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Abstract: The advent of Industry 4.0 necessitates substantial interaction between humans and
machines, presenting new challenges when it comes to evaluating the stress levels of workers who
operate in increasingly intricate work environments. Undoubtedly, work-related stress exerts a
significant influence on individuals’ overall stress levels, leading to enduring health issues and
adverse impacts on their quality of life. Although psychological questionnaires have traditionally
been employed to assess stress, they lack the capability to monitor stress levels in real-time or on an
ongoing basis, thus making it arduous to identify the causes and demanding aspects of work. To
surmount this limitation, an effective solution lies in the analysis of physiological signals that can
be continuously measured through wearable or ambient sensors. Previous studies in this field have
mainly focused on stress assessment through intrusive wearable systems susceptible to noise and
artifacts that degrade performance. One of our recently published papers presented a wearable and
ambient hardware-software platform that is minimally intrusive, able to detect human stress without
hindering normal work activities, and slightly susceptible to artifacts due to movements. A limitation
of this system is its not very high performance in terms of the accuracy of detecting multiple stress
levels; therefore, in this work, the focus was on improving the software performance of the platform,
using a deep learning approach. To this purpose, three neural networks were implemented, and
the best performance was achieved by the 1D-convolutional neural network with an accuracy of
95.38% for the identification of two levels of stress, which is a significant improvement over those
obtained previously.

Keywords: stress detection; smart systems; deep learning; workers’ health; sensors

1. Introduction

Industry 4.0 implies a substantial change in production processes and worker roles,
demanding the integration of human operators into new production paradigms in a socially
sustainable manner [1]. Automation is relieving workers of physical efforts, but it intro-
duces mentally demanding tasks as part of their increased responsibilities. This transition
is particularly challenging for older workers who must adapt to the new environment,
resulting in increased stressors and mental health risks [2]. Work-related stress significantly
contributes to individuals’ overall stress levels, resulting in long-term health problems and
detrimental effects on quality of life, corporate entities, and national economies. Even if
psychological questionnaires have been commonly used to assess stress, they lack real-time
or continuous monitoring capabilities, making it difficult to identify causes and challenging
work activities. Moreover, a discrepancy often exists between self-reported stress and mea-
sured stress [3]. To address this, analyzing physiological signals such as skin temperature,
breathing rate, blink detection, and the human voice can provide an efficient solution. A
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systematic review of the literature shows how a multimodal approach is preferable [4].
These physiological signals can be continuously measured using wearable or ambient sen-
sors. While ambient sensor-based monitoring technologies are less obtrusive, they require
a complex environmental design for reliable data. In recent years, there has been a rise in
minimally intrusive wearable sensors, allowing for the monitoring of health indicators and
the proactive prevention of hazardous incidents [5,6]. However, challenges related to the
stability and accuracy of acquired signals must be addressed for effective use in real-world
settings [7].

Wearable devices for monitoring vital signs have been developed, with cardiac and
electrodermal activity analysis showing promise in assessing physical and cognitive
stress [8,9]. Cardiac activity (CA) can be assessed using electrocardiography (ECG) or
plethysmography (PPG). ECG provides accurate measurements but is limited to the chest
area, making it suitable only for chest straps or patches. In contrast, PPG—although less
accurate due to motion artifacts—is less intrusive and versatile as it can be applied to dif-
ferent body points and requires only a single point of contact with the skin. Electrodermal
activity (EDA) measurements assess the electrical characteristics of the skin between two
points using various types of electrodes. Textile and metal electrodes are more comfortable
but are prone to noise and artifacts, while pre-gelled electrodes offer better stability and
lower impedance.

To effectively monitor stress, wearable devices should be comfortable, non-interfering,
allow real-time data access, and provide accurate measurements. Several devices meeting
these criteria are available, but only a few can measure both CA and EDA. Monitoring
points commonly used for EDA and CA assessment are fingers, chest, and wrist. However,
these locations may not be ideal for long-term stress assessment in the work environment
due to movement and intrusiveness. The wrist is subject to continuous movement, finger
monitoring is intrusive, and the chest may not be optimal for EDA signal assessment.

