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INTRODUCTION

Some remarks from Prof. 0,C., Zienkiewicz have stimulated the
authors to make a direct comparison of the space—~time finite element
method proposed by themi&, 24 3;§against weighted residuals extended
to time (see, for instance[@}. The comparison is focused on:

— the discretized equations;
— the space-time element matrix;

— the system of linear equations to be solved.

The comparison is carried out thoroughly for a simple linear
parabolic probigm, vhere parallel formulations exist. The compari—
sons is sketched for hyperbolic problems; here the computation at each
step of the initial veiocity becomes critical for numerical accuracy.

An euristic two step procedure was successfully tested, and a chart

%

given for its extended use.

SPACE-TIME VERSUS WEIGHTED RESIDUALS: PARABCLIC

The comparison is best exemplified by a one dimensional linear
heat transfer problem; starting from the strong differential {see Pro

blem PP{E@ formulation

- i
, ~ Vb eTo T
(1.1) -wgﬁx%%-éu,:ag élﬁiOV‘;L &1 0
AN N ‘f y - \1
( 1.2) L {\":‘ : < ‘E = Y <) - z\«v} J/.
T S b aToT)
(1.3) W, & ) == A T e A

Introducing the notation for inner product in space and time
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Lion's weak formulation for problem (1.1.—3) becomes
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Clearly the latter formulation falls short of the partial integra
tion on time; that induces a change of sign in the second term of the

l.h.s. and the appearence of ( L&@/ Js) on the r.h.s. Most important

[}

is the unloading of the time derivative from the solution u onto the

test function v.

Discretizing into finite elements, linear in space and time, (see

i
T1lpag. 17)
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where u are the values of the temperature at the nodes of the element,

expression (3) becomes for one time step (OST) (see[l}paga 6}
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Calling A =} ;g partitioning eq. 6 for t=o (index 1) and t=T {index 2)
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eliminating 0: and using the symmetry of the matrices
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Eq. 8 gives the set of linear equations to be solved at each time step
N P4
for, E}Q’ .
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For the weighted residuals method, calling }< rA‘f‘ K s elimi-

nating v, one obtains
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partitioning eq. 9 and carrying iﬂl onto the r.h.s.

2
b \ N
( 10) E’{m L\ . j{- f(L- — ;/\/ 3 t&}'/\

A comparison of eqg.s 8 and 10 shows that space—time elements use the
offdiagonal "evolution" matrix kva to solve for ?imt s while weighted
. . . . . . (W e .
residuals use the diagonal "distribution™ matrix AN The right

end sides are totally different.

Netice that K is a space-time matrix, and that isdifferent in the
two cases.

The equivalence of Galerkin and other time stepping formulas to the

procedure of weighting residuals on time was proved by Zienkieswicz
-
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Clearly, if the space-time approximating function in eq. o can be
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split into the product of a function approximating in space by a func—
tion approximating on time, the weighted residuals method extended to
time can be rendered computationally equivalent to some time stepping

method.

The space-time procedure, however, is inherently different from




weighted residuals and, therefore, from time stepping Galerkin methods.

The numerical results obtained prove the point.

SPACE-TIME VERSUS WEIGHTED RESIDUALS: HYPERBLIC

Starting from the one dimensional problem in strong (differential)

formulation (see problem PT Tfﬂ
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Lion's weak formulation becomes
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whereas weighted residuals gives
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Notice that, in eq. 12, the time derivatives are lowered and balanced bet—
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ween the solution and the test function, The starting velocity

must however be computed at all steps, except for the first one,. Tk

18 Pro-—

cedure is the following:

- 1 The displacements are computed (at each step (OyT) ) for two time va-
] et ] o1 e . 3 i R
o R g § ds' DL L0 e A
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- 2 The time derivatives, i.e, the initial velocity for the mext step, are

from the incremental ratio/
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The choice of WV is based on minimizing the error in wave amplitude for
. i

the first half wave. Numerical tests on the one dimensional wave propaga—




tion problem, where the exact solution is known, have shown that the depen
dence of the error in wave amplitude is linear with %/ sy regardless of
wave number and wave lenght. A chart has been drawn where, for a given gvfd
lengh o , step of integration T and value of g/ s the percentage error

in wave amplitude for the integration of the half wave is computed (see fig.
18). A correct choice of %’ has proved to lead the space—time procedure

to extreme accuracy over many wave lengths of numerical integration. That
can be explained by the fact that the numerica%ﬁccuracy of the velocity is
not subjected to control either in the weighted residuals or in the Galerkin

methods.

The authors believe that values of %} chosen from the chart, based
on time step and wave lenght, can be successfully applied to space-time in

tegration over multidimensional domains,
CONCLUSIONS

The space-time finite element method is affected in its (good) numeri

cal performance by a few basic factors:

— the partial integration on time unloads the time derivative from the solu
tion to the test function, that disappears from the solving procedure,
Mathematical analysist have proved that this leads to higher ragularity;

numerical analysts believe that this leads toc better accuracy.

. . : /. nd . . . . . ..
— the condition V{Clzdinduces a shift, in the assembled discrete eguations.
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from the diagonal to the offdiagonal matrix as the basic set of equations
to be solved at each step. The matrix is a space-time matrix: the offdia-
gonal terms represent "evolution', in time, while the diagonal terms repre

sent "distribution" in space.

- for hyperbolic problems, in addition, a proper guess of the velocity keeps

the numerical solution well in phase, with great improvements in accuracy.




REFERENCE

1 A, Cella, M. Lucchesi, G. Pasquinelli — Space time Ffinite elements
for parabolic and hyperbolic operators -~ IEI report no. B77 — 17

(Nov. 1977).

2 M. Morandi Cecchi, A. Cella — An extended theory of finite elements

in C.A. Brebbia, H. Tottenham (eds) Variational Methods in Enginee—

ring, Southampton University Press (1974).

3 A. Cella, M. Iucchesi - Space-time elements for the wave propagation

problem — Meccanica, 10, (1975), 168 — 170

4 I.C. Bruch, G. Zyvoloski ~ Transient two—dimensional heat conduction
problems solved by the finite element method — Int., J, Num, Meth. in -

Eng., 8, (1974), 481 - 494

5 0.C. Zienkiewicz - A mew look at the Newmark, Houlbolt an othsr ti-—
me stepping formulas. A weighted residuals. — Farth., Eng., and Struct,

Dynamics, 5, (1977), 413 — 418






