Towards a Logic for Performance and Mobility
FULL VERSION

Rocco De Nicola!, Joost-Pieter Katoen?, Diego Latella3, and Mieke Massink®

! Univ. of Firenze, Firenze, Italy
denicola@dsi.unifi.it
2 Univ. of Twente, Enschede, The Netherlands
and RWTH Aachen, Aachen, Germany
katoen@cs.utwente.nl
3 ONR, Istituto di Scienza e Tecnologie dell’Informazione, Pisa, Italy
{Diego.Latella,Mieke.Massink}@isti.cnr.it

Abstract. KLAIM is an experimental language designed for modeling and programming
distributed systems composed of mobile components where distribution awareness and dy-
namic system architecture configuration are key issues. STOcKLAIM [13] is a Markovian
extension of the core subset of KLAIM which includes process distribution, process mobility,
asynchronous communication, and site creation. By enriching process actions with specific
rates characterizing the exponential distributions modelling the durations of such actions,
the extension makes it possible to integrate the modelling of quantitative aspects of mobile
systems—e.g. performance—with the functional specification of such systems. In this paper,
MoSL, a temporal logic for STOcKLAIM is proposed which addresses and integrates both
the issues of distribution awareness and mobility and those concerning stochastic behaviour
of systems. The satisfiability relation is formally defined over (states-/transition-)labelled
Markov Chains. A translation of the logic to action-based CSL is provided which allows
to use of existing aCSL model-checkers for the verification of STOCKLAIM models against
MoSL properties. Examples of applications are provided as well.

1 Introduction

During the last decades, computer systems have changed from isolated static devices to machines
that are highly interconnected to perform tasks in a cooperative and coordinated manner. These
modern, complex distributed systems—also known as global or network-aware computers [8]—are
highly dynamic and have to deal with frequent changes of the network environment. New features
such as distribution awareness and code mobility play a prominent role in the concept of global
computing. Dedicated programming and specification formalisms have been developed that can
deal with issues such as (code and agent) mobility, remote execution, and privacy and security
aspects (e.g., data integrity). Prominent examples of such languages and frameworks are, among
others, Obliq [7], Seal [10], and KLAIM [12].

Due to their enormous size— networks typically consist of thousands or even millions of nodes—
and their strong reliance on mobility and interaction, performance and dependability issues of
global computers are of utmost importance for “network-aware computing”. Spontaneous com-
puter crashes may easily lead to failure of remote execution or process movement, while spurious
network hick ups may cause loss of code fragments or unpredictable delays. The presence of such
random phenomena implies that correctness of practical global programs and their privacy guar-
anties are no longer rigid notions (“either it is safe or it is not”), but have a less absolute nature (“in
97% of the cases, privacy can be ensured”). The intrinsic complexity of global computers, though,
complicates the assessment of these issues severely. Systematic methods, techniques and tools are
therefore needed to establish performance and dependability requirements and guarantees.

This paper reports on our initial attempts towards such systematic methods. We consider an
extension of the core subset of KLAIM [5] with random delays, as proposed in [13]. This yields an

integrated specification language supporting major global computing paradigms such as process
mobility, process distribution, asynchronous communication of node names and processes through
shared local repositories (i.e., tuple spaces), and dynamic node creation, as well as randomly
delayed activities. For the sake of simplicity we restrict to exponential delays. This facilitates the
use of existing numerical techniques and software tools. The generalization of our approach toward
general distributions can be performed along the lines of [11].

The main contribution of this paper is a state/action-based, branching-time temporal logic
that permits specification of properties of stochastic core KLAIM terms. The logic permits to con-
sider the mobile and distributed aspects of global computing, its performance and dependability
requirements, and their combination. It allows, for instance, to state that “in equilibrium, the
probability that a piece of code currently at site £ eventually ends up at site £’ exceeds 0.9” and “a
certain network configuration can be reached without ever dynamically creating a new site”. The
syntax and semantics of the logic are detailed, and a mapping is provided for a large fragment of it
onto action-based CSL (aCSL [23]). The relation between aCSL and CSL (Continuous Stochastic
Logic [1, 2]) is similar to that between CTL and action-based CTL [15]. Our mapping facilitates the
use of the existing model checker ETMCC [24] for the automated verification of STOcKLAIM pro-
grams. ETMCC provides efficient algorithms for model-checking Continuous Time Markov Chains
and it has been used for the validation of a number of real-life applications. We illustrate our ap-
proach by modelling the spreading of a virus through a network and verifying stochastic properties
such as “the probability that the virus is spread to location £ within ¢ time-units is less than 1074”.
Several (temporal) logics have been proposed which aim at describing properties of systems related
either to mobility ([4,14,6,9,18,26] among others) or to probabilistic/stochastic behaviour (e.g.
[20,21,1,2,23]). To the best of our knowledge, the present paper is the first approach towards a
probabilistic logic for mobility.

The paper is further organized as follows. Section 2 presents the STOcKLAIM language and
its semantics in terms of action-labelled continuous-time Markov chains (CTMCs). Section 3 in-
troduces the “performobility” logic, its syntax and semantics, and examples that illustrate its
expressiveness. Section 4 discusses the issues of translating the logic into aCSL and its impact on
the model-checking algorithms. Section 5 presents the virus spreading case study and its verifica-
tion results. Section 6 concludes the paper. The detailed proofs can be found in Appendix B.

2 StocKlaim

In the following we shall briefly recall the STocKLAIM language definition. In [13] the definition
of the language is dealt with in full detail and a thorough discussion of the motivations for all
design choices is presented. We refer the interested reader to the above mentioned papers.

2.1 Syntax of StocKlaim

Let £, ranged over by I,I',11,..., be a set of localities, U, ranged over by w,u’,u1,..., a set of
locality variables, A, ranged over by A, A, Ai, ... a set of process variables, and R, ranged over by
r,r', 71, ... a set of rate names. We assume that the above sets are mutually disjoint. Moreover,
we let £, ¢' range over LUU.

The syntax of STOcKLAIM, is given in Table 1. A network node [:: {I') intuitively models that
value (I') is stored, or located, in node, or locality, I. Similarly, for process P, [:: {P) means that
P is stored in [as a piece of data. On the other hand, [:: P indicates that process P is running at
locality I. Complex networks are built from simpler ones by means of the network parallel operator
|. Given network N, the set of values located at locality ! consists of those I’ and P such that
1:(l'y orl:: (P) occurs in N. The set of processes running at locality ! coincides with all those
P such that [:: P occurs in N. The intuition behind action prefix (a,r).P is that the execution
time of action a is distributed exponentially with rate specified by rate name r. Rate names are
mapped to rate values by means of binding functions, which are (partial) functions from R to
IR*. Actions can be used for uploading/downloading of data as well as processes to/from specific

N ::= NETWORKS P ::= PROCESSES a ::= ACTIONS T ::= TEMPLATES

1: (1" nil out ¢ Q¢ l
| 1:=(P) | (a,r).P | outP@¢ | lu
| =P | P+P | inTQ@/? | 1A
| N|N | P|P | evalP@Y¢
| A | mnewlocu

Table 1. Syntax of STocKLAIM

localities. Process (remote) evaluation is also possible as well as the creation of new localities.
Compound processes are built using the usual operators like choice, parallel and instantiation.

