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Abstract

Fused Filament Fabricated parts exhibit mechanical anisotropy induced

by the filament extrusion pattern and possibly due to the intrinsic nature

of feedstock material. Consequently, an optimized filament deposition strat-

egy is desirable for improving the part’s functionality. The present work

optimizes the in-plane filament paths of Fused Filament Fabricated parts to

strengthen component load-bearing capacity, with a particular focus on ob-

taining production-ready design solutions through a direct imposition of the

manufacturing constraints. To perform an effective in-plane filament path

optimization, the present contribution also addresses, among several other

aspects, the following: (i) the development and implementation of a new

material model that incorporates the transverse stiffness loss before inter-

filament fusion, and (ii) a comparative study between a two-step gradient-
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based minimization and a global metaheuristic minimization. The results

indicate that the new material model yields more realistic filament patterns

compared to the assumption of neglecting the transverse stiffness loss at low

filament densities. Further, the comparison of optimization approaches sug-

gests the preference for the two-step gradient-based approach due to its better

efficiency, flexibility, and compatibility with the proposed material model.

Keywords: Additive Manufacturing, Fused Filament Fabrication, filament

path optimization, anisotropic material model, curvilinear filaments
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1. Introduction

3D-Printing, formally known as Additive Manufacturing (AM), is a generic

term for fabrication techniques that produce complex three-dimensional ob-

jects by adding material in a layer-wise manner. Among the various AM

technologies (Vyavahare et al. (2020)), Fused Filament Fabrication (FFF)

can rapidly produce a physical replica of a digital model by extruding layers

of molten thermoplastic filaments along predetermined paths (Monaldo and

Marfia (2021)). Reduced lead times, no tooling requirements, ease of use,

and economic accessibility are some of the characteristics of FFF (Cuan-

Urquizo et al. (2019)) that make such technology suitable for prototyping

purposes. Nevertheless, recent trends focus on extending FFF from proto-

typing to more valuable industrial applications through effective design tools

that exploit the FFF features (Hoglund and Smith (2016); Tam and Mueller

(2017); Khan et al. (2018)).

The mechanical response of FFF parts displays strong dependence on the

direction of the deposited filaments i.e., the filament deposition process in-

duces anisotropic behaviour, with increased stiffness and strength along the

filament directions (Rodŕıguez et al. (2001); Ahn et al. (2002); Li et al. (2002);

Durgun and Ertan (2014); Alaimo et al. (2017)). On top of that, anisotropy

may also be caused by the intrinsic nature of the feedstock material, for in-

stance, when reinforced polymer matrix composites are used (Tekinalp et al.

(2014); Blok et al. (2018); Brenken et al. (2018)). Therefore, regardless of the

source of anisotropy, it is beneficial to avoid the arbitrary filament deposition

strategy as generally adopted by standard slicing software (Hodgson et al.

(2011)), and instead optimize the filament deposition paths to reach superior
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structural performance (like stiffness and strength, among others).

The present work aims at contributing to the filament path optimization

of load-bearing FFF structures for maximizing their stiffness. A number of

studies in the literature successfully employed optimization approaches to

design AM parts with optimal topologies and mesostructures (Ngim et al.

(2007); Gaynor (2015); Zegard and Paulino (2016); Liu et al. (2018)). Sur-

prisingly, only a limited attention has been given to optimize the in-plane

material placement in AM parts that is clearly advantageous for extrusion-

based technologies (Tam and Mueller (2017), Zhang et al. (2017)). Such

optimization can help to capitalize the effect of in-plane anisotropy and tai-

lor the mechanical properties in different directions to yield the best struc-

tural performance from a given component (Lopes et al. (2007); Ghiasi et al.

(2010); Giorgio et al. (2020)).

The concept of varying the in-plane material orientations to reach a su-

perior structural performance has been well explored for laminated fiber-

reinforced composites (FRC). Hyer and Charette (1991) were among the first

to demonstrate that the point-wise variation of the fiber paths reaches supe-

rior structural performance. Their approach involved discretizing a structure

into finite elements (FE) and using the material orientation in each FE as a

design variable. The result is a material orientation map that must be post-

processed into a set of manufacturable fiber path trajectories. Many works

were inspired by this approach, including Duvaut et al. (2000), Stegmann and

Lund (2005), Huang and Haftka (2005), Legrand et al. (2006), Malakhov and

Polilov (2016), Kiyono et al. (2017), etc. In another popular design approach,

the fiber paths are represented as curvilinear functions, and their coefficients
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become the design variables. Such a concept was first introduced by Na-

gendra et al. (1995) using Non-Uniform Rational B-Splines and was later

extended to linearly varying fiber angles (Tatting et al. (2002); Lopes et al.

(2008)), Bezier curves (Kim et al. (2012)), B-Splines (Honda et al. (2009);

Honda and Narita (2012)), Lagrange polynomials (Wu et al. (2012)) etc. The

main advantage of this method is the reduced number of design variables and

the continuity of the fiber paths designed. Besides, multi-level methods have

been also been proposed, in which the composite design problem is split

into sub-problems to deal with the non-convex relations between fiber ori-

entations and the physical responses in the optimization problem (Izzi et al.

(2021)). At the macroscopic scale, the anisotropic response is described us-

ing lamination (Setoodeh et al. (2009)) or polar parameters (Catapano et al.

(2015); Montemurro and Catapano (2017)), and the determination of optimal

stacking sequence is done at the second stage.

The above techniques have been applied to multiple fiber-path optimiza-

tion problems involving compliance (Stegmann and Lund (2005); Kiyono

et al. (2017)), buckling loads (Wu et al. (2012)), fundamental frequency

(Blom et al. (2008)), failure criteria (Lopes et al. (2008)), stress concentration

(Malakhov and Polilov (2016)) etc., using both gradient-based (Stegmann

and Lund (2005); Blom et al. (2008); Lemaire et al. (2015)) and evolutionary

(Legrand et al. (2006); Wu et al. (2012); Huang et al. (2016)) optimization

algorithms. Nevertheless, most of the works overlooked the manufactura-

bility of the designs (Lozano et al. (2018)), thus, making it challenging to

transform the optimized designs into a finished product. For detailed reviews

on the design of laminated composites, the reader is referred to Ghiasi et al.
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(2009) and Ghiasi et al. (2010).

To the authors’ best knowledge, only a few works sought optimized ma-

terial deposition paths to improve the structural performance in AM parts.

Hoglund and Smith (2016) computed the preferred fibre angles to mini-

mize the compliance of FFF parts and printed the optimal designs using

the contour-parallel deposition strategy that approximated the local orienta-

tions. Yamanaka et al. (2016) used the analogy between the fiber paths and

streamlines to find the optimal non-intersecting fiber paths that maximized

the fracture strength of a 3D-printed continuous-fiber composite plate. Liu

and Yu (2017) used a level-set-based method for optimizing the deposition

paths in both fixed and flexible geometries (subject to topology changes),

which was later extended by Liu and To (2017) to three-dimensional struc-

tures, including support constraints. Then, Roberge and Norato (2018) op-

timized the material orientation and spacing for maximizing the stiffness of

curvilinear scaffolds produced using Direct Ink Writing (an extrusion-based

AM method). Finally, Hou et al. (2021) used the stress gradients to optimize

the fiber direction in a 3D-printed composite for improving the component ul-

timate strength. All the above methods focused on specific cases or required

non-trivial post-processing steps that caused a loss of conformity between the

design solutions and the printed parts, leading to a perfectible compromise.