To overcome these limitations, in our previous work, a sensorized garment was de-
veloped to concurrently monitor CA and EDA signals [10]. The sensors were strategically
positioned on the body to obtain a good performance in terms of signals acquisition, mini-
mizing the impact of movements and ensuring uninterrupted work activity. Leveraging
these insights, the shoulder and earlobe were identified as the optimal measurement points
for EDA and CA, respectively. The goal was to create a minimally intrusive wearable
system that fulfills user comfort, real-time data access, and high accuracy requirements for
reliable stress detection.

In addition, an ambient sensor was added to make the acquisition platform more
stable and effective. Indeed, camera-based systems have shown effectiveness in terms of
detecting stress and can be readily available in the workplace. They offer a low-cost solution
without requiring daily user intervention. These “non-wearable sensors” measure specific
parameters or features for stress evaluation from a distance without physical contact. They
can be classified into physical and vision-based measures. Physical measurements involve
capturing observable parameters of the human body, such as eye activity (including pupil
dilation), human speech, and body postures [11–13]; whereas vision-based measures use
imaging techniques to assess the stress level of an individual, and they can be further
classified into thermal infrared (IR) imaging and computer vision-based techniques [14,15].

In terms of software, many stress detection platforms in the literature use machine
learning (ML) techniques for assessing psychophysical stress, monitoring, above all, the
wrist, chest and fingers. These studies mainly employ several supervised classifiers and
monitor multiple parameters. Supervised ML schemes, particularly the K-nearest neighbor
classifier, have shown the best performance with an accuracy of approximately 96% [16–24].
Although these approaches require a complex training phase and have the limitation of
using labeled datasets of simulated events [25], they still exhibit a higher performance
than the unsupervised systems described in the literature, which have an accuracy of less
than 80% [26–28]. Additionally, most papers evaluate stress and no-stress conditions, with
only a few considering multiple stress levels. By developing methods to detect multiple
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stress levels objectively, researchers and healthcare professionals can gain a more accurate
understanding of an individual’s stress response. This can enable earlier intervention and
personalized treatment plans.

In our previous work [10], from a software perspective, both supervised and unsuper-
vised approaches were used, with accuracy performances of 94.9% for the former and up
to 77.4% for the latter. For detecting multiple levels of stress, the best results were achieved
through the supervised approach, with accuracy values of approximately 91%. Given its
relevance, the main objective of this work was to improve this value. To achieve this, the
following three deep learning (DL) algorithms were used and tested: one-dimensional
convolutional neural network (1D-CNN), long short-term memory (LSTM), and gated
recurrent unit (GRU). To perform the comparison between the algorithmic methods, the
testing was conducted using the same dataset created in [10].

2. Data Acquisition

In this experimental study, 20 volunteer participants (9 males and 11 females), with
an age range of 24 to 38 (mean age = 29.1 years), were recruited from the university.
The stress induction procedure was explained in our previous work [10], in which the
developed and tested multi-sensor platform was described. It is composed of a wearable
and an ambient system. The wearable one is designed to detect heartbeat and EDA in the
least intrusive way possible and consists of a shoulder strap equipped with an electronic
device. Although wearable devices are the most commonly used method with which to
collect physiological data, some studies have highlighted significant measurement errors
attributed to the poor placement of the device or rapid movements by the user [29]. To
mitigate physical discomfort and enhance the user experience, optimal points on the body
(shoulder and earlobe) have been identified for physiological parameter acquisition. The
key factors considered include suitable locations for reliable and clear signals, no restriction
of the user’s movements or impediment of work activities, no discomfort during prolonged
use, less susceptibility to motion artifacts, stability during data collection, and ease of
sensor placement. It is important to note that the emphasis was on sensor placement rather
than on belts, the wearability of which can be significantly improved. In addition, to make
the acquisition platform more robust and reliable, a low-cost and readily available vision
device (Camera RGB) was added for the assessment of eye blinks. Figure 1 shows a picture
of the acquisition setup implemented for the data collection phase.

Prior to the test, the room setup was prepared, personal data were collected, and
participants were informed about the study. They were asked to read and sign a consent
form, turn off their phones, and wear the smart device.

The study involved four tasks aimed at inducing stress, with physiological data
recorded throughout the test. Rest periods of 2 min were included between tasks, during
which participants were exposed to relaxing stimuli such as classical music and slow-
scrolling panoramic images [30]. The experimental procedure is described in Table 1.