2.2 Semantics of StocKlaim

The operational semantics definition characterizes a reduction relation over (network) configura-
tions. A configuration is a triple (L, 8, N)—henceforth written as L, 3 F N—where L is a finite
set of localities, 3 : R + IR is a mapping from rate names to rates, with (dom 3)—the domain of
B—also finite, and N a STocKLAIM network expression. We use L, (resp. 8. and N.) for L (resp.
B and N) in configuration ¢ = L, 3 F N. Let (Loc N) denote the set of all localities occurring free!
in N and (Rat N) be the set of all rate names occurring in N. A well formed network specification
is a network configuration L, 3 F N where:

— (LocN) C L, and (Rat N) C (dom B);

— each process variable A occurring free in N has a single defining equation of the form A 2 P,
where P may contain occurrences of A and other process names; occurrences of A on the right
part are always guarded, i.e. prefixed by a stochastic action;

— all rate names occurring in N are distinct and for expressions of the form in !4 @ ['.P, (i)
there exists at most one free occurrence of A in P which is not the first argument of an out
or eval operator, and (ii) there exists no defining equation for A.

In the sequel we shall consider only well formed specifications and we shall use the shorthand
(N,B) for (Loc N),B8 F N. Rate name uniqueness requirements ensure that whenever there is
more than one way to perform the same action, the total rate for such action—i.e. that obtained
considering the contribution of all the different ways to perform the action—will be taken into
account, as discussed in [13]. The reduction relation —» is the smallest relation induced by the
rules of Table 2. Notice that the reduction relation of Table 2 is slightly different from that
presented in [13] since each transition is labeled not only with the associated rate name, but also
with the actual action which has taken place and the locality where it has been executed—in [13]
the label consists of the rate name alone. The reason for such an enrichment of transition labels is
that the logic which we define in the present paper is (also) action-based. We let ACT denote the
set of all actions which can be generated by STOcKLAIM processes. In order to apply the rules of
Table 2 it is often necessary to rearrange configurations according to the Structural Congruence,
which is the smallest relation satisfying the laws given in Table 8 in the appendix. Notice that
the rules and laws are designed in such a way that rate name uniqueness is preserved by their
application, by means of function RN defined in Fig. 6, also in the appendix.

The operational semantics of a network specification (N, 8) are defined, like in [13], as the LTS

TS(N,B) = (C, A, —,co) where C is the set of (the representatives under = of) the configurations

reachable from (the representative under = of) the initial state co = (Loc N),3 + N, via the

transition relation — C C' x A x C. The label set A is a subset of £L x ACT x R.

! The definition of free and bound variables is the same as cKLAIM, as it can be found e.g. in [19].

LBFL:(outl” @) P |l P —Lowt"CUn pogr 1P|l P | U= (") (OUTL)

LAFl:(out Q@I r).P |l P Lowt @Ol pogri g p1 P |1 (Q) (OUTP)
where (Q', 8') = RN(Q, B)

LAFL:(nT@Ql,r).P |l =@y Lol eV, 7 311 PO« nil (INL)
/), i T =l
where @ = {e, i T=1"

LBF1:(in(lA) @, r).P |l = (P)y Lo @l 1 g P[P'JA]| I =nil (INP)

L,B+1: (newloc u,r).P —Lnewlec Uy 1y g b 12 Pl u] | T+ nil (NLC)
where I' = choose l; € L\ L

LBFl:(eval Q@I 7). P |l P/ Leval@CUm), p gy 1 p |1 P | Q (EVA)
where (Q', ') = RN(Q, B)

L Fi:p benly [V 3" N

s (PIN)
LBF1:A 22 [B"FN
where A 2 P and (P',8') = RN(P, B)

LBF1:P | N L2y [/ g 1P| N (CHO)
LBFl:Pi+P | N L2 [g1z P | N

(1,a,r) 1 ol 7
LB Ny | No =225 L', '+ N | N2
LBFN=L,5FNi,Bi =678
(l,a,07)

L1,ﬂ1 Ny — L2,ﬂ2 - Nz, (STC)

Lz,ﬂz = NQ = Ll,ﬁ’ = N’
LAFN ey 17 g - N

Table 2. Reduction Rules of STocKLAIM

The derivatives as well as the transition relation — are defined in the usual way using the
rules and laws given in the tables mentioned above. We say that such an LTS is finite if and only if
it is finitely branching and set C' is finite. Whenever such LTS is finite a finite CTMC can easily be
derived from it. There are several ways for assuring finiteness of the LTSs that are automatically
generated from higher level specifications, like process algebras. Some rely on syntactical restric-
tions, like avoiding certain (combinations of) operators, and they have been studied extensively in
the context of traditional process algebra (see e.g. [17]). Others, typically used in the context of
verification tools design, are based on the introduction of constraints on certain kinds of resources,
e.g. buffer sizes and data value domains, in the definition of the operational semantics. The latter
approach seems to be most suitable for STocKLAIM. For instance a limit can be imposed on the
maximum number of values which can be stored in a single node. We leave the details of these
issues for further study.

2.3 From StocKlaim to CTMCs

CTMCs have been extensively studied in the literature (a comprehensive treatment can be found
in [25]; we suggest [22] for a gentle introduction). For the purposes of the present paper we will
use the notion of action-labelled CTMC, as defined for instance in [23]:

Definition 1. An Action-labelled CTMC (AMC), M, is a triple (S, Act, =) where S is a set
of states, Act is a set of actions, and = C S x (Act x IR") x S is the transition relation.

In the sequel we consider only finite AMCs, i.e. finitely branching AMCs with a finite number
of states. Moreover, Act, ranged over by 7,7',71 is a set of located actions (I,a) where a is a
STocKLAIM action and [the locality where a takes place (we will omit the word “located” for
simplicity, when this will not cause confusion). Transition s +225 ¢ means that the process can
move from state s to state s’ while performing action v with an execution time determined by
an exponential distribution with rate A. We say that s € S is absorbing if and only if there is no
s',v and X such that s FL25 o' Notice that according to the above definition AMCs can have
self-loops. The presence of such transitions do not affect standard Markov Chain measures and
allows for a natural definition of the action-based temporal operators in the logic.
The AMC associated to a SToOcKLAIM network specification is defined below:

Definition 2. Given a network specification (N,B) and assuming TS(N,B8) = (C,A, = ,co)
finite, the AMC (S, Act, —) associated to the specification and denoted by AMC(N,), is

such that S = C, Act C (L x ACT) x RY and for all ¢,c' € S, c pLa)A, if and only if
0£A=" Y (Ber).
e

We close this section with a few definitions which we will use in the next section. Given AMC
(S, Act, =), I' C Act, and s,s' € S, let Rr(s,s'), E(s), and Pr(s, s') be defined as follows:

Rr(s,s') = Z{/\ | s FLAy ')
~er
E(s) = Z Raci(s,s')
s'eS
Pr(s,s') = Rr(s,s')/E(s)