Recently, Fernandez et al. (2019) proposed a method to lift this limitation

by directly enforcing the manufacturing constraints in the optimization to

obtain production-ready design solutions.

The present work also imposes a set of manufacturing constraints (e.g.,

filament spacing and overlap control) to design optimized readily-printable
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filament paths for FFF structures, with the following new contributions with

respect to the state-of-the-art: (i) the proposition of a new realistic ma-

terial model incorporating the phenomenological stiffness decrease before

inter-filament fusion that is shown to impact the resulting optimized fila-

ment patterns significantly, and (ii) the critical comparison between a global

metaheuristic algorithm and a two-step gradient-based algorithm in terms of

the computational performance and the resulting optimized structural com-

pliance.

The contribution is organized as follows: Section 2 sets up the filament

path optimization problem to be solved, expressing the fundamental filament

path quantities and manufacturing constraints in terms of the design vari-

ables. Then, Section 3 develops a new material model accounting for the

inter-filament gaps in an FFF layer. Section 4 presents the two different

approaches for optimizing the filament paths, depicting the developed algo-

rithmic framework. Section 5 applies the methodology to a series of example

structures, and finally, Section 6 lists the main conclusions, providing insights

on future works.

2. Formulation of the optimization problem

The filament trajectories on an FFF layer are represented as the con-

tours or level-sets of a B-Surface defined over the layer (Fernandez et al.

(2019)). The optimized filament trajectories can be then found as the so-

lution to a minimization problem in which the shape parameters of the B-

Surface are treated as the design variables. As mentioned in the literature

survey, prior works have used B-splines to represent the fiber paths. For
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example, Honda et al. (2009) and Honda and Narita (2012) represented the

fiber paths as single-valued spline functions, and Montemurro and Catapano

(2017) described the distribution of fiber angles over a laminate using uni-

form B-surface. However, the advantage of the proposed approach is that we

treat the filament paths as contours and enable a simultaneous control over

both the filament angle and the spacing, thus, facilitating an easy conversion

of the designs into G-code for printing. The series of steps, inspired from

Fernandez et al. (2019), leading up to the formulation of the minimization

problem, is presented first for the sake of completeness.

2.1. Filament path parametrization

The filament angle and spacing that describe the local filament path are

formulated in terms of the contours of a B-Surface; they become continuous

functions of the shape parameters of the B-Surface.

Let us assume a generic FFF component to optimize the filament paths

and minimize its compliance (i.e., maximize its stiffness). The assumed com-

ponent has layers of filaments printed on the e1-e2 plane and stacked in the

e3 direction. Each extruded filament has a constant width w and a height

h, as shown in Figure 1. The entire FFF component occupies a domain λ in

three dimensional space that is sliced into individual domains λ1, λ2, ...λn

representing the layers of the component. Under suitable assumptions on the

component (cross-sections symmetrical to the mid-plane, loads non-varying

along the e3, dimension in e3 smaller than along the other directions), we fo-

cus our analysis on a 2D domain Ω that represents the component mid-plane

having superposed filament trajectories from layers λi=1,2..n (Figure 1).

8



Figure 1: Two-dimensional assumption for FFF part. λ is composed of individual layers

λ1, λ2..λn having filaments of width w and height h. An equivalent 2D domain Ω is defined

with filament trajectories from λ1, λ2..λn projected on to it.

An ith in-plane filament layout on Ω can be described as the contours of

a scalar function ϕi(x, y) defined over Ω (Honda and Narita (2011); Huang

et al. (2016))

Ck
i = {x | ϕi(x) = k b}, k ∈ Z, b ∈ R, x = (x, y) ∈ Ω, (1)

where each contour in the set Ck
i , resulting from ϕi = 1b, 2b...kb, represents a

single trajectory in the ith filament layout on Ω (Figure 2). Further, we also

assume b=w, the rationale behind which will be clarified in the next section,

where manufacturing constraints are imposed.

Since the contours of ϕ represent filament trajectories, it follows that the

local filament angle and the spacing can also be derived from the contours

of ϕ. At any point x ∈ Ω, the filament angle αi(x) is the angle between the

tangent t(x) to the contour and the e1 axis (shown in Figure 2). Therefore,
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αi(x) is expressed as

αi(x) = tan−1

(
−ϕi,x

ϕi,y

)
, (2)

where ϕi,x and ϕi,y are partial derivatives of the ϕi with respect to x and y,

respectively (Honda and Narita (2011); Huang et al. (2016)). In a similar

fashion, the filament spacing li(x) is also denoted using the contours of ϕi.

As Figure 2 illustrates, the filament spacing li(x) is the sum of the distances

from x to the two closest points in the adjacent contours, where ∆xk and

∆xk-1 are correspondingly the distances from x to the closest points x∗
k and

x∗
k-1 in the two adjacent contours Ck

i and Ck−1
i . Thus, we relate the spacing

li(x) to ϕi as given below (refer to Fernandez et al. (2019) for derivation):

li(x) ≈
b

|∇ϕi(x)|
. (3)

Figure 2: In-plane filament trajectories represented using contours of a B-Surface. αi :

filament angle; li : filament spacing; x∗
k : closest point in contour Ck

i from x; x∗
k-1 : closest

point in contour Ck−1
i from x.

Any B-Surface is composed of individual entities called patches, the shapes
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of which are influenced by a set of control points as shown in Figure 3. As-

suming that the contours of a uniform bicubic B-Surface (with equidistant

knots) represent the filament trajectories, we use the following set of equa-

tions to define a single patch of B-surface (Bartels et al. (1995), Marschner

and Shirley (2015)):

x(Ξ) = N(Ξ)TXL; y(Ξ) = N(Ξ)TYL; ϕi(Ξ) = N(Ξ)TdL, (4)

where N(Ξ) is the vector of uniform bicubic basis functions, the symbol Ξ =

(ξ, η) represents the coordinates of the patch in parent space, while XL, YL

and dL denote the vectors comprising the 3D positions of a grid of control

points that surround the patch in physical space (see Figure 3).

Eq. (4) relates ϕi to the local control point heights dL, therefore enabling

the contours of ϕi, and in turn, the filament path angle αi (Eq. (2)) and

spacing li (Eq. (3)) to be controlled using them. Thus, if ‘n’ sets of filament

trajectories are represented using ‘n’ number of B-Surfaces, then the entries

of the entire vector of control point heights of the B-Surfaces d = {d1, d2,

...dn} become the design variables for the filament trajectories in the FFF

structure. The total number of design variables (Ndv) is determined from the

number of B-surface patches as given below:

Ndv = n CPx CPy = n(Px + 3)(Py + 3), (5)

where CPx and CPy denote the number of control points used per B-Surface

in e1 and e2 directions, with Px and Py being the corresponding patch number

in each direction. For example, Figure 3 employs a total of Ndv = 42 design

variables in a single layer (n = 1).
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Figure 3: Patches of a uniform bicubic B-Surface defined over a layer. Px : Number of

patches along e1; Py : Number of patches along e2; CPx = Px + 3 : Number of control

points along e1; CPy = Py + 3 : Number of control points along e2.