Task 1, the Trier Social Stress Test (TSST) [31], involves a five-minute job interview
presentation followed by a mental arithmetic task, where the participant is asked to count
backward from 3895 in steps of 13. Task 2, the Stroop Color-Word Test (SCWT) [32], is
a well-established stress induction test that measures the interference between color and
word information, demonstrating the difficulty of naming colors when they conflict with
word meanings. Specifically, the participant is asked to say the number associated with the
color of the ink with which the color words are written. Task 3, the Math test, based on the
Montreal Imaging Stress Task (MIST) [33], involves solving arithmetic challenges with a
countdown timer, which increases the induced stress. Task 4, the Memory test, requires
memorizing a 6 × 6 matrix of numbers and recreating the sequence with minimum tries.
Judges monitored the participants’ performance, correcting mistakes by pressing a buzzer.
At the end of the test, participants rated their perceived stress levels in each task on a scale
of 0 (no stress) to 5 (maximum stress).
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Figure 1. Hardware platform consisting of ambient and wearable sensors.

Table 1. Procedure of stress induction.

Task Procedure Time

Baseline 2 min
1 Trier Social Stress Test 5 min

Mental Arithmetic Stress Test 5 min
Rest 2 min

2 Stroop Color Word Inference Test 1 min
Rest 2 min

3 Math Test 1 min
Rest 2 min

4 Memory Test 2 min
Rest 2 min

3. Software Framework

The software architecture developed for stress assessment includes the main steps
shown in Figure 2, implemented in the Python programming language. The used features
are the same as those used in the work [10], while the main focus will be on the classification
phase, since a different methodology was considered.

3.1. Preprocessing

The primary aim of the data preprocessing phase is to minimize background electrical
interference and artifacts caused by device movements. Appropriate software techniques
were employed for each sensor to address this issue. In the case of the EDA signal, filtering
and smoothing methods were applied to remove noise and disturbances. Specifically, a
fourth-order Butterworth filter with a cutoff frequency of 5 Hz was utilized. Additionally,
the input signal was convolved with a filter kernel to generate a smoothed signal. Moreover,
to reduce the impact of motion artifacts and prevent inaccurate measurements, the tech-
nique described in [34] was adopted. Moreover, the EDA signal comprises two components:
phasic and tonic. The phasic component represents the rapid response of skin conductance
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to a stimulus and is measured over a short period, often event-related. Therefore, the pha-
sic component was extracted using a Butterworth bandpass filter with cutoff frequencies
ranging from 0.16 Hz to 2 Hz. To address noise and artifacts in the PPG signal for cardiac
activity analysis, the Python HeartPy library (ver. 1.2.7) [35] was employed. This library
incorporates an adaptive threshold for peak detection, which adjusts to changes in PPG
waveforms. Heartbeats are identified by calculating a moving average using a window
of 0.75 s on both sides of each data point. To mitigate errors arising from motion artifacts
and variable PPG waveform morphology, the threshold of the sequence of peak-to-peak
intervals is considered. Then, a calibration procedure was implemented to ensure accurate
data management and reduce detection errors caused by psychophysical variations among
different users. The procedure involved measuring and recording the vital signals of in-
terest while the user was in a resting state. The baseline of the EDA and PPG signals was
determined by averaging the data acquired for 30 s during the initial phase of each data
collection trial, where no external stimuli were applied.

Figure 2. Framework software of the stress detection platform.

Finally, a preprocessing stage was devised and implemented for the ambient sensor.
The initial step involved detecting the human face in the captured image. In our proposed
pipeline, we employed the Mediapipe library (ver. 0.8.10) [36]. This library provides real-
time estimation of 468 3D face landmarks, encompassing various facial regions. Reference
landmarks representing the left and right eyes were used to identify these areas. Each
eye was characterized by 16 landmarks that accurately traced its contour. From these
landmarks, we extracted pairs that exhibited greater horizontal and vertical distances,
allowing us to determine axes in those directions. Finally, the ratio, which signifies the
width of the eye’s aperture, was computed by dividing the lengths of the two obtained axes.