That is, Rp(s,s') is the cumulative rate of moving from state s to state s’ via any action in I,
E(s) is the rate of the total sojourn time in s and Pr(s, s') the probability of moving from s to s’
performing an action in set I'. The definition of Paths over an AMC follows:

Definition 3 (Paths). Given AMC M = (S, Act, —),

i) an infinite path o over M is a sequence so(Yo,%0)81(71,t1)82(72,t2) . .. such that, for alli > 0,
s; € 8,7 € Act, t; € IR" and Ry,:1(8i,8i41) > 0. For infinite path o and i > 0 we let
len(o) = 00, o[i] = s;, a(o,i) = v, and §(0,%) = t;; for t € IR>¢ and i the smallest index such
that t < Y°5_, t; we let o(t) = oli].

ii) A finite path o over M is a sequence so(Y0,%0)s1(71,t1)82(Y2,t2) ---s1-1(Vi—1,t1-1)81 such
that s; is absorbing and, for 0 < i <1, s; € S,7v; € Act, t; € IRT and Ry,:3(8i,8i41) > 0.
For finite o, len(o) =1, oli], a(o,i), and 6(o,i) are defined only for i < 1; they are defined as
above for i <1, o[l] = s;, a(o,l) = v, and §(0,l) = oo; furthermore, for t > Z;;ﬂ t; we let
o(t) = oll], otherwise o(t) is defined as for the case o infinite.

For any state s of an AMC M, we let Paths(s) denote the set of all paths s (70, t0)s1 (71,%1)82(72, t2) - - -

over M with sg = s. A Borel space can be defined over Paths(s), together with its associated prob-
ability measure Pr, which is a slight extension of that defined e.g in [2] in order to take both states
and actions into consideration:

Definition 4 (Borel Space). Given AMC M = (S, Act, =), let so,...,8k €S, Yo, --»Vk—1 €
Act, with Ry,.3(8i,8i41) > 0 for 0 < i < k, and Iy, ..., Ix_1 non-empty intervals in IRxo. Then
C(50,%0, Loy - - -5 8k—1, Ye—1, [k—1, Sk) s the cylindric set consisting of all paths o € Paths(so) with
oli] = si for 0 < i < k and, for 0 < i < k, afo,i) = v; and 6(o,i) € I;. For any s € S, let

F(Paths(s)) be the smallest o-algebra which contains all sets C(so,Y0,Toy -3 Sk—1,Vk—1,Tk—1,5k)
forso,...,sx €S, 50 =5, andYo,..., V-1 with Ry 1(8i,58i41) >0 for0<i <k, and Ip,..., Iy 1
non-empty intervals in IR>o. The probability measure Pr on F(Paths(s)) is the unique measure
defined by induction on k as follows:

Pr(C(s0)) 4
def

Pr(C(SOJ’YO7IO7"'7sk—177k—171k71;3k)) = B
Pr(C(s0,70, 10, ---58%-1)) - Piyp_ 3 (8k-1,58) - (e‘E(Sk—l)'l - e*E(Sk—l)'I) fork >0

where I = infI,_; and I = sup I, (we let e~Elsr-1)T 2 if E(sg_1) >0 and T = 00).

3 MoSL: a logic for StocKlaim

In this section, we present MoSL, a logic for the integrated specification of functional—i.e.
qualitative—as well as quantitative—e.g. performance—properties of mobile systems modeled us-
ing STOCKLAIM.

3.1 Syntax of MoSL

Let £, U, and A be defined as in Sect. 2.1, p € [0,1] a probability value, =€ {<, <,>,>}, and
t € R* U {oo}. The syntax of MoSL is defined Table 3.

@ ::= STATE FORMULAE R ::= ATOMIC PROPOSITIONS ¢ ::= ACTION FORMULAE
tt AQ/ | tt

| X | (pae | ¢

| - | (A)ae | Eve

| &V | f:outf@/¢

| Spap(P) ¢ ::= PATH FORMULAE | f:out AQY

| Pow(p) ?.Us'd | £:infQ@¢
| ¢:inAQY/

| &:.U<'¢ | £f:evalAQY

| £:newlocu

Table 3. Syntax of MoSL

MoSL essentially extends aCSL in two dimensions. First of all, besides the trivial proposition
tt, MoSL state formulae include those built from AQI (resp. (I'YQI, {A)@[) modeling the fact that
process A is executing at locality ! (resp. value I’ or process A is stored at locality). Locality
variables can be used as well and they will be bound by means of action formulae of the form
£ : newloc u, as we will see later.

Moreover, requirements on actions are not expressed by sets of labels, as in aCSL, but they
are (boolean combinations of) action propositions directly reflecting the actions of STOcKLAIM.

We recall that Pup,(¢p) asserts that the probability measure of the set of paths stisfying ¢
meets the bound < p while S ($) means that the steady-state probability for the set of states
satisfying ¢ meets the bound < p. The path formula !155U<t @' is fulfilled by a path if a ¢'-state
is eventually reached by passing only through $-states before, while taking only transitions the
actions of which satisfy &; besides, going from the beginning of the path till reaching the @'-state
should last at most ¢ time units. The formula ¢5U§t @' requires moreover that (i) a move to a
&'-state is actually made and that (ii) this transition is labeled by an action satisfying &'.

As it is clear from the syntactical definition of MoSL, formulae may contain both locality
variables and process variables. While process variables will be used as non-interpreted symbols in
the definition of MoSL semantics, an action formula like [: newloc u may implicitly bind locality
variable u, when interpreted over an action of a path. Consequently, function Fr, defined in Fig.1,
characterizes the set of free (locality) variables of MoSL formulae.

Fr(tt) =gz Fr(¢: out £ @ ¢") < Fr(£) UFr(¢') U Fr(£")

Fr(A@?) < Fr(e) Fr(£:out AQ¢') < Fr(£) UFr(¢)

Fr((¢)Qf) = Fr(¢') UFr(£) Fr(€:in ¢ @¢") < Fr(¢) UFr(¢) UFr(¢")

Fr((A)@¢) < Fr(f) Fr(¢:in A@¢) < Fr(f) UFr(¢)

Fr(~®) = Fr(®) Fr(¢:eval AQ ¢') < Fr(£) U Fr(¢)

Fr(® v %) = Fr(®) U Fr(¥) Fr(£: newloc u) % Fr(f)

Fr(Soap(®)) = Fr(d) Fr(@US' @) ' Fr(&) U Fr(€) U Fr(n)u

Fr(Poap () = Fr() Fr(#) \ (Bnd(£) U Bnd(n))

Fr(¢ Vp) < Fr(¢) UFr(n) Fr(¢U<'¥) = Fr(®) UFr(£) U (Fr(®) \ (Bnd(£)))

def def

where we let Fr(l) = @ for all localities I € £, Fr(u) = {u} for all locality variables u € U. Function
Bnd is defined below and characterize the set of locality variables which are bound by an action

formula:
def

Bnd(tt) =g Bnd(/:inf @¢") =g
Bnd(—¢) =g Bnd({:inAQ@/¢) g
Bnd(¢ V 1) = Bnd(¢)NBnd(n) Bnd({:eval A@¢) % &
Bnd(£: out £ Q ¢") = @ Bnd(¢: newloc u) < {u}
Bnd({:out AQ /) g

Fig. 1. Free Locality Variables in MoSL

In the following only well-formed formulae will be considered. We say that a formula & is if and
only if it contains no free variables (i.e. Fr(®) = &) and each action formula £ occurring in @ binds
at most one locality variable.