2.2. Imposing manufacturing constraints

Figure 4: Manufacturing filament spacing constraint; sag and overlap, respectively, define

the maximum and minimum filament spacing

Production-ready solutions can be yielded from design optimization, pro-

vided proper manufacturing constraints are incorporated in the optimization
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process. For instance, in the case of laminated composites, the fiber paths

are often constrained not to undergo large curvatures due to the limitations

in the Automated Fiber Placement (AFP) technique (Lemaire et al. (2015);

Huang et al. (2016)). Here, the two essential constraints of the FFF pro-

cess are considered (refer to Figure 4): (i) the no-overlap constraint between

neighbouring filaments, i.e., the path spacing li is set larger than or equal to

the filament width (li ≥ w) and (ii) the no-sag constraint that states that

any two adjacent filaments cannot be spaced larger than a prescribed value

of lmax (li < lmax) to avoid sagging of the filaments deposited on the previous

layer, where lmax is a parameter chosen based on the printer capabilities to

bridge two unsupported points.

The aforementioned manufacturing constraints are equivalently expressed

as constraints on the gradient of ϕi for relating them to the design variables.

With the assumption b=w introduced in Section 2.1, the expressions for no-

overlap and no-sag constraints are derived from Eq. (3) and stated as follows,

respectively:

|∇ϕi| ≤ 1 (6)

|∇ϕi| ≥
b

lmax

(7)

It is emphasized that Eqs. (6) and (7) express local constraints, which must

be respected at every point in a layer λi. Due to the practical challenges in

implementing the local constraints (Amstutz (2010); Amstutz and Novotny

(2010); Amstutz et al. (2012)), they are correspondingly transformed into
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the following integral expressions (Le et al. (2010); Fernandez et al. (2019)):

Ga
i =

∫
Ω

St(|∇ϕi|2 − 1)dΩ ≤ 0 (8)

Gb
i =

∫
Ω

St

(
1−

(
|∇ϕi|

lmax

b

)2
)
dΩ ≤ 0, (9)

where the step function St is introduced to facilitate the constraint enforce-

ment through penalty methods (explained in next section). Thus, we set:

St(Θ) =

{0, if Θ ≤ 0

1, if Θ > 0
(10)

2.3. The minimization problem

Having expressed the printing trajectories and manufacturing constraints

in terms of the contours of B-surfaces, the optimization problem can now

be defined. The objective is to find the optimal control point heights of the

B-Surfaces that minimize the compliance of Ω, subject to no-overlap (Ga
i )

and no-sag (Gb
i) constraint. The corresponding mathematical formulation is

given as

minimize
d1,d2..dn

compliance (c),

subject to: Ga
i ≤ 0, i = 1, 2, ..n

Gb
i ≤ 0, i = 1, 2, ..n,

(11)

where the objective/cost function to be minimized is the compliance c =∫
Ω
σ : ϵ dΩ (twice the strain energy) computed from the Cauchy stress

tensor σ and the infinitesimal strain tensor ϵ using finite element analysis

(Brampton et al. (2015); Esposito et al. (2019)) .

The above minimization problem is recast into the following unconstrained

minimization problem using the penalty method (Nocedal and Wright (2006);
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Price et al. (2006); Ali and Zhu (2013)):

minimize
d1,d2,..dn

c + ϵp

( ∑
i=1,2,..n

(Ga
i )

2 + (Gb
i)

2

)
, (12)

where the quadratic function p = c + ϵp ((Ga
i=1..n)

2 + (Gb
i=1..n)

2) becomes

the new penalized cost function to be minimized, and ϵp (> 0) is the penalty

coefficient that penalizes the new cost function proportional to the constraint

violations. Penalty methods offer the simplest approach to enforce the con-

straints in a minimization problem. But an informed choice of the penalty

coefficient is crucial, as over-penalizing or under-penalizing the constraints

may hinder the minimization algorithm from finding the actual minimum.

3. Anisotropic material model accounting for the effect of inter-

filament spacing

The mechanical performance of FFF parts relies upon a multitude of

FFF parameters: filament angle, build orientation, infill density, printed ma-

terial, extrusion temperature, nozzle diameter, bed temperature etc., among

which, the filament angle and density are widely recognized to play dominant

roles (Fayazbakhsh et al. (2019); Cuan-Urquizo et al. (2019)). A noteworthy

highlight of this work is, in fact, a new material model that predicts the

component response accounting for the local filament angle and density.

When satisfying simplifying assumptions, anisotropic heterogeneous ma-

terials like composites have been popularly modelled using homogenization

approaches (Kalamkarov et al. (2009)). However, homogenizing a freely de-

posited FFF part would be questionable from a theoretical viewpoint since

the principles of scale separation and periodicity would be generally invalid.
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Therefore, the present work computes the stiffness components based on the

mesostructural data (i.e., filament angle and spacing) in the finite element

model without assuming full scale separation. With a sufficiently refined

mesh, this approach works in smaller material regions and leads to even

more accurate results. For this purpose, we extend the classical approach

of Fernandez et al. (2019), in which a transversely isotropic elasticity tensor

is rotated by the local filament angle αi(x) and linearly scaled by the local

density/volume-ratio νi(x), where the volume ratio, expressed below, is the

amount of filament material in a li × li × h Representative Volume Element

(Figure 5).

νi(x) =
libh

l2i h
≈ |∇ϕi(x)| (13)

Figure 5: Definition of volume ratio. νi is the ratio of filament material in the li × li × h

Representative Volume Element.

The simplified technique to linearly scale all the stiffness components with

the volume ratio assumes significant transverse stiffness before inter-filament

fusion, thereby ignoring the filament bonding mechanism and leading to less

realistic printing patterns (will be shown in Section 5). Thus, to avoid such
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solutions, a material model incorporating the effect of inter-filament spacing

is developed below.

Let Ψi(x) denote the strain energy density due to the ith filament layout.

Then, the strain energy density Ψ(x) for the whole FFF part is the sum of

individual contributions from the strain energy densities due to n filament

layouts on Ω (from λ1, λ2...λn), i.e.,

Ψ(x) = Ψ1(x) + Ψ2(x) + ..Ψn(x) (14)

Taking the assumptions of linear elasticity and small-strains, and recalling

σ = ∂Ψ/∂ϵ, the strain energy density Ψi(x) is expressed as a quadratic

function of the strain tensor ϵ

Ψi(x) =
1

2
ϵ(x) : C∗

i (x) : ϵ(x), (15)

where the elasticity tensorC∗
i (x) at a point x ∈ Ω is a function of the filament

angle αi and the volume-ratio νi at that point, i.e., C
∗
i (αi(x), νi(x)).

If transverse isotropy is assumed in layer λi, then the elasticity tensor

C∗
i (x) has five independent components in a local coordinate system: s11,

s22, s12, s44 and s23, where the adopted indices are consistent with the Voigt

notation (Kollar and Springer (2003)). The goal is to represent that the

stiffness component along the filament direction s11 dominates if adjacent

filaments do not touch each other, i.e., for low values of volume ratio νi.

The other components s22, s12, s44 and s23 come into play only when the

inter-filament bonding occurs, i.e., when a given minimum threshold of νi

has been reached. Modelling this behaviour implies that the printing and

the transverse direction stiffness are treated differently with respect to νi, (a

decoupled behaviour).
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Figure 6 sketches the assumed evolution of the five stiffness components

as functions of the volume ratio. The stiffness along the filament extrusion

direction s11 is modelled as a linear function of νi as follows:

s11(νi) = c11νi, (16)

where c11 is the stiffness component along the filament direction at full volume

ratio (i.e. corresponding to a volume filled at 100% by the filament material).