3.2. Feature Extraction and Selection

To extract and select features, attention was paid to multiple features in the time and
frequency domains. These features, commonly used in stress detection analysis, were
explored [16,19,23,27,37]. From these, the most significant features were identified, their
dimension is one and they were computed using a 30 s sliding window for all signals.
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To enhance system performance and simplify signal processing complexity, the Lasso
regression technique [38] was adopted to determine the feature vector. This technique
allows the automatic selection of the most useful features, discarding the unnecessary
or redundant ones. In particular, those features that have a coefficient equal to 0 will be
rejected. Based on the analysis of the dataset described in Section 2, the selected features
for PPG, EDA, and ambient sensors are presented in Table 2.

Table 2. Features chosen for PPG, EDA, and ambient sensors.

Sensor Feature Description Coefficient

PPG RMSSD
Root Mean Square of the
Successive Differences 0.867

PPG SDNN Standard Deviation of NN intervals 0.532

PPG pNN50
The proportion of interval differences
of successive NN intervals greater
than 50 ms

0.479

EDA
GSR peak
amplitude sum

GSR value at Peak-GSR value
at point of onset 0.921

EDA
GSR peak
energy sum 0.5 × peak amplitude × peak rise time 0.231

EDA
GSR rise
rate average

Sum average of 1st derivative of points
with 1st derivative > threshold (0.025) 0.416

RGB Camera Blink number Number of Blinks in the sliding window 0.898
RGB Camera Ratio mean Mean of Eye Aspect Ratio 0.654
RGB Camera Ratio max Maximum of Eye Aspect Ratio 0.328

3.3. Classification

DL has been widely employed for classification tasks due to its ability to automatically
learn and extract complex patterns from data. By using neural networks with multiple
layers, DL models can capture hierarchical representations, enabling them to discern subtle
differences and make accurate predictions. This approach has been successfully applied in
various domains, including image recognition, speech analysis, sentiment analysis, and
fraud detection [39].

The proposed approach involves comparing the performance of 1D-CNN, LSTM, and
GRU DL architectures in a classification model for multivariate time-series data.

One-dimensional (1D)-CNN is specifically designed to handle time-series sensor data
by automatically extracting features and detecting patterns in a single spatial dimension.
Its distinguishing feature is its focus on learning local features within each layer, which
reduces computational load and makes it suitable for low-power hardware platforms. The
architecture utilizes one-dimensional convolution layers, pooling layers, dropout layers,
and activation functions. Configuring the network involves selecting hyperparameters
such as filter size, subsampling factor, and the number of neurons.

LSTM, a recurrent neural network architecture, incorporates cells with input, forget,
and output gates to control the flow of information. This enables the network to effectively
process sequential data. LSTM’s distinctive feature is its memory unit and forget gate,
which allow it to capture long-term dependencies. By selectively retaining relevant infor-
mation, LSTM overcomes the limitations of traditional recurrent neural networks (RNNs)
in handling long-term dependencies.

GRU, another RNN architecture, addresses the challenges faced by traditional RNNs,
such as the vanishing gradient problem. It simplifies the architecture by combining input
and forget gates into a single update gate. GRU adaptively updates the hidden state,
capturing short-term and long-term dependencies efficiently. It has been successful in
various applications, demonstrating effectiveness and efficiency. Compared to other gating
architectures like LSTM, GRU has a simpler design. It combines the input and forget
gates into a single update gate, reducing computational complexity and the number of
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parameters. Additionally, GRU does not require a separate cell state, making it more
memory efficient.

Deep Learning Architectures

The DL architectures described in the previous section were developed using Ten-
sorFlow (version 2.7.0) and Python (version 3.8.10). In Figure 3, the structure for each
architecture is depicted, in particular for (a) 1D-CNN, (b) LSTM, and (c) GRU. Specifically,
the 1D-CNN architecture includes the following layers:

• Input layer: each sample includes the values of the selected features. In addition,
the input values were normalized by scaling between zero and one [40] using the
following equation:

Xscaled =
X − min

max − min
, (1)

where the minimum and maximum values relate to the X-value to be normalized.
• Two one-dimensional convolutional layers are used for analysis and feature extraction

along the time axis of the inputs, employing the standard rectified linear activation
function (i.e., ReLU). The first layer consists of 128 hidden layers while the second one
contains 512 hidden layers.