A few comments on the definition of functions Fr and Bnd are on demand. First, notice that
free occurrences of u in & remain free also in & Uy ¥ (and & ;U<' @), even if they are bound by
& (i.e. they are elements of Bnd(£)). As we will see in the definition of the semantics of MoSL, a
path formula of the logic will be interpreted, via relation }=, over a path ¢ as defined in Sec. 2.
Now, for defining o = & U<' ¥ it is necessary to know if o[0] = &; on the other hand, any binding
of u by means of a sub-formula of £ of the form £ : newloc u will take effect only from o[1] on,
i.e. after the "first transition” has taken place. Similarly, we get u € Fr(® 5U;t¢) if w € Fr(n),
even in the case u € Fr(§). Another issue which deserves some attention is the definition of
Bnd(£ V n). Consider the formula tt (U &, where ¢ is the formula [: newloc u V I : out 1 @1
which informally means that a state where ¢ holds will eventually be reached via a transition
corresponding to the execution of action newloc u or out [@ [(in locality [); in the latter case,
no binding occurs for v and this would make it wrong to use the variable in ¢. Consequently, in
such cases Bnd returns the empty set. Conversely, u can safely occur in @ in the above formula
if £ stands for Iy : newloc u V Iy : newloc u. Finally, notice that Bnd(—¢&) is the empty set
since variables u occurring in formulae like [: newloc u in £ are actually not bound if —¢ is
satisfied. Strictly speaking, if for instance ——l : newloc w is satisfied, then u should be bound
to the locality I’ appearing in the transition. A proper study of the contexts where the binding
should take place and those in which this is not the case could allow for a more refined definition
of Bnd. Another issue could be the requirement of Bnd(£) = Bnd(n) for all action formulae & V 7.
This requirement forbids for instance the formula ! : newloc u; VI : newloc us. A possible
alternative could be to drop the requirement, defining Bnd(¢ V 1) = if (Bnd(€) # @) A (Bnd(n) #

&) then (Bnd(§) UBnd(n)) else @. At the semantics level, when the formula is matched against
!l : newloc !’ the substitution [I'/u1,!'/us] will be generated. On the other hand, one should still
take care that formulae like I; : newloc u; V I» : newloc us are not allowed since whatever
substitution will be generated at the semantics level, this would bind at most one of u; or us. In
the present paper we adopt simpler, but safe solutions for both issues.

3.2 Semantics of MoSL

MoSL state formulae are interpreted over the states of AMC(N,) = (S, Act, —) obtained from
a STocKLAIM network specification (8, N) as described in Sect. 2. We recall here that the states
of such an AMC are STOocKLAIM configurations. MoSL formulae may contain locality variables
which are instantiated by proper substitutions as described in the definition of the satisfaction
relation below. Such substitutions are generated whenever an action (I,newloc I') in a path of
AMC(N,) satisfies an action formula of the form ! : newloc u, for some u € U, and the as-

sociated substitution is [I'/u]. As usual, by J[l;/u1,...,l,/u,] we denote the formula where all
free locality variables of & belonging to {ui,...,u,} are replaced by the corresponding locali-
ties Iy,...,l,. We let [|] denote the empty substitution and, without loss of generality, for @; =
[fur, oo bt 0 s, U ful] a0 O = [0l Uy, U il o L],
with {155} N {u, ... un} = @ we let ©1 < Oz be defined as the substitution

[ll/ul’] ln/“") llll/ulla v 7llrln,//u’:n= l;:m+1/u:n+1a sy l;:m+h/ulrn+h]

The satisfaction relation for state-formulae is given in Table 4 and is self-explanatory. The def-

s Ett sEAQl iff No=N'|l: A
sE - iff not sj=® sE{)al iff Ng=N'"|1:(l")
sE®VY iff sEPorsEW s | (AYal iff Ny =N'|1::({A)

s | Spap(@) iff lim; oo Pr{c € Paths(s) | o(t) E &} > p
s = Poap() iff Pr{o € Paths(s) | o |= ¢} >p

Table 4. Satisfaction relation for state-formulae.

inition of the satisfaction relation for path-formulae given in Table 5 makes use of the substitu-
tion generator function SBS, where SBS((I, newloc I'),1 : newloc u) = [I'/u], SBS(y,€ V 1n) =
SBS(,£) aSBS(v,7), and SBS(7,£) = [] in all other cases. Note that the the well-formedness of
(action) formulae guarantees that SBS generates a substitution, which binds at most one locality
variable. As it should be clear from the formal definition, as soon as an action in a path satisfies an
action formula of the form newloc u, variable u is properly bound and the substitution thus gen-
erated is used for binding the free variables in the scope of the action formula. The interpretation
of action formulae is given in Table 6.

The operators of MoSL can be used for defining some useful and frequently used derived
operators (see Table 7).

4 A translation of MoSL to aCSL

In this section we present a translation from a large fragment of MoSL to aCSL and we show its
correctness. The fragment includes all MoSL formulae except those which contain sub formulae
of the form £ : newloc u. Our conjecture is that the latter formulae can be represented as proper
disjunctions indexed with all possible values u can take for a given AMC, as we shall briefly discuss
at the end of the present section. In the following, we let MoSL™~ denote the restricted language.

o= ®: U< ¥ iff o[0] |5 ¥ or there exists k : 0 < k < (leno) such that
the following three conditions hold:
-olk] E PO,
-t > Zfz_ol 5(01 ’L)
- oli] | ®0;and a(o,i) |E £O;, for all i with 0 < i < k
where @ =]
©; ¥ ©i_1 <SBS(a(o,i —1),£) for all i > 0
o = & U5 ¥ iff there exists k : 0 < k < (leno) such that
the following four conditions hold:
-olk] E PO,
-t > 32055 8(0,4)
-olk —1] | $Or_1anda(o, k — 1) |F nOr—1
- oli] E ®0;and a(o,i) E£O;, for all i with0 < i < k —1
where @ =]
Or = @1 aSBS(a(a, k —1),7)
©; £ O;_1 <SBS(a(o,i—1),&) for all i with 0 < i < k

Table 5. Satisfaction relation for path-formulae.

v Ett yEl:inl'@l" iffy=(,inl' Q")

vE € iff not vy = ¢ yEl:inAQl iffy=(,inAQl)

YEEV D iffyEtoryEn yEl:evalAQU' iff y = (l,eval AQ ')
yEl:outl' Q" iff y = (l,out ' @1") v | l: newloc u iff there exists I’ € £
yEl:out AQU' iff y=(l,out AQ') such thaty = (I,newloc l')

Table 6. Satisfaction relation for action-formulae.