(a) (b)

Figure 6: Stiffness variation as function of the volume-ratio. (a) s11 is linear function of

ν. (b) The components s22, s12, s44, s23 are hyperbolic tangent functions of ν. Only s11

is significant before inter-filament fusion. The other components are very low for ν ≤ νa

and reach a saturated state once the filaments are completely fused.

On the other hand, the components s22, s12, s44 and s23 are almost zero

for widely spaced adjacent filaments. When the filaments start to bond with

each other, the four stiffness components rapidly rise and subsequently reach

a saturated maximum value once the filaments are completely fused. Figure

6b shows a hyperbolic tangent curve that is assumed to model this behaviour.

Accordingly we state:

smn(νi) = a3 tanh(a1νi + a2) + a4, (17)
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where tanh(z) = (ez−e−z)/(ez+e−z), and smn corresponds to each of the four

stiffness components s22, s12, s44 and s23, for which the unknown constants

a1, a2, a3 and a4 must be individually determined.

To compute the unknown constants in Eq. (17), we solve the following

system of equations that result from the conditions at νi = νl, νa, 1 and νu:

smn(ν
l) = sL (18a)

smn(ν
a) = f1cmn (18b)

smn(1) = cmn (18c)

smn(ν
u) = f2cmn, (18d)

where νl and νu, respectively, denote the lower and upper limits of the

volume ratio νi in a layer. In a physical sense, νl is equal to zero, and νu

can be slightly more than one, provided a meagre percentage of inter-filament

overlap is allowed. However, assuming that a saturated state already exists at

volume ratios νl and νu, both quantities are set to −∞ and +∞, respectively,

for the analytical solution of Eq. (18). The volume ratio νa denotes the

activation point at which the inter-filament bonding is assumed to start.

Accordingly, νa must be chosen close to one (νa → 1) for a realistic inclusion

of the filament spacing effect. The parameter sL denotes a very small user-

defined value for the four stiffness components when the filaments are widely

spaced (at νi = νl), whereas cmn denote their values when the filaments are

fused, i.e., at 100% volume ratio (νi = 1). Finally, the quantities f1 and f2

are the user-defined fractional constants that scale the stiffness cmn at νi = 1

and assign them at νa and νi = νu, respectively.

Note that, for simplicity, the values of cmn are taken from an inherently
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transversely isotropic material such as unidirectional fiber-reinforced compos-

ite. This is because, unlike the parts produced from subtractive or formative

methods, the properties of the bulk material do not necessarily translate to

the final FFF parts. Since the characteristics of FFF components are the

result of numerous design and process parameters, an experimental charac-

terisation of the components, including these parameters, would be necessary

to determine their material constants.

After determining all the unknown constants in Eq. (17), the transverse

isotropic elasticity tensor is assembled in the local coordinate system and

rotated by the filament angle αi(x) to find the final elasticity tensor C∗
i (x).

Considering how the role of inter-filament spacing has been incorporated

here, it seems natural that the manufacturing constraints might also be em-

bedded into this material model. However, it is not straightforward to define

the stiffness components’ evolution with artificial bounds dictated by the

manufacturing constraints. This explains why manufacturing constraints are

separately imposed using the penalty formulation.

4. Solution methodologies

The minimization problem in Eq. (12) is solved using two methods: (i) a

two-step gradient-based minimization, and (ii) Differential Evolution (Storn

and Price (1995, 1997); Price et al. (2006)).

In general, gradient-based methods start the minimization process from

a single point and iteratively proceeds to better approximations along direc-

tions computed from the gradient of the objective function at each point.

Although gradient-based methods ensure fast convergence to minimum solu-
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tions, they are sensitive to the starting point, and may converge to a local

minimum if close-to-zero gradients are encountered in the process. In order

to drive the gradient-based methods towards the global optimum, a two-

step approach is set up here, following Fernandez et al. (2019). Within the

two-step gradient-based minimization, first an initial optimized design with

straight and parallel toolpaths having uniform orientations α
in

i=1,2..n is ob-

tained. Then, the control point heights d
in

i corresponding to the uniform

orientations α
in

are supplied as the starting point to solve the curvilinear

filament optimization in Eq.(12). The initial control point heights d
in

i for the

optimization are calculated using the following relation:

d
in

i = [−sin(α
in

i )X, cos(α
in

i )Y]T, (19)

where X and Y are the vectors of control point coordinates on e1-e2 plane.

On solving the minimization problem in Eq.(12), convergence is reported at

a kth step if the following criteria are satisfied:

||∆dk|| ≤ 10−ag1 & ||∇p(dk)|| ≤ 10−ag2 , (20)

where ∆dk indicates the difference in the vector of design variables at the kth

step and previous steps, the quantity ∇p(dk) is the gradient of the penal-

ized objective function p at the kth step, while ag1 and ag2 (AccuracyGoal)

are positive integers that specify the convergence tolerance. Furthermore,

to accelerate the convergence to optimum solutions, analytical sensitivities

calculated with automatic differentiation techniques are supplied at every

iteration.

Differential Evolution operates by a principle that is agnostic to the gra-

dient of the objective function. It is a population-based metaheuristic al-
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gorithm that applies evolutionary principles (mutation, recombination and

selection) to a randomly initialized population of candidate solutions of size

SP (search points) and probes the function landscape for the minimum solu-

tion. During the process, the scale factor F ∈ [0, 2] (Gämperle et al. (2002))

determines the perturbation size to generate new candidate solutions from

the existing ones, whereas the diversity (distribution over the function space)

between them is controlled by Crossover-Probability Cr ∈ [0, 1]. Cr close to

one favours exploitation of already found good points to look for better points

in their vicinity (Sá et al. (2008)). On the other hand, a Cr close to zero

explores new regions of the design space to maximise the probability of find-

ing the global minimum1. The search for the minimum solution continues

until the preset maximum number of generations (Gmax) is reached or if the

difference between the best function values in the new and old populations,

as well as the distance between the new best point and the old best point,

are less than a tolerance of 10−ag, with ag being a user-set positive integer

(Brett Champion (2008)). Differential Evolution is prone to find the global

minimum of complex functions without getting trapped at local solutions.

However, working with a population of solutions, Differential Evolution in-

curs higher computational cost and is highly reliant on the control parameters

(SP , Cr and F ), the manual tuning of which is a tedious task.

Both Differential Evolution and the two-step gradient based minimization

are applied for filament path optimization in Section 5 and are comparatively

evaluated in terms of solution quality, computational cost and operational

1The 0-1 scale of Cr mentioned here is reversed to the classical Differential Evolution

proposed by Storn and Price (1995) (Oleksandr (2016))
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difficulties.

Figure 7: Developed optimization framework in Mathematica, AceGen and AceFEM.

AceGen is used to develop FE codes, while AceFEM is used for preprocessing and post-

processing tasks.

The workflow of the entire framework developed in Mathematica sum-

marizing each step is depicted in Figure 7. While Differential Evolution is

already available as Mathematica’s built-in minimiser, the two-step gradi-

ent based minimization is implemented using the Quasi-Newton algorithm

in Mathematica. To evaluate the structural performance, the finite element

procedures are implemented using specialized packages called AceGen and

AceFEM (Korelc (2007)). In AceGen, the coding can be efficiently done

in a symbolic form to automatically derive the complex formulae needed in

numerical analysis. On the other hand, the AceFEM package is a general
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finite element environment that is designed to perform preprocessing and

post-processing steps of finite element analysis.

