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Abstract
Optimizing shared resources across multiple clients is a complex challenge in the produc-
tion, logistics, and service sectors. This study addresses the underexplored area of forecasting
service costs for non-cooperative clients, which is essential for sustainable business manage-
ment.We propose a framework thatmergesOperations Research (OR) andMachine Learning
(ML) to fill this gap. It begins by applying the OR model to historical instances, optimizing
resource allocation, and determining equitable service cost allocations for each client. These
allocations serve as training targets for MLmodels, which are trained using a combination of
original and augmented client data, aiming to reliably project service costs and support com-
petitive, sustainable pricing strategies. The framework’s efficacy is demonstrated in a reverse
logistics case study, benchmarked against two traditional cost estimation methods for new
clients. Comparative analysis shows that our framework outperforms these methods in terms
of predictive accuracy, highlighting its superior effectiveness. The integration of OR andML
offers a significant decision-support mechanism, improving sustainable business strategies
across sectors. Our framework provides a scalable solution for cost forecasting and resource
optimization, marking progress toward a circular, sustainable economy by accurately esti-
mating costs and promoting efficient operations.

Keywords Machine learning · Cost allocation · Vehicle routing problem · Explainable
artificial intelligence · Waste management · Fairness

1 Introduction and literature review

The use of information systems, mathematical models, and AI-based solutions has gained
popularity in recent years for meeting the ambitious targets of the sustainability paradigm.
This trend is particularly noticeable in the manufacturing and service sectors, where there
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is a clear focus on achieving economic growth and development while limiting the adverse
effects on the environment. Organizations employ innovative management approaches to
attain these objectives, recognizing the intrinsic connection between sustainable efficiency
and profitability. Approaches vary by industry, and when processes involve multiple cus-
tomers, the optimal strategy is to share production or service capacity among them, thus
limiting the use of resources. This approach requires solving a variety of decision-making
problems, such as (i) optimizing resource allocation across multiple customers, (ii) allocat-
ing a fair portion of the overall production/service cost to each of them, (iii) forecasting the
expected cost of serving a new customer to ensure competitiveness and profitability.

1.1 Research questions and contributions

Considering the set of decision problems (i), (ii), and (iii), the research question of this
paper is how to predict a fair and optimal cost for serving each client within a group of
non-cooperative clients served with limited resources. This scenario presents significant
challenges, including issues related to data uncertainty and fairness, since the cost allocation
problem is fundamentally concerned with fairness.

Accordingly, we aim to expand the research on this set of problems by leveraging OR and
ML techniques. The objective is to enhance decision-making in the domain of sustainable
business management, with particular emphasis on the logistics and service sectors.

To tackle the stated research question, this paper introduces a novel integration of OR and
MLwithin a decision-support framework. This integration effectively merges the operational
efficiency of OR with the predictive power of ML in service cost estimation, considering the
different characteristics of clients. The result is a versatile decision-support tool that facilitates
rapid and precise cost estimation, thereby enhancing margin assessments and enabling more
informed, client-specific cost allocations. Consequently, it offers a practical solution to the
challenges of low margins and uncertainties commonly encountered in Circular Economy
(CE) processes across various service sectors.

In our framework, we begin with generating instances of the resource allocation problem,
which are then modeled and solved using OR techniques, after which costs are allocated
to each client. The next phase involves training a Machine Learning (ML) model to accu-
rately predict these client-specific costs. A dedicated section in the paper provides a detailed
overview of the framework, elucidating each of these distinct phases.

1.2 Case study

This research’s real-world application focuses on a logistics scenario where capacity-sharing
solutions ensure sustainability, even in the absence of collaboration among participants.
These participants are the clients sharing the transport capacity of a logistic company that
provides pickup and delivery solutions, and their varying locations, visiting time windows,
and service variability may serve as valuable features for the client cost forecasting model.
In the proposed application, the ML model aims to allow vendors to forecast the cost of
serving clients, enabling fair and competitive pricing while ensuring business sustainability
and profitability. Moreover, the model is trained on historical data and the optimal allocation
of resources can enable vendors to offer reliable contracts based on expected service costs.
Sales managers could use cost forecasts when negotiating a new contract with a prospect or
(re-)negotiating contracts with clients, charging them their expected portion of the overall
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service cost. In particular, contract re-negotiation is a consolidated practice in the CE and
recycling sector, where secondary raw material prices vary.