Given a MoSL™ formula &, and a network specification (IV, 8), and assuming its LTS T'S(N, 8) =
(C, A, — ,co) finite, with AMC(N, 8) = (S, Act, =) being the related AMC, the question is how
to translate & into an aCSL formula in order to perform model checking using an existing aCSL
model-checker.

Since in aCSL only action atomic propositions can be expressed, the first step of our procedure
is concerned with finding a way for incorporating state atomic propositions into the transition
labels of the AMC. To that purpose, let Ry,..., R, be all the atomic propositions occurring in b.

For notational simplicity, we associate a unique name p; to each X; above. Moreover, we use such

names for building factors, in boolean product expressions, of the form z; ...z, € B(p1,-..,Pn) B

xj—1{pj,P;j}, with p; # p; for i # j. For instance, B(p1,p2) is the set {p1, P2, p1p2, P1P2, p1p2 }-
We define the characteristic function of S as the function x from S to B(p1,...,pn) such that,

for all s € S, x(s) = 2 ...2, such that, for j = 1,...,n, zj = p; if s = N; and z; = p; if

def

$:U, 0 = $.Us®0 Poap(405 &) = Pogp(tt AU D)

UV = o,U¥ Pop(405 @) E Py (405t ~0)
def e:

X' b US' D Poap (40t &) = Pogy(tt AU D)

e = Pro(Xed) Pocp(40") = ~Pop(40<" =)

e = ~()-

Table 7. Derived operators.

s = X; does not hold. Notice that the above satisfiability check is computed by a simple (static)
analysis of (the network component of) s. The idea behind this representation is that we take
B(p1,...,pn) as the domain for an interpretation function R over MoSL™ in such a way that
each atomic proposition—or boolean combination of atomic propositions—is mapped into the (set
of the disjuncts of the) sum-product-form expression representing it. Formulas containing proba-
bilistic/temporal operators are instead mapped into the (set of disjuncts of the) sum-product-form
expression of true (tt). Function R is then used for building, by means of function A, proper action
index-sets (in the until sub-formulae) of the aCSL formula T(®) resulting from the translation of
&. Before giving the formal definition of the above mentioned functions, we define the associated
translation on the AMC side.

We transform AMC(N,) into another AMC, FAMC(N, (), by moving the relevant state

information forward to the transitions emanating from states.

Definition 5. Given AMC AMC(N,B) = (S, Act, —) and bijective encoding cod of Act x
B(p1,...,pn) into finite set Y, we define FAMC(N, 3) as the AMC (Sr, Actr, \=r) with Sp = S,
Actp CT and —r such that s IMA—)ps’ if and only if s LAy gl
For every path o € Paths(s) over AMC(N,) there is a corresponding path o over FAMC(N,)
where the obvious correspondence is the following one: for all i > 0, op[i] = o[i], a(or,i) =
cod(a(o, i), x(o[i + 1])), and 6(oF,i) = 6(c,4). We let Pathsg(s) denote the set of all such paths.
It is worth pointing out that this transformation cannot deal properly with absorbing states.
In the following we assume AMC(N, 8) does not contain absorbing states (they can be eliminated
by equipping them with proper self-loops).
The translation function T is defined in Fig. 2. It uses function A which is defined as follows

A(E,8) = {cod(y,p) € Actr | v € set(€),p € R(P)}

where set(£) is the set of actions corresponding to action formula &; its definition is left out here,
being the obvious one (eg set(l1 :out l2 @ l3Vl4 ;in l5 @ l6) = {(ll, out lQ @ l3), (14, in l5 @ la)})
It is easy to see that the following Lemma holds:

Lemma 1.
For all N,j,s,P,7,&, the following holds: cod(vy, x(s)) € A(E,) implies AMC(N,B),yE¢{ DO

Function R is defined in Fig. 3 and, as we anticipated above, for each atomic state proposition—
or boolean combinations of atomic propositions—it generates the associated representation in
B(pi,...,pn). For instance, assuming X; represented by p;, for j = 1,2 we have R(-tt) = &,
R(tt) = {p1P2,P1p2, P1D2, P1P2 }, and R(Ny) = R(—R3) = {p1P2, p1p2} On formulae containing also
stochastic or temporal operators R behaves as for tt. Predicate PCF characterizes the subset of
MoSL™ formulae which do not contain modal operators, i.e. formulae which are only (boolean
combinations of) state-atomic propositions.

Function R enjoys the property stated by Lemma 2 below, which will be exploited in the proof
of correctness for the translation procedure?.

Lemma 2.
For all N, (,s, and ¢ the following holds:

i) if PCF(®) then we have AMC(N,),s E @ iff x(s) € R(®)
it) AMC(N, B),s = @ implies x(s) € R(P) O

An immediate consequence of Lemma 2, and of the definitions of functions A and cod is the
following Lemma:

Lemma 3.
For oll N, 8,5,8,7v,& such that AMC(N, 8),v k= &, the following holds: AMC(N, B),s = & implies
cod(v,x(s)) € A(§, P) m

10

T(et) =t T(Soxn(®)) = Soan(T(®))

T(X) Z P (X gt t) T(Poap(9)) = Poap(T())

T(-8) = -T(9) T(Ut P) E T(P) age,0) U T(P)
T@Vve) L T(@) VT T(®2:U5'®) = T(D) Ao Usle o) T(@)

Fig. 2. Logic Translation function

Function T essentially moves every requirement on states X which is an atomic proposition—or
a boolean combination thereof—to a requirement on all transitions emanating from such states.
Intuitively, it is required that the labels of such transitions are “marked” by the requirement.
Technically, this is achieved by requiring them be elements of A(tt,X) and it is the logic coun-
terpart of the definition of —r. Notice that we use the fact that the aCSL path operator Px(-)
expresses the CTL path-quantifier V-. Such correspondence is justified only under specific fair-
ness conditions [3]. On the other hand, the specific form of formulae we are dealing with (i.e.
X 4(tt,n) tt), together with the fact that, by construction of FAMC(N, B), either all transitions
emanating from a state are included in A(tt,XN) or none of them is, make the fairness constraints
irrelevant for the case at hand. The only other interesting cases of the definition of T are those for
the until formulae. Notice that action requirements £ and &' are enriched with those coming from

formula @. In particular, this holds for ¢ due to the fact that state properties are moved forward
to emanating transitions.

R(tt) < B(p1,...,pn) R(®V®) < R(®)UR(P), ifPCF(®V &)
R(Y;) = {z1...2 | 2 = pj,2 € {pi, i}, = R(tt), otherwise
forj#i=1,...,n}, forj=1,...,n R(Spap(®)) def R(tt)
def .
R(~®) = R(tt) \ R(®), if PCF(—~) R(Poap(9)) = R(tt)
= R(tt), otherwise
where
PCF(tt) = tt PCF(®V &) = PCF(®)APCF(¢')
PCF(R;) =tt, forj=1,...,n PCF(Spp(®)) = fF
PCF(~®) & PCF(®) PCF(Pop () & ff

Fig. 3. Function R

The three lemmas above are used in the proof of the main theorem below:

Theorem 1.