5. Application to two-dimensional structures

We apply the described methodology to optimize the filament paths of

2D structures in three separate sections. Section 5.1 makes a comparative

assessment of the two-step gradient-based minimization and the Differential

Evolution. Section 5.2 evaluates the benefits of optimized filament paths

against the standard straight filament patterns. Finally, Section 5.3 com-

pares the proposed material model with the model of Fernandez et al. (2019)

to investigate the effect of decoupling the printing and transverse stiffness

components.

5.1. Two-step gradient-based minimization-Vs-Differential Evolution

Prior to comparing the minimization approaches, we first study the influ-

ence of essential parameters like number of patches (Px, Py), FE mesh and

penalty coefficient on the optimization process. Based on the insights on

these user-parameters, the subsequent steps assume suitable values for the

parameters to apply and compare both minimization approaches.

The entire section employs an MBB (Messerschmitt-Bölkow-Blohm) beam

to optimize the filament paths. The corresponding geometry, boundary con-

ditions, and an example patch arrangement for the optimization are given in

Figure 8. Note that arbitrary load magnitudes have been assumed for the

structure, as the applied magnitude does not influence the optimized solu-

tions under linear elasticity assumptions. A total thickness of t = 1 mm, a

filament width of w = 0.6 mm and a maximum allowable gap of lmax=1.6
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mm are assumed (as in Fernandez et al. (2019)). At full-volume fraction,

the material properties are taken to be: c11 = 152.47 GPa, c22 = 15.44 GPa,

c12 = 7.46 GPa, c44 = 4.550 GPa and c23 = 9.410 GPa (Kollar and Springer

(2003)), along with the following material model parameters: νa=0.9, sL =

10−4 GPa, f 1 = 10−3 and f 2 ≈ 1.03 to 1.1.

(a) (b)

Figure 8: MBB structure and patch arrangement. (a) Geometry of MBB structure as-

suming symmetric boundary conditions along the midside vertical axis and a load of F =

1kN, (b) Patch arrangement with Px = 2, Py = 2 yields Ndv = 50 for n = 2.

Parametric study on patch number, FE mesh and penalty coefficient

Two parametric studies are conducted while optimizing the MBB struc-

ture: (i) the roles of the B-surface patch number and the penalty coefficient

are investigated simultaneously for a given FE mesh, and (ii) the effect of

refining the FE mesh is examined, keeping the number of patches constant.

For simplicity, both studies are conducted using two-step gradient based

minimization, assuming a single layer and imposing only the no-overlap con-

dition. A tolerance ag1=2/ag2=2 is assumed since convergence criterion is

not satisfied for stricter tolerance.
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The first parametric study uses a 32-by-32 bilinear FE mesh and con-

ducts the filament path optimization for four different patch arrangements

Px-by-Py: 1-by-1, 2-by-2, 3-by-3 and 4-by-4. The corresponding initial design

variables d
in

are computed from α
in
=70.59° and the minimization problem

in Eq. (12) is solved for a range of penalty coefficients ϵp. Starting from the

highest possible value, the penatly coefficient is reduced ensuring that the

overlap ol = w − li in the optimum solution stays within a reasonable limit,

for example, ol ≤10% of w.

For the assumed patch numbers, Figure 9a depicts the maximum volume

ratio νmax obtained with different penalty coefficients ϵp. Figures 9b and

9c, respectively, depict the ratio of final compliance to the initial compliance

(cf/cin) and the computational time (T ) against penalty coefficients ϵp, while

Figure 9d shows the computational time T for achieving a given value of

compliance reduction cf/cin.

Figure 9a indicates a trend typical to any penalty-based optimization pro-

cess. Regardless of the patch number, the decrease in the penalty-coefficient

ϵp increases the maximum volume ratio νmax, denoting the proportional de-

gree of constraint violation (overlap) in the optimum solutions. The artificial

limit set on the overlap ol dictates the lowest penalty coefficient, whereas

its upper limit is due to the effect of ill-conditioning, inherent to the penalty

methods of gradient-based approaches (Nocedal and Wright (2006)). Any at-

tempt for a stronger constraint imposition using higher penalty coefficients

than those shown in Figure 9a does not guarantee convergence and may pre-

maturely terminate the minimization process. Therefore, suitable penalty

coefficients are chosen by a trial and error approach, adopting a compromise
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between imposing constraints to the desired extent and achieving conver-

gence quickly, while respecting the user-defined limit on the local constraint

violation (e.g., ol ≤10% of w).

(a) (b)

(c) (d)

Figure 9: Parametric study on penalty coefficient and patch number. (a) Maximum volume

ratio νmax increases with decrease in ϵp. Minimization process do not converge for high

penalty coefficient ϵp and the artificial condition, ol ≤10% of w, sets the lower limit of ϵp.

(b) For most ϵp values, a higher number of patches reaches a lower compliance reduction

cf/cin. (c) Computational time T increases with the number of patches, particularly at

high ϵp. (d) For reaching a given value of compliance reduction cf/cin, the 3-by-3 and

4-by-4 patches consumes a much higher computational time T .

Figure 9b illustrates that the higher patch numbers yield lower compli-

ance reduction factors cf/cin for most penalty coefficients ϵp. Clearly, a
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higher patch number reaches a reduced compliance by exploiting a larger

design space unavailable for a lower patch number. However, the respec-

tive numerical implications must also be accounted. Figure 9c shows that

the computational time T for the 3-by-3 and 4-by-4 patches significantly in-

crease as the ϵp gets higher, a sign common to ill-conditioned systems. As a

result, Figure 9d shows that a given compliance reduction of cf/cin=0.61 is

attained by the 4-by-4 patch in T ≈ 15 minutes, for which the 2-by-2 patch

takes less than 2 minutes.

Thus, as expected, the increased design freedom of a higher patch number

is achieved at a higher computational cost that increases further when con-

straints are enforced stricter. Deducing from these results, we can conclude

that a designer can initially opt for a lower patch number; more patches can

be chosen to refine the results if they appear too crude or if the further gain

in stiffness is aimed.

Figure 10: Parametric study on the influence of mesh size with a 2-by-2 patch arrangement.

cf and cf/ci increase asymptotically at higher number of finite elements. For too few finite

elements, minimization process did not converge.
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The second parametric study uses a 2-by-2 patch and solves the mini-

mization problem (Eq. (12)) for a series of FE mesh, varying the element

numbers as : 2m×2m, with m = 1, 2...7. As previously discussed, the penalty

coefficients in all cases are set through a trial and error method to maintain

the same level of overlap in the final solutions and facilitate their compari-

son. Figure 10 plots the initial compliance cin, final compliance cf and the

compliance reduction cf/cin against the number of finite elements used.

The initial compliance cin in Figure 10 shows a sharp increase at the be-

ginning that later becomes asymptotic as finite element meshes are refined.

As expected, coarser meshes are stiffer and increasing the number of finite el-

ements leads to converged meshes. Note that the final compliance cf and the

compliance reduction cf/cin follow trends similar to the initial compliance

cin, although both cf and cf/cin are not plotted for low number of finite ele-

ments. The reason is that the optimisation fails to converge for too few finite

elements due to the poor accuracy of the solutions from coarse meshes. Thus,

a sufficient number of finite elements (at least close to converged mesh) must

be employed when optimizing the filament paths to yield accurate results

and enable convergence at the optimum solutions.