• Dropout layer: aims to improve accuracy and to overcome overfitting.
• Max Pooling Level: its goal consists in learning the most relevant data from fea-

ture vectors.
• Flatten layer: the input matrix is reshaped to generate a feature vector to classify the

stress from the output layer.
• Output layer: The outputs of this linear layer are three neurons allowing the stress

level classification according to three labels: 0 (no stress), 1 (level 1 stress), and 2 (level
2 stress). Level 0 refers to a relaxed state, level 1 implies low stress, and level 2 indicates
high stress. In terms of perceived stress, as reported by participants themselves, high
stress is associated with scores of 3, 4, and 5.

The LSTM architecture consists of the following layers:

• Input layer: as for 1D-CNN.
• Three LSTM layers: after the input layer, these three layers are added to improve the

classification accuracy of our model.
• Three dropout layers: after every LSTM layer, a dropout layer has been added to

enhance classification accuracy and to reduce overfitting.
• Output layer: as for 1D-CNN.

At last, the GRU contains the subsequent layers:

• Input layer: like the two above architectures.
• GRU layer: as described for the LSTM, this layer allows to increase the classification

accuracy of stress level.
• Two dropout layers: inserted to improve classification values and to decrease

overfitting.
• Output layer: like the two above architectures.

The optimal parameters of each DL architecture were obtained via a random search
technique [41], allowing a search space of hyperparameter values to be defined by sampling
points in that domain. In Table 3, the selected parameters for each architecture are shown.
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Figure 3. The structure for each considered DL architecture: (a) 1D-CNN, (b) LSTM, and (c) GRU.

Table 3. Selected parameters of DL architectures.

Model Parameters

1D-CNN
optimizer = “adam”, loss_function = “sparse_categorical_crossentropy”,
epochs = 500, batch_size = 64, hidden_layer_conv1d = 128,
hidden_layer_conv1d_1 = 512, hidden_layer_dense = 20, dropout = 0.05

LSTM

optimizer = “adam”, loss_function = “sparse_categorical_crossentropy”,
epochs = 700, batch_size = 64, hidden_layer_lstm = 120,
hidden_layer_lstm_1 = 90, hidden_layer_lstm_2 = 50, dropout = 0.1,
dropout_1 = 0.5, dropout_2 = 0.1

GRU

optimizer = “adam”, loss_function = “sparse_categorical_crossentropy”,
epochs = 700, batch_size = 64, hidden_layer_gru = 100,
hidden_layer_dense = 100, hidden_layer_dense_1 = 200 dropout = 0.05,
dropout_1 = 0.05

4. Results and Discussion

To verify the goodness of the proposed approach, a series of tests were performed to
verify the accuracy of the stress level classification for each considered DL architecture. The
experiments were performed on an embedded PC with an Intel Core i5 processor and 8 GB
RAM. Performances were evaluated according to four different metrics: accuracy (Acc),
precision (Pr), recall (Re), and F1 score, defined by the following expressions:

Acc =
TP + TN

TP + TN + FP + FN
(2)

Pr =
TP

TP + FP
(3)

Re =
TP

TP + FN
(4)

F1-score =
2 × TP

2 × TN + FP + FN
, (5)

where TP (True Positive) indicates the presence of a stress phase, which is correctly detected
by the algorithm; FP (False Positive) indicates the absence of stress but, instead, the
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algorithm identifies it; TN (True Negative) indicates the absence of stress and, similarly,
the algorithm does not detect it; finally, FN (False negative) indicates the presence of a
stress phase but, on the contrary, it is not recognised by the algorithm,where TP (True
Positive) indicates the presence of a stress phase and it is also detected by the algorithm;
FP (False Positive) indicates that there is no stress phase but the algorithm detects it; TN
(True Negative) means that there is no stress phase and is not detected by the algorithm;
finally, FN (False negative) indicates the presence of a stress phase but the algorithm does
not identify it. Accuracy shows the relation of all correctly classified samples to all samples;
precision represents the model’s accuracy to provide positive occurrences; recall represents
the model’s performance to find positive cases using all positive cases; F1-score influences
true positive cases higher than precision.

