical state. LCS
are overplotted in blue. In this picture we show only the relevant radial region around
the m = 1, n = 9 helical core (at r = 0.26 a, θ = 0), where a weakly chaotic magnetic
field il present.

LCS, while the attractive ones, which have a similar structure, are not shown. A
comparison with the results published in Ref. [36] shows that the two methods
individuate coherent structures with different precision. The algorithm described in
Sec.6.1 detects more continuous structures due to the fact that LCS are here integrated
following the eigenvector field, defined in the whole space by Eq.(12), while in the
previous work coherent structures were computed as second derivative ridges of the
Finite Time Lyapunov Exponents field defined in Eq.(18), which could not always be
found in a continuous manner. Furthermore, a comparison between Fig.7 in Ref. [36]
and Fig.2 shows that the new algorithm can detect finer LCS. With the new algorithm we
can also observe the LCS associated with the separatrix of the dominant m = 1, n = 9

magnetic island: in particular the one near r = 0.21 a, θ ∼ 5/4π in Fig.2 shows the
typical lobe structure [39, 40].
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Coherent magnetic structures in self-organized plasmas 10

Figure 3: Evidence that LCS divide the space in separated regions. Initial conditions
blue dots separated by a LCS remain separated for a finite amount of time.

6.3. LCS after the formation of the quasi-helical state

In Fig.4 we consider the magnetic field configuration at t = 750 τA, right after the
formation of the helical state i.e. after the O-point of the magnetic island associated to
the m = 1, n = 9 mode (at r = 0.26 a, θ = 0 in Fig.2) becomes the main O-point of the
helical state. At this time there are no hyperbolic LCS in the region π/2 < θ < 3π/2,
while residual LCS are present only in the chaotic region surrounding the O-point (at
r = 0.5a, θ = 0) of the new helical structure which is responsible for the healing of
magnetic chaos shown at t = 600 τA in Fig.2.

Obviously, in the region where the Poincaré map exhibits a regular behaviour there
is no need to compute the LCS. At t = 750 τA the pattern is very different since the
separatrix of the dominant mode disappears into the new global helical state, a major
topological change linked, in the experiments, to beneficial transport properties [29].
At t = 1000 τA the process of magnetic chaos healing is complete, as can be seen
observing the Poincaré plot in Fig.5, characterized by the presence of well conserved
magnetic flux surfaces that can be simply described in terms a one-dimensional helical
flux function χ. The helical flux function can be defined by the equation B · ∇χ = 0.
For the magnetic field here analysed, characterized by a h = n/m = 9 helical symmetry
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Coherent magnetic structures in self-organized plasmas 11

Figure 4: Poincaré map and LCS of the magnetic configuration corresponding to the
snapshot taken at t = 750 τA, i.e. after the formation of the quasi-helical state. One can
notice that the O-point of the magnetic island, located at r = 0.26 a in Fig.2, now is
the only O-point in the whole domain (helical self-organization). LCS are overplotted
in blue. In this picture we show a wider radial region than in the plot of Fig.2, because
the helical region occupies a larger plasma volume.

in cylindrical geometry we find:

χ(r, θ, z) = A0,0
z (r) +

h

R0

A0,0
θ (r)

+
∑
m

(
Am,hmz (r) +

h

R0

Am,hmθ (r)
)
ei(mθ+hz/R0), (19)

with A the vector potential associated the the magnetic field by B = ∇×A (we choose
Ar = 0 as a gauge). Constant χ surfaces, coloured in green in Fig.5, describe correctly
the Poincarè plot of the helically symmetric field (in grey).

7. Conclusions

Lagrangian Coherent Structures (LCS) represent a very convenient tool that makes it
possible to identify within a complex magnetic configuration macro-regions distinguished
by a qualitatively different behaviour of the magnetic field lines.
References [4, 5] have shown in detail how to apply this technique to the study of
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Figure 5: Poincaré map (in grey) of the magnetic configuration corresponding to the
snapshot taken at t = 1000 τA, i.e. well after of the quasi-helical state. An LCS
computation is not relevant in this case, because the helically symmetric magnetic field
can be described in a simpler way by the helical flux function χ, defined in Eq.(19). The
the constant χ surfaces are plotted in green.

the growing level of chaoticity in a magnetic configuration with two partly overlapping
island chains as the reconnection process proceeds, and have related this process to the
modification of the transport of the plasma particles.
In the present article LCS have been applied to a reversed-field pinch configuration that
undergoes a process of self-organization and reduction of magnetic chaoticity due to the
establishment of a quasi-single helicity state. Following these results and the ones in
Ref. [6] we can speculate that LCS correctly describe the structures sustaining the high
gradients observed in electron temperature profiles in RFP machines.
Finally, we observe that the role of the LCS in mirroring the changes brought to
the plasma dynamics by the magnetic field self-organization into a quasi-helical state,
described in the present article, shows that this tool may provide important insight into
the transition of a wide range of physical systems from a chaotic to a self-organized state:
in fact the process of emergence of self-organized features, representing an essential
feature of complex systems, occurs in different physical systems, as exemplified for fluids
by the Bénard rolls [41] formed in the presence of thermal convection or by the vortex
crystals [42] in systems described by two dimensional Euler equation.
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In particular, the formation of transport barriers and improved confinement regimes
in fusion plasmas is common to the three fusion configurations tokamak, stellarator,
and reversed-field pinch, and several aspects still await satisfactory explanation. By
further improving LCS concept application to the different situations, we believe that the
technique here reviewed could contribute to a fundamental understanding of transport
mechanism in fusion plasmas.

Appendix

We compute the gradient of the flow map φ = φiei in a general geometry, with
coordinates ui and eiand ei the contravariant and covariant basis vectors, in the tensor
form

∂

∂ui
{
φjej

}
⊗ ei = Ak` eke

` = Ak` êkê`, (20)

where summation over repeated indices is understood and in the last equality the unitary
basis vectors êi = ei/‖ei‖ and êi = ei/‖ei‖ have been used. Writing the transpose of A
as AT = Bmk êmêk, the Cauchy-Green tensor becomes

Cmj êmê
j = BmkAkj êmêj. (21)

Then we specialize Eq.(20) to a cylindrical geometry which is the one used in the
Specyl and NEMATO numerical runs reported in Sec.5.2 and compute the eigenvectors
of the Cauchy-Green tensor as ξ = ξrêr + ξθêθ (we recall that in cylindrical geometry
êi = êi). Finally, we solve the differential equation

dl/ds = ξ(r), → dr/ds = ξr, dθ/ds = ξθ/r (22)

in a logical grid built as (r, θ) → (xidx, yidx), where r = r0 + ∆r xidx, θ = θ0 + ∆θ yidx
and ∆r = 1/Nr, ∆θ = 2π/Nθ with Nθ, and Nr the number of mesh points inside the
simulation domain 0 ≤ θ ≤ 2π and 0.20 ≤ r/a ≤ 0.45. In the case of the LCS in Fig.2
we took Nθ = 8400, and Nr = 4096.
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