A dedicated section provides a detailed presentation of this use-case application. The
particular Reverse Logistics (RL) problem is modeled as a variant of the vehicle routing
problemwith pickup and deliveries. In particular, a truck can transport 1 or 2waste containers
(full or empty) between clients, depots, and recycling plants. Among the specific features
of this model, there are heterogeneous trucks in terms of operating and emissions costs,
specific hauling capacities, and non-linear costs modeling truck driver costs. In fact, there is
a two-part tariff comprised of a fixed fee plus a cost per driving hour. Moreover, an additional
overnight cost can be incurred, potentially allowing trucks to take multiple driving shifts to
reach remote locations. Appendix A provides a detailed explanation of the RL formulation.

1.3 Policy implication for circular economy

Circular economy business models are driven by different policies. Generally speaking,
policies aim at closing the loop for material flows while increasing material efficiency.Milios
(2018) identifies three main policy areas: (1) policies for reuse, repair, and remanufacturing;
(2) green public procurement and innovation procurement; and (3) policies for fostering
the Secondary Raw Materials (SRM) market. In this research work, we propose a decision-
support framework producing lower-cost solutions for closing the CE loop onmaterials flows
while increasing the profitability of the collection process, thereby enhancing its business
feasibility. Concerning the policy areas defined by Milios (2018), the proposed framework
affects areas (1) and (3). Indeed, this innovative approach is instrumental for businesses
operating in dynamic and complex environments such as those found in the CE, offering a
practical solution to the challenges of low margins and uncertainties commonly encountered
in this sector. This is demonstrated by the application of the framework to the considered
use case, specifically addressing the collection of SRM. A dedicated section presents the
potential of the framework through numerical experiments using real-world instances given
by the use-case provider. CE must be economically sustainable to be a realizable target for
business companies. In this regard, the developed framework can obtain a profitable collection
of material thanks to the integration of OR andML, as demonstrated in the analyzed use case.

Furthermore, this framework applies to any ORmodel that allocates capacity or resources
among multiple non-cooperative clients. It is particularly beneficial for logistics solutions,
where capacity sharing serves as a viable pathway towards sustainability and the realization
of CE principles.

1.4 Literature review

This section presents a literature review that spans the key thematic areas pertinent to our
study: resource allocation and related cost sharing, Circular Economy and related SRM and
WM processes, and the integration of Operations Research (OR) and Artificial Intelligence
(AI) methodologies in Decision Support Systems devoted to these contexts.

In Yu et al. (2015), a set of firms have the choice of either operating their own produc-
tion/service facilities or investing in a facility that is shared; the problem is formulated as a
cooperative game, with cost allocation under either the first-come, first-served policy or an
optimal priority policy. In Liu et al. (2022), firms decide on the allocation of demand from
different sources to different facilities to minimize delay and service-fulfillment costs. In the
realm of logistics, Verdonck et al. (2016) introduce a novel approach for exploiting horizon-
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tal carrier collaboration. This involves the sharing of distribution centers among partnering
organizations. This approach enables transport companies to cooperate, increasing their effi-
ciency levels, for example, by exchanging orders or vehicle capacity. To ensure cooperation
sustainability, the same source addresses how collaborative costs need to be allocated fairly
to the different participants, and they analyze the effects of different cost allocation tech-
niques with numerical experiments. Thus, also in the aforementioned work, resources are
shared across firms that decide to operate collectively as a coalition. Moreover, they highlight
the importance of a fair cost allocation of shared resources. Angelelli et al. (2022) explore
resource sharing in horizontal collaboration among taxis within Demand-Responsive Trans-
port (DRT) settings. Their work involves defining and solving optimization problems that
aim to minimize the total service cost while ensuring a balanced workload among operators.

The survey conducted by Barros et al. (2021) maps the impact of Circular Economy prac-
tices across various business areas. In particular, several articles demonstrate how circular
economycontributes to improving resource efficiency and sustainable economic development
and there is a positive correlation between objectives seeking to lower the environmental bur-
dens and the improvement of the economic aspects of their operations revenue profit. The
authors identify nine business areas: strategic planning, cost management, supply chain man-
agement, quality management, environmental management, process management, logistics
and reverse logistics, service management, and research and development, and show how CE
impacts business performance. Another extensive survey by Lai and Wong (2012) discusses
the positive impact of green supply chain practices on both the operational and environmental
performances of the studied Chinese companies.