Based on the results presented so far, the 2-by-2 patch arrangement and

32-by-32 elements FE mesh are chosen for the comparative study of the two

minimization approaches.

Two-Step gradient based minimization: filament path solutions

Now, the two-step gradient-based minimization is applied for optimizing

a two-layer (n = 2) MBB structure using the 2-by-2 patch and 32-by-32 FE

mesh. The initial design variables corresponding to the two layers, d
in

1 and
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d
in

2 , are calculated from α
in

1 = 61.8° and α
in

2 = 14.3° (Eq. (19)), respectively.

A penalty coefficient ϵp=225, which is the largest value that achieves conver-

gence, is used to penalize constraint violations to a maximum extent. The

tolerance ag1 = 2/ag2 = 2 is again assumed and the minimization problem

of Eq. (12) is solved.

Figure 11: Convergence curve for penalized cost function. The cost function consistently

reduce with each iteration.

In a AMD Ryzen 5 3400G processor (3.70 GHz and 64 GB RAM), the

minimization process converged in T = 18 minutes with a final penalized

cost function of pf = 130.847. Figure 11 plots the convergence curve of

the penalized cost function p. The final converged solution has a compli-

ance cf=130.842 Nmm and constraint quantities measuring ϵp(G
a
1)

2 = 0.002,

ϵp(G
a
2)

2 = 0.003, ϵp(G
b
1)

2 = 0 and ϵp(G
b
2)

2 = 0. The results do not show

any violation of the no-sag constraint, although the positive close-to-zero Ga
1

and Ga
2 indicate that the no-overlap constraint was meagerly violated (ol ≈

1% of w). Figure 12 shows the optimized filament paths for two layers, the

corresponding volume ratio plots, and the local compliance measure cloc =
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σ : ϵ in the structure.

(a) (b)

(c) (d)

(e)

Figure 12: Optimized filament paths using two-step gradient-based approach. (a) Center-

lines of optimized filaments in Layer-1, (b) Centerlines of optimized filaments in Layer-2,

(c) Volume-ratio in Layer-1, (d) Volume-ratio in Layer-2, (e) Plot with a local measure of

compliance (σ : ϵ).

Differential Evolution: filament path solutions

Differential Evolution is applied for the filament path optimization, again

using a 2-by-2 patch, a 32-by-32 mesh, and two layers (n = 2). For a success-

ful application of the Differential Evolution, we choose the suitable values of

cross-probability Cr, population size SP , and the maximum number of gen-

erations Gmax through a manual tuning process, i.e., a trial and error fashion

31



(detailed in Appendix A). The entire parameter tuning process maintains a

constant scale factor of F = 0.6 (Gämperle et al. (2002)), a convergence toler-

ance of ag ≈ 7 (a low tolerance avoids possible premature termination), and

a penalty coefficient of ϵp=105. The effect of ill-conditioning does not dictate

the upper limit of ϵp in Differential Evolution. Here, the candidate solu-

tions enter the infeasible design space regardless of the magnitude of penalty

coefficient. However, the high cost function value assigned for constraint vio-

lations solutions discourages Differential Evolution from preferring them for

subsequent generations, avoiding the convergence to infeasible design space.

For comparing with the two-step gradient-based approach, the solution

from the control parameters Cr=0.01, SP=135, Gmax=3000 is used. The

corresponding penalized cost function pb=136.45, attained in T ≈ 30 hours,

is comprised of the compliance cb = 136.39 Nmm and the constraint quantities

ϵp (Ga
1)

2 = 0.05, ϵp(G
b
1)

2 = 0.01, ϵp(G
a
2)

2 = 0 and ϵp(G
b
2)

2 = 0. Figure 13

shows optimized filament paths from Differential Evolution, their respective

volume ratio plots, and the local compliance measure cloc in the structure.

Additionally, Figure 13a and 13b also show the optimized filament paths

from the two-step gradient based approach superposed onto the Differential

Evolution solutions for comparison.
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(a) (b)

(c) (d)

(e)

Figure 13: Optimized filament paths in MBB structure using Differential Evolution. (a)

Centerlines of optimized filaments in Layer-1 of Differential Evolution superposed with the

centerlines of optimized filaments in Layer-2 of the gradient-based method from Figure

12b, (b) Centerlines of optimized filaments in Layer-2 of Differential Evolution superposed

with the centerlines of optimized filaments in Layer-1 of the gradient-based method from

Figure 12a, (c) Volume-ratio in Layer-1 (d) Volume-ratio in Layer-2, (e) Plot with a local

measure of compliance (σ : ϵ).

Observing the results, we infer that the two-step gradient-based and Dif-

ferential Evolution have attained slightly dissimilar filament patterns (com-

pare Figures 12 and 13). The two-step gradient-based approach started from
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an informatively chosen initial point and consistently reduced the cost func-

tion at subsequent iterations to converge at a final compliance of cf= 130.842

Nmm in T = 18 minutes (refer to Figure 11). On the other hand, Differen-

tial Evolution employed many candidate solutions and searched the function

space for the minimum solution, retaining the best candidate solution it

encountered throughout the search process (hence the staircase effect in Fig-

ure A.23). At the end of 3000 generations completed in T ≈ 30 hours (=

1800 minutes), the best candidate solution from Differential Evolution had

a compliance of cb = 136.39 Nmm. A critical comparison is next performed

considering different aspects of the utilized methodologies.

(i) Efficiency: In problems where several local minima are assumed,

population-based methods such as Differential Evolution may be frequently

preferred over gradient based methods, despite their high computational

cost. However, in the present work, the two-step gradient-based minimiza-

tion could produce an acceptable solution by reaching a final compliance

very near to the Differential Evolution ((cb-cf )/cf × 100 = 4.2%) at a much

lower computational cost. (ii) Operational Difficulties: Although Differential

Evolution is simple to implement, the need to tune the control parameters

for each problem makes Differential Evolution challenging to operate. (iii)

Influence of νa: Finally, Differential Evolution should be avoided because

it struggles with the proposed material model. Activation points νa larger

than 0.9 often randomly terminated the Differential Evolution due to an ill-

conditioned stiffness-matrix in the FE procedure. This is further discussed

in section 5.3, where the influence of the material parameter νa is studied.

For the reasons mentioned above, the two-step gradient based minimiza-
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tion will be applied to the filament path optimization in the remainder of

this contribution.

5.2. Optimized curved filament pattern-Vs-standard straight filament patterns

This section compares the structural compliance of optimized filament

patterns against the commonly used 45°/-45° and 0°/90° straight filament

patterns. A cantilever beam (Figure 14a), a Z-shaped part (Figure 14b), and

the previously-used MBB structure are employed for this purpose. Table 1

shows the different optimization parameters used in this study. Besides, the

filament width (w), maximum allowed gap (lmax), thickness (t), two-layer

(n = 2) assumption, convergence tolerance (ag1, ag2) and all the material

parameters are kept from the previous section. The penalty coefficient is

set to ϵp=10 and νa is set closer to one: νa = 0.99, producing the stiffness

components’ evolution depicted in Figure 15.