The performance of the proposed DL architectures was evaluated on separately de-
signed test sets. The training set was perturbed using a 10 cross-validation [42]. So, each
architecture was trained using 80% of the data, while the remaining 20% were used for
testing and, to avoid over-fitting, a validation set was created using 10% of the training
data. The entire procedure was reiterated 10 times, training and testing with a different
set in order to avoid the simultaneous appearance of the same samples in the training and
test sets. Table 4 shows the results obtained for each DL architecture considering three
classes (no stress, stress level 1, and stress level 2). This shows the goodness of the proposed
approach, with a considerable improvement in terms of average accuracy compared to
the previous work [10]. In fact, while [10] obtained an accuracy of 91% considering three
classes, with the proposed approach we obtained an accuracy value varying from 92.95%
with LSTM to 95.38% with 1D-CNN.

Table 4. Comparison of the performance for each DL architecture.

Model Accuracy Precision Recall F1-Score

1D-CNN 0.9538 0.9603 0.9496 0.9530
LSTM 0.9295 0.9320 0.9109 0.9279
GRU 0.9505 0.9518 0.9368 0.9491

Figures 4–6 depict the overall performance of the considered models by reporting
model losses and accuracy during training and validation.

Figure 4. Loss (a) and accuracy (b) for 1D-CNN.
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Figure 5. Loss (a) and accuracy (b) for LSTM.

Figure 6. Loss (a) and accuracy (b) for GRU.

The goodness of the proposed approach was also assessed considering only two classes
(stress/no stress). The same metrics were evaluated, and the obtained results are shown in
Table 5.

Table 5. Comparison of the performance for each DL architecture considering two classes.

Model Accuracy Precision Recall F1-Score

1D-CNN 0.9688 0.9708 0.9615 0.9687
LSTM 0.9499 0.9582 0.9512 0.9566
GRU 0.9405 0.9410 0.9304 0.9404

Again, an improvement compared to [10] was achieved. In fact, in that case, we had
obtained a maximum accuracy of 94.9% considering only two classes, whereas with the
proposed approach, an accuracy ranging from 94.05% for GRU to 96.88% for 1D-CNN
was achieved.

The performance improvement was mainly achieved for the multi-class system, show-
ing that for the evaluation of multiple stress levels, the implemented hardware platform is
more reliable and effective through the DL approach.

To confirm the robustness of the approach, it was tested using only the wearable sensor
and only the ambient sensor with three classes. Table 6 shows the achieved results. The
one-dimensional (1D)-CNN still remains the best model with an accuracy of 95.74% for
the wearable sensor and of 95.16% for the ambient sensor, demonstrating that the platform
also achieves a good level of accuracy when only one sensor is active, such as, for example,
when the wearable sensor is unloaded.
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Table 6. Comparison of the performance for each DL architecture considering three classes and only
wearable (Wear.) and ambient (Amb.) sensors.

Model Accuracy Precision Recall F1-Score
Wear. Amb. Wear. Amb. Wear. Amb. Wear. Amb.

1D-CNN 0.9574 0.9516 0.9598 0.9589 0.9486 0.9491 0.9526 0.9531
LSTM 0.9281 0.9273 0.9361 0.9319 0.9107 0.9105 0.9189 0.9233
GRU 0.9512 0.9498 0.9507 0.9492 0.9374 0.9359 0.9487 0.9479

Finally, Table 7 presents a comparison with other significant works in the literature.

Table 7. Wearable and ambient sensor-based systems for stress detection.

Work Vital Signs Sensor Placement Stress Level Accuracy

[17] ECG, GSR Hand, fingers, Chest 1 0.9275
[18] EDA, ECG, SKT Hand, fingers, Chest 1 0.9586
[19] ECG, EDA Hand, fingers, Chest 1 0.875
[20] HR, EDA, SKT Hand 3 0.9619
[21] PPG Wrist 2 0.8235
[23] PPG Hand, fingers 4 0.9433
[24] HR, SpO2, ST Hand, fingers, Nose 1 0.9598
[43] ECG Chest 1 0.884
[13] Physical: Eye activity (pupil dilation) RGB Camera 1 0.9168
[44] Physical: Human Speech RGB Camera 1 0.9206

Table 7 reports both wearable device-based and ambient sensor-based stress sensing
systems. Information is given regarding the monitored parameters, the number of stress
levels detected, the analyzed body points, and the measured accuracy values. It is evident
that, despite the high accuracy values, most studies detect only one stress level. Moreover,
for wearable systems, the monitored body points can be intrusive, as they often involve the
fingers for EDA signals and the wrist or chest for CA. Although chest monitoring offers
good accuracy and less intrusiveness, it requires the use of two devices: one to monitor
EDA on the fingers and another on the chest.