Fatimah et al. (2020) analyzes the relationship between CE, sustainable development
goals, and digitization (Industry 4.0) in a case study. It is interesting to note how the maturity
model applied in the paper put into evidence the importance of Decision Support Systems
(DSS) to sustain the solution of technology options problems.

The work by Bag et al. (2021) shows an interesting example of how big data analytics and
artificial intelligence can be used to draw relationships between circular economy practices,
sustainable business, and institutional regulations. In the study, applied to a South African
case, the methodology is used to estimate the value of relations among institutional pressures
and tangible resources employed for circular economy practices.

In the specific context of Waste Management (WM) within logistics, the works of Stecca
and Kaihara (2021) and Mancini and Gansterer (2022) offer innovative strategies for opera-
tional optimization. Stecca and Kaihara (2021) introduces a negotiation-based scheme aimed
at leveraging client aggregation to boost service efficiency. Complementarily, Mancini and
Gansterer (2022) explores the strategic use of clustering and corridor creation as methods for
client aggregation, showcasing their potential to significantly enhance operational efficiency
in WM logistics.

Considering the CE and its closed loop of SRM, several works, such as Asefi et al. (2019)
and Pinto and Stecca (2021), have studied the exploitation of OR for cost minimization in
SRM management and WM. As this is a sector affected by many uncertainties, these are
managed with different approaches. Gentile et al. (2023) consider the uncertainty in the
demand using Robust Optimization theory for an operational problem. Caramia et al. (2023)
extends the study considering the uncertainties that affect a more strategic problem, where a
public authority has to redesign theWMnetwork of an entire region. In our case, we deal with
the uncertainties affecting the cost of serving a prospective new client, with an application
to a WM network. This cost is evaluated by exploiting OR / ML methods and all relevant
information in historical data.
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Table 1 Contribution of methodological papers

References Coll Recycl Uncert OR ML/AI Cost

Yu et al. (2015) X X X

Liu et al. (2022) X X X

Verdonck et al. (2016) X X X

Angelelli et al. (2022) X X

Stecca and Kaihara (2021) X X X X

Mancini and Gansterer (2022) X X X X

Asefi et al. (2019) X X

Nilashi et al. (2023) X X X

Bag et al. (2021) X X

Ciardiello et al. (2020) X X

Le et al. (2020) X

Akkerman and Mes (2022) X X X

This paper X X X X X X

coll: collaboration, recycl: recycling, uncert: uncertainty, cost: cost allocation

The integration of AI/ML into DSS is a recent trend, as evidenced by studies such as
Gupta et al. (2022), and its application is widespread in various sectors, including Waste
Management, whereAI/ML primarily serves as a predictive tool (Nilashi et al., 2023). AI/ML
is used in conjunction with OR by Akkerman andMes (2022) for estimating distribution cost
in Traveling Salesman and Vehicle Routing Problems, by analyzing distance and demand
features. This aligns with the observation that advanced tools like AI/ML are extremely
useful in supporting the implementation of business strategies aimed at achieving Sustainable
Development Goals (SDG), as discussed by Di Vaio et al. (2020) and shown in a case study
by Cacciarelli and Boresta (2022).

To the best of our knowledge, despite the various significant applications of cost-to-serve
analysis, no prior work has specifically addressed this particular problem in the manner
our approach does. The framework developed in this study fills critical gaps identified in
traditional methods of cost estimation, which frequently overlook the complete range of
efficiency gains and client interdependencies. Through the integration of a broader spectrum
of client features and the application of machine learning models, the framework can identify
more complex relationships, resulting in more accurate estimations of clients’ costs. This
enhanced accuracy, coupled with a commitment to fairness, not only allows operational
efficiency and cost-effectiveness for service providers but also fosters equitable treatment of
clients.

The contribution given by the proposed framework to the cited literature can be summa-
rized in the Table 1, where methodological papers are compared in their contributions. Our
contribution covers several aspects, such as OR and ML/AI integrated methods, uncertainty
in data, fair cost allocations, and collaboration in the logistics industry, in a framework for
decision support.