For MoSL™ formula ®, and a network specification (N, 3), the following holds: for all states s of
AMC(Na ,8)) AMC(Na ﬂ)a B} IZMOSL_ 2 iﬁ. FAMC(Na ;8)3 $ IZaCSL T(é) o

5 Modeling and analysis of the spreading of a virus

In this section we show how STOcKLAIM can be used for modeling the spreading of a virus in a
network. We also give examples of interesting qualitative and quantitative properties of the model
that can be expressed in MoSL. This example has been inspired by a similar one in [16] and used
also in [13].

2 In the sequel, in order to avoid confusion, we will explicitly indicate the AMC in the satisfiability
relation: e.g. M, s |= @ indicates that s = & in AMC M.

11

We model a network as a set of nodes and the virus running on a node can move arbitrarily
from the current node to a subset of adjacent nodes, infecting them. At each node, an operating
system runs, which upon receiving the virus, can either run it or suppress it. In this paper, for the
sake of simplicity we consider simple networks which are in fact grids of n x m nodes. Each node
is connected with its four neighbors (north, south, east, west), except for border nodes, which lack
some connections in the obvious way (e.g. the nodes on the east border have no east connection).
Moreover, we assume that the virus can move only to one adjacent node. Finally, we refrain from
modeling aspects of the virus other than the way it replicates in the network. In particular we do
not consider the local effects of the virus and we make the virus die as soon as it has infected one
of the neighbors of its locality.

The specification schema of the virus and the operating system running at each node is given
in Fig. 4, where a network is conventionally represented as a n x m matrix of localities 1;;.

I

Vij (out Vio1j (@) li_lj,nij).nil +

/* alternative present only for ¢ > 1 */

(O'I.lt Vit Q Lit1j, sij).nil +

/* alternative present only for ¢ < n */

(out V541 @ 15541, e45).nil +

/* alternative present only for j < m */
(out Vij—1 Q lij_l,wij).nil

/* alternative present only for j > 1 */

>

(il’l 'C @ lij,uij).xij +

/* the received virus is undetected and will run */
(in Ic@ lij,dij).oij

/* the received virus is detected and suppressed */
(eval C @ 15, r;;).0s5

/* the virus is activated */

I

Fig. 4. Specification of an infected network

For the verification, we chose n = m = 3 with the following initial state No: 111::011 | 111::(V11),
while 1;5::0;5 for 1 < ¢,5 < 3 with ¢ # 1 or j # 1. The resulting LTS is not shown for space reasons;
it consists of 28 states and 52 transitions.

There are several interesting issues of the spreading of the virus which can be addressed using
MoSL. The first property, ¢, is an example of a purely state-based quantitative property. The
probability that the virus is running at node 1;; within ¢ time-units after the infection of node 1;;
is smaller than a given upper bound p. This property becomes more interesting when we define
the rates associated to the detection (resp. lack of detection) of the virus in such a way that the
operating systems of the localities on the diagonal from bottom-left to top-right—0s31, 022, and
013—have a relatively high rate of detection and can be considered as a firewall to protect the
nodes 132, 133, and 1o3.

The property can be expressed in MoSL for locality 133 and p = 0.2 as follows:

Peo.2(—(V33Q1z3) 1 US V33@135)

Let Ny stand for V33@133 and assume it be represented by ¢. Let also VrsAct be the set of actions of
AMC(Ny, Bo) and assume the encoding be defined simply as 3 cod(y, z) = (v, z). The translation
T(®1) then yields the following aCSL formula:

<t
Po2("P21(X gtt,m0) B) actt,—x) U Pe1(Xgtt,ng) t))
3 In practice, due to lexical restrictions on action labels imposed by the implementation of ETMCC, the

encodings we used in actual experiments are slightly more involving.

12

where A(tt,N;) is the set {(v,q) € VrsActr | v € VrsAct} and, similarly, A(tt,—8;) is the
set {(7,q) € VrsActr | v € VrsAct}. Fig. 5 shows the probability to reach, from the initial
state, a state where the virus is running in locality 133. The measure is presented for time values
ranging from 1 to 10 with Boe;; = Boni; = Bosiyy = PBowi; = Boryy = 2 for 1 < 4,5 < 3,
/30 d31 = /30 d22 = 50 d13 =].0, and ,30 dz'j =1 otherwise, ,30 uszr = ,30 U29 = ,30 Uiz =]., and
Bo us; = 10 otherwise.

We performed similar analyzes for different values of the detection (resp. lack of detection)
rates of the firewall. In particular for ds;,d22,dis and usy, usa, w13 ranging over [1,...,10], with
d(4—s); + ua—s); constant for 1 < i < 3 (and equal to 11).

For the sake of readability, in Fig. 5 we show the results only for dsq, dss,d13 € {1,6,10} and
us1,Ua2, u13 € {1,5,10}. The results clearly indicate that for high detection rates the probability

1.00E+00

1.00E-01 E—

1.00E-02 - — e

1.00E-03 © . FWd10u1l

. Fwd6us
. FWd1ul0

1.00E-04

Probabilty in initial state
N

1.00E-05 "/'

1.00E-06 711 7T 1T 1 1T 1T T T T T T T T T T T

time units t

Fig. 5. Results for Firewalls with different detection capability

for locality l33 to run the virus within a certain time interval is lower.

Stochastic model-checking permits also the verification of qualitative properties as a degenerate
case of quantitative ones. For instance, an interesting property is: “whenever a node is infected
(i.e. a virus runs on it) the virus may move to a neighbor in the next step”. For instance, in the
case of node 133 the property of interest, @2, is:

V33Q@Q133 = (133 :out Vi, @ 132> tt

The translated formula T(®2) is given below, where we let £ stand for 133 : out V3y @ 135, and ¥,
as before:

(P21 (X gt 0) 16)) V (Po(tt 5 U 4 ¢ 1) t)

Set A(S,tt) is the set {(133 :out VED) @ 132,(]), (133 :out VED) @ 132,@)} n V’I‘SACtF. The model-
checker shows that @5 holds in every state.

6 Conclusions

In this paper MoSL, a stochastic logic for STocKLAIM has been proposed. STOCKLAIM is a
stochastic extension of the core subset of KLAIM, a prototype language for modelling and pro-
gramming global or network-aware computers. STOcKLAIM addresses process mobility, process
distribution, asynchronous communication through shared local repositories (i.e., tuple spaces),
and dynamic node creation, as well as randomly delayed activities.

The logic addresses both spatial and temporal notions to reflect both the topological structure
of systems and their evolution over time. In connection with the duration attributes of SToOcKLAIM

13

process actions, the logic provides probabilistic operators which naturally express steady-state
probabilities as well as probability measures of paths specified with typical until formulae. The
logic integrates both the state-based paradigm and the action-based one and provides specific
state atomic propositions addressing data and process distribution. It also provides specific atomic
propositions for actions in order to characterize relevant activities taking place during executions.

The formal semantics of M oSL has been presented and a mapping from a large fragment of the
logic to aCSL, the action based Continuous Stochastic Logic described in [23], has been formally
defined and shown correct. The availability of such mapping(s) provides the possibility of model-
checking systems modelled by STOcKLAIM against requirements specified in M oS L using existing
model-checkers for aCSL, like ETMCC. Together with M. Loreti, we are currently implementing
the translation function between the two logics and the actual associations of a transition system
to STOcKLAIM processes that will represent the model for the formulae to be checked.