5. Conclusions

This research paper proposes an enhanced heterogeneous multi-sensory hardware-
software architecture aimed at automating the detection of stress conditions, based on
our previous research. This platform holds the potential to effectively identify two levels
of stress, facilitating early intervention and personalized treatment plans to improve the
quality of life for workers. Two types of sensors were employed: ambient sensors and
wearable devices. This approach enables versatile and efficient monitoring, adaptable to
various application contexts and ensuring reliable operation even if one sensor becomes
inactive or malfunctions. A user interface that could inform via an alert message—for
example, a personnel manager—has not been implemented. In this configuration, the
platform would act as a decision support system for the optimal management and well-
being of workers.

From a hardware standpoint, the platform consists of a dual-sensor system. The
wearable system was specifically designed to enable minimally intrusive monitoring and
minimize disturbances caused by motion artifacts, while an easily accessible and cost-
effective ambient sensor was employed. Cardiac activity, electrodermal activity, and RGB
signals were considered for assessing psychophysical conditions.

To enhance performance compared to our previous techniques, a software framework
was developed utilizing deep learning approaches with a high degree of generalization to
ensure a good performance in real-world scenarios. The performance of the system was
evaluated in controlled laboratory conditions, considering both one and two stress levels.
Three deep learning algorithms were implemented and tested, with the 1D-convolutional
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neural network yielding the best results in terms of accuracy detection. Specifically, the
accuracy values for one stress level and two stress levels were approximately 96.88% and
95.88%, respectively. These results outperformed our previous studies, particularly for the
multi-stress level system, which demonstrated an improvement of 4.38 percentage points.

It is important to note that the developed software–hardware architecture was tested
under laboratory conditions, and the stress induction protocol may not fully represent the
actual work tasks performed by operators. A novel protocol, designed for implementation
under controlled conditions, should involve the simulation of various work activities such
as the assembly, quality control, and manual handling of loads. In the context of assem-
bly and quality control, diverse stress levels could be induced by simulating escalating
complexities of operations or by offering varying levels of support materials, ranging from
detailed step-by-step instructions to none at all. In the case of manual load handling, the in-
tensity of physical activity could be systematically varied. This approach also supports the
differentiation between cognitive and physical stress. These limitations highlight the need
for future developments to include performance evaluations in real work settings. In this
context, the main challenge to address is the ground truth [45]. Below are the main strate-
gies that will be adopted to tackle it: (i) gather data from multiple sources, in addition to
physiological sensors, such as behavioral observations, expert annotations, and contextual
information about the work environment, task demands, and interpersonal interactions—
understanding the context will help with interpreting stress responses more accurately and
differentiating between stressors; (ii) conduct longitudinal studies and continuous monitor-
ing, rather than discrete observations, to capture variations in stress levels over time. This
approach helps establish a more robust baseline and identifies patterns of stress response
that may not be apparent in short-term observations; (iii) combine both subjective measures
(self-reports, surveys) and objective measures (physiological data) to obtain a more accurate
representation of stress and establish feedback loops with participants to refine and update
the ground truth over time; (iv) explore new unsupervised algorithms that are calibrated
and validated on diverse datasets. The model will be trained on a representative sample
of the target population to avoid biases and improve generalizability.Furthermore, future
research will focus on studying and implementing additional classification techniques,
with a particular emphasis on exploring new unsupervised methods.

The proposed model is general, and while this favors its applicability, it also negatively
influences its performance, as it can hardly achieve satisfactory levels of accuracy [46].
Some works highlight gender-related and age-related differences in association with work
stress [47,48]; therefore, person-specific or semi-person-specific models will be investigated.
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