The remainder of the paper is organized as follows: Sect. 2 describes the learning frame-
work and its details; Sect. 3 introduces a real-case scenario application that features a novel
logistic model presented in Appendix A: ; Sect. 4 reports the experimental results of applying
the framework and provides insights and in-depth analysis of the client features importance;
finally Sect. 5 gives some conclusions and research perspectives.
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Fig. 1 OR-driven ML framework for client cost estimation

2 OR-drivenML framework for client cost estimation

The OR-driven ML Framework for Client Cost Estimation is a comprehensive approach that
integrates OR models and ML techniques to enhance cost estimation processes in various
industries.

This innovative framework aims to provide accurate cost estimates for new production or
service requests from clients or prospects by leveraging historical data and taking into account
the inherent variability in client features. The framework, illustrated in Fig. 1, consists of the
following main steps:

1. Performing Data Augmentation
2. Generating and solving instances of the OR resource allocation problem
3. Selecting and using a fair Cost Allocation Strategy
4. Creating the ML Dataset
5. Training and Testing the ML model
6. Validating features importance with XAI techniques

These interconnected components are designed to work in synergy to achieve the afore-
mentioned goals. Initially, the data provided by companies within the targeted industry is
augmented with additional information that is potentially relevant, such as time windows
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and service times, which may significantly impact costs. Data augmentation techniques are
employed to create a more comprehensive dataset that encompasses a wider range of poten-
tial scenarios and factors that drive costs. By generating plausible values for missing or
unrecorded features, the framework simulates an extensive variety of potential scenarios,
resulting in a robust dataset for training the ML model. The generated feature values are
based on reasonable probability distributions, ensuring they accurately reflect real-world
conditions and constraints. Domain-specific knowledge and expert input are leveraged to
refine these distributions to more closely match actual scenarios.

Following this, an OR model, tailored specifically to the industry problem at hand, is
utilized to determine the optimal utilization of resources in serving clients. This model con-
siders various constraints and objectives, such as minimizing operational costs and satisfying
client time windows, to ensure the most efficient use of resources. A fair and reasonable cost
allocation, derived from this optimization process, is then apportioned to each client, forming
the target variable for the ML model.

The ML model, operating within the supervised learning paradigm, adopts a regression
approach to forecast the cost of serving each client. It is trained on the enriched dataset,
which includes a combination of existing client characteristics and new, instance-independent
attributes. The choice of input features is deliberately selected based on the context and data
available in the given industry, potentially including a broad spectrum of factors, from client
demand patterns to operational time constraints, among others. Thus, the regression model is
engineered to deduce the underlying cost function from the data, aiming to provide accurate,
equitable, and scalable cost predictions for clients.

Explainable Artificial Intelligence (XAI) techniques are integrated into the framework
to uncover the most critical factors affecting client costs. XAI aims to provide insights
into the decision-making process of AI models, making their predictions more transparent
and understandable for humans. By interpreting the trained ML model, the framework can
identify the key features that drive cost allocation and reveal previously unknown relationships
between client characteristics and costs, and these insights can be used to refine pricing
strategies. For example, if XAI techniques reveal that time windows and service times are
crucial factors affecting costs, the company may begin requesting this information from
clients to produce better estimates.

The proposed framework addresses several shortcomings in traditional methods for cost
estimation, such as the reliance on limited information like geographic distances or the
magnitude of demand, which can lead to suboptimal and unfair resource allocation. By
incorporating a wide range of client features and using ML models, the framework can
capture complex relationships and interdependencies between clients. This results in more
accurate and efficient cost estimates, that benefit both the service provider and the clients.

In practice, decision-makers typically rely on solving OR problems to determine optimal
resource allocation among clients. However, the dynamic nature of many operational scenar-
ios, makes it impractical to solve an OR problem for every new client, as the exact details of
the upcoming schedule and how it will evolve are often unknown. Our framework overcomes
this by learning from historical data and previously solved instances. This historical perspec-
tive makes the cost forecasting model more robust than estimates derived from considering
a specific instance alone.

Another key aspect of this framework is that it allows companies to identify and understand
the most impactful factors affecting client costs. Often, companies may not be aware of all
the variables that influence the cost, relying only on readily available information, such as
the client’s distance from their facilities. This can result in suboptimal cost estimates that do
not accurately reflect the true cost of providing services.
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The proposed framework addresses this issue by incorporating a different set of client
features, including both known and unknown variables, into the ML model, and by using
XAI techniques to understand their impact on the costs.