The next research steps we intend to take are on one hand the implementation of the above
mentioned mapping, and on the other to investigate the possibility of extending £ to deal also
with formulae containing newloc . The first attempt we shall make is to assume existence of a
finite number of locations and to model location creation as a nonderministic choice between those
locations that are still unused. The translation would follow the pattern below:

If we let AMC be system M = (S, Act, I~), and let NewLocs(M) be defined as the set of
fresh locations:)

{1|3c,d ', \. c{newloc DA, 1y

we can define T(®, newloc u; U mewloc uy, ') @ follows:

V T(é[lll /ul]) A(l1:newloc l’l,é[l’l/uﬂ)Uj)(tlg:newloc 15, &' [l Ju1,l} [us]) T(QI [lll /ula lIQ/uz])
1 i,eNewlLocs(amc(N,B))

Together with the implementation of the translations that would guarantee a rapid prototyping
of a model checker for M oS L we shall also investigate feasibility and convenience to develop direct
model-checking algorithm. Another issue will be the extension of STocKLAIM in order to cover a
larger subset of KLAIM and the related extension of MoSL.

We shall also consider more expressive logic that allows to reason about (spontaneous) sites fail-
ures and shall study paradigmatic examples to assess adequacy and expressiveness of the proposed
logics. In this respect, we shall also investigate the relationships between behavioral equivalences
(e.g. those bisimulation based) and the equivalences induced by the considered logics.

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking Continuous Time Markov Chains.
ACM Transactions on Computational Logic, 1(1):162-170, 2000.

2. C. Baier, J. Katoen, and H. Hermanns. Approximate Symbolic Model Checking of Continuous-Time
Markov Chains. In J. Baeten and S. Mauw, editors, Concur ’99, volume 1664 of LNCS, pages 146-162.
Springer-Verlag, 1999.

3. C. Baier and M. Kwiatkowska. On the Verification of Qualitative Properties of Probabilistic Processes
under Fairness Constraints. Information Processing Letters, 66(2):71-79, 1998.

4. L. Bettini, R. De Nicola, and M. Loreti. Formalizing Properties of Mobile Agent Systems. In F. Arbab
and C. Talcott, editors, Coordination Models and Languages, volume 2315 of LNCS, pages 72-87.
Springer-Verlag, 2002.

5. L. Bettini, V. Non, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese, E. Tuosto,
and B. Venneri. The Klaim Project: Theory and Practice. In C. Priami, editor, Global Computing:
Programming Environments, Languages, Security and Analysis of Systems, volume 2874 of LNCS,
pages 88-150. Springer-Verlag, 2003.

6. L Caires and L. Cardelli. A spatial logic for concurrency (part I). Information and Computation.
Academic Press, Inc., 186(2):194-235, 2003.

7. L. Cardelli. A Language with Distributed Scope. In 22nd Annual ACM Symposium on Principles of
Programming Languages, pages 286-297. ACM, 1995.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

L. Cardelli. Abstractions for Mobile Computations. In J. Vitek and C. Jensen, editors, Secure Internet
Programming, volume 1603 of LNCS, pages 51-94. Springer-Verlag, 1999.

L. Cardelli and A. Gordon. Anytime, anywhere: modal logics for mobile ambients. In Twentyseventh
Annual ACM Symposium on Principles of Programming Languages, pages 365-377. ACM, 2000.

G. Castagna and J. Vitek. Seal: A framework for Secure Mobile Computations. In H. Bal,
B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages, volume 1686 of LNCS,
pages 47-77. Springer-Verlag, 1999.

P. D’Argenio, J. Katoen, and E. Brinksma. Specification and analysis of soft real-time systems:
Quantity and quality. In Real-Time Systems Symposium, pages 104-114. IEEE - The Institute of
Electrical and Electronic Engineers, 1999.

R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interaction and
Mobility. IEEE Transactions on Software Engineering. IEEE CS, 24(5):315-329, 1998.

R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitative analysis of KLAIM-based
mobile systems. In Proceedings of the 20th Annual ACM Symposium on Applied Computing - Special
Track on Coordination Models, Languages and Applications. Association for Computing Machinery -
ACM, 2005. (To appear).

R. De Nicola and M. Loreti. A modal logic for mobile agents. ACM Transactions on Computational
Logic. ACM Press, 5(1):79-128, 2004.

R. De Nicola and F. Vaandrager. Action versus state based logics for transition systems. In I. Gues-
sarian, editor, Proceedings of LITP Spring School on Theoretical Computer Science, volume 469 of
LNCS, pages 407-419. Springer-Verlag, 1990.

A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic KLAIM. In R. De Nicola, G. Ferrari, and
G. Meredith, editors, Coordination Models and Languages, volume 2949 of LNCS. Springer-Verlag,
2004.

A. Fantechi, S. Gnesi, and G. Mazzarini. How Much Expressive Are LOTOS Expressions? In J. Que-
mada, J. Manas, and M. Thomas, editors, Formal Description Techniques — III. North-Holland
Publishing Company, 1991.

G. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification environment for mo-
bile processes. ACM Transactions on Software Engineering and Methodology. ACM Press, 12(4):440—
473, 2003.

D. Gorla and R. Pugliese. A Semantic Theory for Global Computing Systems, 2004. (Submitted for
publication. Available at http://www.dsi.uniromal.it/ gorla/papers/bisdk-full.pdf).

H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of
Computing. The International Journal of Formal Methods. Springer-Verlag, 6(5):512-535, 1994.

S. Hart and M. Sharir. Probabilistic Temporal Logics for Finite and Bounded Models. In R. De Millo,
editor, 16th annual ACM symposium on Theory of computing, pages 1-13. Association for Computing
Machinery - ACM, 1984. ISBN 0-89791-133-4.

B. Haverkort. Markovian Models for Performance and Dependability Evaluation. In E. Brinksma,
H. Hermanns, and J. Katoen, editors, Lectures on Formal Methods and Performance Analysis, volume
2090 of LNCS, pages 38-83. Springer-Verlag, 2001.

H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle. Towards Model Checking Stochastic Process
Algebra. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Methods - IFM
2000, volume 1945 of LNCS, pages 420—439. Springer-Verlag, 2000.

H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle. A Tool for Model-Checking Markov Chains.
International Journal on Software Tools for Technology Transfer. Springer- Verlag, 4(2):153-172, 2003.
V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.

S. Merz, M. Wirsing, and J. Zappe. A Spatio-Temporal Logic for the Specification and Refinement of
Mobile Systems. In M. Pezzé, editor, Fundamental Approaches to Software Engineering (FASE 2003),
volume 2621 of LNCS, pages 87-101. Springer-Verlag, 2003.

15

A Auxiliary definitions for StocKlaim Operational Semantics

Table 8 defines the Laws of the Structural Congruence on STOcKLAIM expressions which is used by the
Reduction Rules of the operational semantics. Both the Laws and the Rules are designed in such a way
that rate name uniqueness is preserved by their application, by means of function RN defined in Fig. 6.