(a)

(b)

Figure 14: Example structures for Filament Path Optimization. (a) Cantilever beam, (b)

Z-shaped part
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Table 1: Parameters for optimizing the example structures

MBB Cantilever Z-Part

Finite

Elements
1024 2048 4032

Patches

Px × Py

2 ×2 = 4 4 ×2 = 8 5 ×3 = 15

Control

Points

CPx × CPy

5 ×5 = 25 7 ×5 = 35 8 ×6 = 48

Design

Variables

CPx × CPy × 2

50 70 96

Initial

Design

αin
1 /αin

2

61.8°/14.3° 18°/-18° -3.79°/-61.24°
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(a) (b) (c)

(d) (e)

Figure 15: Evolution of the five stiffness parameters s11, s22, s12, s44 and s23 for the

assumed material properties and νa=0.99. Only s11 is significant before inter-filament

fusion. The other components s22, s12, s44, s23 are very low for ν ≤ νa.

The minimization problem is solved and the optimized filaments are

shown in Figures 16 and 17. For clarity, the figures depict the filament paths

with a constant width of w=0.6 mm. Table 2 reports the filament path op-

timization results, also facilitating a comparison between the optimized and

standard straight filament patterns using ratios c
f
/c

in
, c

f
/c

45/-45
and c

f
/c

0/90
.

The ratio c
f
/c

in
measures the compliance reduction due to curvilinear fila-

ments relative to the initial straight filament design, indicating the benefit

of printing curvilinear filaments. On the other hand, the ratios c
f
/c

45/-45
and

c
f
/c

0/90
denote the compliance reduction by optimized filaments relative to

the 45°/-45° and 0°/90° straight filaments, respectively, indicating the overall

advantage of optimized filament designs over the standard filament patterns.
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(a) (b)

Figure 16: Optimized filament paths in cantilever. (a) Filament Layout-1 (b) Filament

Layout-2. Filament paths depicted with a constant width of w = 0.6 mm

(a) (b)

Figure 17: Optimized filament paths in Z-shaped part. (a) Filament Layout-1 (b) Filament

Layout-2. Filament paths depicted with a constant filament width of w = 0.6 mm

Curvilinear filaments vary the material orientations point-wise, locally

exploiting the anisotropy to tailor the mechanical properties in different di-

rections. Their significance is better realized with complex geometries like

Z-shaped part, as evident from the compliance reduction c
f
/c

in
in Table 2.

While the MBB beam and the cantilever already show 15% (c
f
/c

in
= 0.85)

and 12% (c
f
/c

in
= 0.88) compliance reductions due to curvilinear filaments,

the Z-shaped part reaches a higher reduction of 28%. Furthermore, the op-

timized filament paths offer promising benefits over the standard patterns,
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thanks to the strong anisotropy in the assumed material. On average, the

compliance of the optimum solutions are at least twice as better as the com-

pliance of 45°/-45° and 0°/90° straight filament patterns.

Table 2: Optimized solutions and comparison to standard straight filament patterns.

αin
1 /αin

2 : Layer angles at starting point; cin : Compliance at starting point; c
f
: Final

compliance; T : Computational time; νmax : Maximum volume ratio; νmin : Minimum

volume ratio; c45/−45 : Compliance of part with two layers at 45°and -45°; c0/90 : Com-

pliance of part with two layers at 0° and 90°

MBB Cantilever Z-Part

Final

Solution

c
f

c
in

0.85 0.88 0.72

νmax
1 /νmax

2 1.024/1.042 1.011/1.011 1.01/1.008

νmin
1 /νmin

2 0.92/0.99 0.94/0.94 0.58/0.75

T [min] 6 8 21

Optimized

Solutions

Vs straight

patterns

c
f

c
45/-45

0.45 0.25 0.25

c
f

c
0/90

0.49 0.49 0.66

Nevertheless, the ratios c
f
/c

in
, c

f
/c

45/-45
and c

f
/c

0/90
offer only reasonable

estimations of the improvements attainable from optimized filament paths.

The exact benefits of preferring them over the straight filament patterns can

be known through a more rigorous approach, in which their performances
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are compared after equalizing the quantity of material or the weights in both

cases (Tam and Mueller (2017); Khan et al. (2018)).

5.3. Decoupling the filament spacing influence on printing and transverse

direction stiffness

This section compares the optimized solutions from the proposed mate-

rial model with the classical model of Fernandez et al. (2019) that couples

the effect of filament spacing on all stiffness components. For the sake of dis-

tinguishing both the models, the optimization involving the Fernandez et al.

(2019) model is called Linear Material Optimization (LMO) and the one us-

ing the proposed model is called Nonlinear Material Optimization (NMO),

where the terms linear and non-linear indicate the corresponding transverse

stiffness behaviours with filament spacing in both material models.

LMO is performed here, applying the same initial conditions as in Section

5.2. Table 3 reports the LMO results, while Figures 18 and 19 depict the op-

timized filament paths. Next, the compliance for the LMO filament paths in

Figures 18 and 19 are estimated by the proposed (nonlinear) material model.

The newly evaluated compliance, called c
nL
, are then compared against the

initial compliance c
in
and the final compliance c

L
from LMO (refer to Table

3).
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(a) (b)

Figure 18: Optimized filament paths in the cantilever structure from LMO. (a) Filament

Layout-1 (b) Filament Layout-2. Gaps occur between filaments.

(a) (b)

Figure 19: Optimized filament paths in the Z-shaped part from LMO. (a) Filament Layout-

1 (b) Filament Layout-2. Gaps occur between filaments.

The optimized filament paths (Figures 18 and 19) and the numerical re-

sults (Table 3) from LMO are different from the NMO results in the previous

section. Particularly, the LMO filament paths have larger gaps than the

NMO filament paths in Figures 16 and 17. The corresponding differences in

the compliance assigned by the two material models are inferred from the

ratios c
nL
/c

in
and c

nL
/c

L
. For instance, LMO yielded a compliance reduction

of c
L
/c

in
= 0.81 and 0.62 for the cantilever and Z-shaped part, respectively.
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Whereas, the proposed nonlinear material model assigned higher compliance

to the LMO filament paths with c
nL
/c

in
= 0.95 and 4.36.

Table 3: Optimized solutions from the LMO and comparison of compliance assigned by

the linear and nonlinear material models for filament paths in Figures 18 and 19. cin :

compliance at starting point; c
L
: final compliance from LMO; νmax : maximum volume

ratio; νmin : minimum volume ratio; c
nL

: compliance assigned by the proposed nonlinear

material model

Cantilever Z-Part

Results

from

LMO

c
L

c
in

0.81 0.62

νmax
1 /νmax

2 1.05/1.05 1.048/1.036

νmin
1 /νmin

2 0.55/0.55 0.35/0.3

Comparison of

compliance from two

material models

c
nL

c
in

0.95 4.36

c
nL

c
L

1.2 7

Thus, larger inter-filament gaps and the reduced compliance result from

LMO, which are due to the over-estimated transverse stiffness component

at pre-fusion densities, produced, in turn, by the coupled linear variation

of all the stiffness components with the filament spacing. In contrast, the

proposed material model incorporates a decoupled behaviour by dropping

the transverse stiffness rapidly when the filament density is below a given

threshold (νi ≤ νa), which is expected to be a more realistic assumption that

leads to closely printed filament solutions from NMO.
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The activation points νa play a crucial role in the effectiveness of NMO.

So far, νa was set close to one i.e., νa → 1. For completeness, the influence

of varying this material parameter is investigated next.