LBFN, | No=L,AFNy | My (CO|)
LBENy | (N2 | Ns)=L,BF (N1 | N2) | N5 (AS])
LAFl:P=LA+F1:P|nil (NE|)
LBFl:Pi+P,=LAFI=Po+ P (CO+)

LAF1:P + (P2 + P3)EL,ﬂ|—l:: (Pl + P2) + Ps (AS—I—)

L,BFl::P=L,BF1: P+nil (NE+)
LBrl:P |P,=LAFI:P|l:P (CLO)
L,BFN=L,(B06 ") N8 (REN)

for any 6 : R — R injective, and such that
dom @ = (Rat N) and (rng0) N (domB) = &

Table 8. Structural Congruence of STocKLAIM

RN(nil,) % (nil, §) RN(P op Q,B) = (P' op Q',8'),0p € {+,}
RN((a,r).P,8) = ((a,r").P', ") where
where (P’,ﬁu) = RN(P, 3)
r" = choose r; € R\ (dom f3) (@',8') =RN(Q,8")
(P',8') = RN(P, B8(r) /r']) RN(4,8) £(4,8),if AZP

Fig. 6. Definition of renaming function RN

B Detailed proofs

B.1 Proof of Lemma 2

Part (i): By induction on the structure of &.

Case & of

tt: trivial, since AMC(N, B), s |= tt and x(s) € B(p1,...,Pn)

N;:
AMC(N:ﬂ)a S |: NJ'

Il

{Def of x}

X(S) =Z1-..2n, with Zj = pj

16

{Def of R(X;)}

x(s) € R(R;)

-
PCF(-®) A AMC(N,B),s = o

{Def of PCF, Def of =}
PCF(®) A =(AMC(N,B),s =)

{Def of x, IL.H. }
PCF(®) A x(s) € B(p1,...,pn) A X(s) & R(®P)
{Def of R(tt), Properties of Boolean Algebra}
PCF(®) A x(s) € R(tt) \ R(P)
{Def of PCF, Def of R}

PCF(=®) A x(s) € R(—®)

dVP
PCF(® V&) A AMC(N,), s | &V &

{Def of PCF, Def of =}
PCF(®) A PCF(#') A (AMC(N,B),s =® vV AMC(N,B),s = &)
= {LH.}
PCF(®) A PCF(®') A (x(s) € R(®) V x(s) € R(¥))

{Def of PCF, Set Theory, Def of R}

PCF(@V ') A x(s) € R(®V D)

Soap(P), Poap (P e U< &), P (455U§<,t &'): trivial in all these cases PCF evaluates to false.

Part (ii): trivially follows from Part (i) and from the fact that if PCF(®) = ff then, by definition of R,
R(®) = R(tt) = B(p1,-..,pn) and, by definition of x, x(s) € B(p1,...,Pn) Q.E.D.

B.2 Proof of Theorem 1

By induction on the structure of . For simplicity we show the proof only for the untimed cases.
Case & of

tt: trivial.

Nj:
AMC(N,B), 8 FEmosr- Rj

= {Lemma 2(i)}
X(5) € R(X;)
{Def of A}
Vv € Act. cod(y, x(s)) € A(tt, R;)
{Def of FAMC(N, 8)}

Vor € Pathsp(s). a(or,0) € A(tt, R;)

{Def of |=,X,FAMC(N,);See remark on fairness in Sect. 4}
FAMC(N, B), s Facsr Pe1(X gt x;) tt)

{Def of T}

17

FAMC(N,B), s Eacst T(X))

—P:
AMC(N: ﬂ)a s IZMOSL_ -$

{Def of |=}
—(AMC(N,B),s | @)

{LH. }
~(FAMC(N,), s Eacsz T(®))

{Def of =}
FAMC(N,B),s Eacst ~T(®)

{Def of T}
FAMC(N,B), s Eacst T(~®)

VP
AMC(N,B),s Eamosr—- VP
= {Def of =}
(AMC(N,B), s Fmosi- @)V (AMC(N,), s Faosz- @)
= {ILH. }
(FAMC(N,B), s Eacst T(®)) V(FAMC(N,B), s Eacsr T(®'))
= {Def of =}

FAMC(N,B),s Eacst (T(®) VT(S'))

{Def of T}
FAMC(N,B),s Eacst T(@V ')

Soap(P) :
AMC(N,B), 8 Emosr— Swap(®)
= {Defof |}
lim¢_, o0 Pr{o € Paths(s) | AMC(N, 8),0(t) Erosi ®} 5 p
= {ILH. }
lim¢—, o Pr{or € Pathsp(s) | FAMC(N,pB),0r(t) Eacst T(®)} < p
= {Def of =}
FAMC(N, B), s Facst Swp(T(P))
= {Defof T}
FAMC(N, B), s Facsr T(Swap(P))
Pop(@:U D) :
AMC(N, B), s Enmosr— Poap(@ U &)
= {Def of =}

Pr{o € Paths(s) | 3k > 0. AMC(N, B3),0[k] Eamosr— & A

V0L i<k . (AMC(N,B),0li] Emosr— A a(0,i) Eposr— §)} < p
= {I.H., Lemma 3, Def of FAMC(N,)}

18

<= {I.H.,, Lemma 1}
PI‘{O’F € PathsF(s) | Jk 2 0. FAMC(N, ﬂ),oF[k] 'ZaCSL T(@’) A

YO < i<k. (FAMC(N,B),0r[i] Eacst T(®) Na(or,i) € AL, D)} xp
{Def of =}

FAMC(N, 8),s Facst Pop(T(®) ae,5)U T(2))
{Def of T}

FAMC(N, B),s Facst Pup(T(®:U @)
{Def of T}

FAMC(N, B),s Facse T(Pup(® U)

,PNP(Q‘EU{I ')
AMC(N, B), 8 Erosr— Pop(® U &)

{Def of =}
Pr{o € Paths(s) | 3k > 0. AMC(N, B8),olk] Epmosr- & A

AMC(N, ﬂ)aa[k - 1] |=MoSL— @ ANaf(o,k—1) 'ZMOSL— §’ A
VO<i<k—1 (AMC(N,B),0li Fmos—- A a(0,%) Eryosr- §)} X p
= {I.H., Lemma 3, Def of FAMC(N,)}
«= {I.H., Lemma 1}

Pr{or € Pathsp(s) | 3k > 0. FAMC(N, B), or[k] Facsz T(#') A

FAMC(N,B),0rk — 1] Facst T(®) ANa(or, k—1) € A(E', D) A
VOLi<k—1 (FAMC(N,B),oF[i] Eacse T(®) Aa(or,i) € A(E, D)} xp
{Def of =}

FAMC(N, B), s Facst Poap(T(P) ae.6)Un(er 0 T(P))
{Def of T}

FAMC(N7 ﬂ)) s IzaCSL fpbqp(T(dnggl Q’))
{Def of T}
FAMC(N: ﬂ)a S 'ZaCS'L T(’Plxlp(¢§U§1 @))

Il

19

Q.E.D.