Role of the activation point νa

NMO is done again as in Section 5.2, but with a lower value of νa=0.1.

Figure 20 shows the corresponding stiffness components’ evolution.

The compliance reduction factors of the optimized cantilever and Z-

shaped part are now cf/cin = 0.81 and 0.63, respectively. Figures 21 and

22 depict the optimized filament paths from νa = 0.1, also comparing them

against the solutions of νa = 0.99.

(a) (b)

(c) (d)

Figure 20: Evolution of the five stiffness parameters s22, s12, s44 and s23 for the assumed

material properties and νa=0.1. Before inter-filament fusion, all stiffness components are

significant, which is physically unrealistic.
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Similar to LMO, NMO with νa=0.1 yielded lower compliance reduction

factors and larger inter-filament gaps due to the coupled variation of all the

stiffness components with the filament spacing. Therefore, to avoid such

solutions, the present work assumed νa → 1 and treated the printing and

transverse stiffness differently to represent a physically sound phenomenon.

(a)
(b)

(c)
(d)

Figure 21: Influence of νa in Cantilever. (a) Optimized filament layout-1 with νa = 0.99,

(b) Volume-ratio plot for filament layout-1 with νa = 0.99, (c) Optimized filament layout-

1 with νa = 0.1, (b) Volume-ratio plot for filament layout-1 with νa = 0.1. NMO with

νa = 0.1 produce inter-filament gaps similar to LMO.

Note that it was also observed that a higher value of νa was more likely

to cause numerical difficulties during the minimization process because of

not feeding the transverse stiffness of distant filaments. Such scenarios pro-

duced ill-conditioned stiffness-matrix in the FE procedure that terminated

the FEA and, in turn, the minimization process. The gradient based ap-
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proaches can avert this issue to a certain extent by limiting the maximum

step-size attempted from the initial straight pattern. Differential Evolution,

on the other hand, does not allow for this because it searches the entire

design space with numerous candidate solutions and is likely to encounter

large gaps. For the same reason, while working with Differential Evolution

in section 5.1, the value νa=0.9 had to be used.

(a) (b)

(c) (d)

Figure 22: Influence of νa in Z-Shaped Part. (a) Optimized filament layout-1 with νa =

0.99, (b) Volume-ratio plot for filament layout-1 with νa = 0.99, (c) Optimized filament

layout-1 with νa = 0.1, (b) Volume-ratio plot for filament layout-1 with νa = 0.1. NMO

with νa = 0.1 produce inter-filament gaps similar to LMO.

Observing the significant influence of νa on the results, the appropriate

choice of this material parameter is therefore crucial and should be ideally

identified by experimental calibration.
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6. Conclusion and Outlook

This work dealt with the filament path optimization of in-plane FFF

structures, where two manufacturing constraints were imposed to obtain

production-ready solutions. A significant portion of this work focused on

proposing and applying a new material model that incorporated a decou-

pled variation of the printing and transverse stiffness components with inter-

filament spacing. The filament paths optimized using the proposed model

were observed to be more realistic, containing a lower proportion of inter-

filament gaps than those that resulted from a model that assumed a coupled

linear variation in all its stiffness components.

A second contribution compared the two-step gradient-based approach

and the Differential Evolution for the filament path optimization. The two-

step gradient-based approach achieved final compliance closer to Differential

Evolution at a lower computational cost, proving to be more efficient and a

preferable choice for this type of problem. A further reason to employ the

gradient-based approach is the appearance of numerical issues in Differential

Evolution when the stiffness components are activated close to inter-filament

fusion (i.e., νa → 1).

Following this work, verifying the conclusions drawn in this numerical

work through experimental testing and comparison against classical printing

patterns constitutes future work of high practical relevance. Another point of

immediate interest is the extension of the proposed approach to 3D problems.
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Appendix A. Control parameter tuning in differential evolution

Table A.4 shows four stages of applying Differential Evolution to the

minimization problem in Eq.(12). In each stage, multiple trials are conducted

using various combinations of cross-probability Cr, population size SP and

maximum generations Gmax, recording for each combination, the following

Table A.4: Tuning of control parameters. Cr : crossover probability; Gmax : maximum

generations; SP : population size of candidate solutions; pb : best value of cost function

reached by candidate solutions; T : computational time; G : completed number of gener-

ations before termination

Stages Cr Gmax SP pb T [min] G

I

0.99 100 50 7.3×109 18 100

0.5 100 50 1.8×107 20 100

0.01 100 50 5.6×106 21 100

II
0.5 250 50 1.3×107 24 125

0.01 250 50 3.3 ×106 59 250

III

0.01 250 80 1.1×106 72 250

0.01 250 125 0.79×106 114 250

0.01 250 170 4×106 150 250

IV

0.01 500 135 723 234 500

0.01 1000 135 208 522 1000

0.01 2000 135 143 960 2000

0.01 3000 135 136.45 1800 3000
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quantities : the best penalized cost function pb attained by the candidate

solutions, the number of generations G completed before termination, and

the corresponding computational time T . Based on the results of each trial,

the control parameters Cr, SP and Gmax are progressively tuned to reach

the final set of values that fetch the optimum solution.

Fixing the maximum generations to Gmax = 100, and the population size

to SP = 50, Stage-I applied three cross-probabilities that are representative

of its entire range: Cr = 0.01, 0.5 and 0.99. On one extreme, the value Cr

= 0.01 favours exploration of the design space, whereas Cr = 0.99 exploits a

potential candidate solution and refines it towards the minimum point. The

median value Cr = 0.5 balances both the exploration and exploitation factors

in equal proportion. Anyhow, all the three trials completed G=100 genera-

tions, yielding very high values of penalized cost function pb that indicated

severe constraint violations.

Stage-II allowed the same set of candidate solutions to evolve and explore

upto maximum generation of Gmax = 250. Only cross-probabilities Cr=0.5

and Cr=0.01 were used since Cr = 0.99 yielded unsatisfactory results in the

previous stage. The trial with Cr=0.5 converged upon a single solution and

prematurely terminated the minimization process at G = 125 generations,

yielding a penalized cost function pb = 1.3×107. Whereas, Cr=0.01 enabled

the exploration of the design space until maximum generation Gmax was

reached, attaining a significantly lower cost function pb at a higher compu-

tation effort (T=59 minutes).

Stage-III further explored the design space using larger population sizes:

SP=80, 125 and 170, while retaining Gmax = 250 and Cr=0.01 to catalyze
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the design space exploration. Compared to the results from SP=50, the

population size SP=80 reached a lower cost function of pb = 1.1×106, which

was in turn surpassed by the population size SP=125 to reach pb = 0.79

×106. The cost function did not reduce further when the population size

was increased to SP = 170. Whereas, the computational time T increased,

as expected, since a larger population size needs additional FE evaluations.

Based on the previous results, Stage IV parameters were set to Cr =

0.01, SP =135 and Gmax = 500 to 3000. The final cost function values pb

dropped with an increase of maximum generations Gmax, eventually reaching

pb=136.45 in G=3000 generations. Figure A.23 shows the history of the best

penalized cost function pb against the number of generations G. The param-

eter tuning process was stopped here, witnessing a decreasing reduction rate

in pb, which indicated that a (near) minimum had been found after sufficient

exploration of the design space.

Figure A.23: Decrease in the best penalized cost function pb as generations increase.

Solutions with best pb retained for multiple generations until a better solution is found

(elitist approach).

60