In summary, the OR-driven ML Framework for Client Cost Estimation offers a powerful
and flexible solution for companies seeking to improve their cost estimation processes. By
leveraging historical data, generating missing information through data augmentation, and
employingXAI techniques, this framework enables businesses to identify themost impacting
factors for client costs and rely on more accurate, fair, and sustainable pricing strategies.

This approach benefits both the service provider and the clients, leading to improved
resource allocation decisions and enhanced overall performance. The framework’s versatility
allows it to be adapted to various industries, making it a valuable tool for companies aiming
to optimize their cost estimation processes and achieve a competitive edge in their respective
markets.

3 Case study

To test the validity of the proposed framework, we consider a real case study involving an
operator of a medium-sized waste company based in the province of Rome, Italy. Waste
Management (WM) is a critical challenge concerning both the protection of the environment
and the conservationof natural resources. For a comprehensive reviewof literature on strategic
and tactical issues in solid WM, readers are referred to the surveys by Ghiani et al. (2014)
and Das et al. (2019).

One major topic of interest within WM, besides Municipal Solid Waste Management
(MSWM), is Industrial Waste Management (IWM), which encompasses tasks involved in
collecting and transportingwaste generated in industrial sites to sorting facilitieswheremixed
materials are sorted to extract secondary raw materials. In this setting, waste companies
typically serve their industrial clients according to a pull logic for waste container collection.
A company truck picks up a client’s waste container when the company’s logistic service is
contacted by the client for container pickup.

While planning and scheduling sorting facility operations represent the typical tactical
task of IWM performed by OR models, the logistic cost of truck routing for waste pickup
and delivery is instead the main operational cost of IWM that ORmodels need to optimize. In
Sect.Appendix A: , we present a newORmodel that optimizes logistic operations within this
IWM setting. In this scenario, the model finds the optimal set of routes for a fleet of trucks
to pick up waste containers from a given set of industrial clients and deliver them to waste
sorting facilities. This optimization enables the waste management company to minimize
transportation costs, reduce environmental impact, and improve service quality for clients.

The problem discussed in Sect.Appendix A: , which focuses on waste collection man-
agement, can also be considered as belonging to the class of Rollon-Rolloff Vehicle Routing
Problems (RR-VRPs). The RR-VRP is studied in several papers, such as Bodin et al. (2000);
Li et al. (2018) and Aringhieri et al. (2018), and involves tractors pulling large containers
between client locations and disposal facilities. A feasible solution to this model simul-
taneously satisfies both the network system constraints and those associated with each
waste-producing client and related disposal unit. Each graph node, corresponding either
to a client or a waste sorting facility, has a time window bounding the time in which that node
can be visited. On the other hand, truck units can haul either one or two waste containers,
depending on each truck’s capacity.
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3.1 Dataset and data augmentation

The Waste Management firm provided access to data spanning from January 2020 to March
2022. The data comprises daily records of client service requests, including lists of clients
served each day, their geographical information, locations of each client’s waste sorting
facility, and demand, expressed as the number of containers to be picked up. This dataset
covers 668 operating days, with an average of 17.3 clients served, and 27 containers picked
up each day.

In addition to the available information, this experiment investigates the impact of other
variables on the resolution of the Vehicle Routing Problem (VRP) and consequently on the
operating costs of the company. These variables, such as the visiting timewindows for both the
pickup and delivery nodes and their service times, have not been recorded in the company’s
database and are currently not considered by the contract management team when preparing
commercial offers for clients.

However, it is evident that these variables, along with others not included in the dataset,
could significantly affect the costs incurred by the business to serve a client. In fact, as
highlighted in Malakar et al. (2020); Bacanin et al. (2021), feature selection and engineering
are crucial for obtaining good results in ML training.

To incorporate this missing information into our analysis and enable the machine learning
model to utilize it for cost prediction, we employed a data augmentation technique. Specifi-
cally, defining J = { j1, j2, . . . , jn} as the set of n potential extra features, we create κ copies
of each operating day in our dataset and, for each copy, generate values for the jth missing
value by random sampling from reasonable probability distributions. This approach allows us
to simulate a range of possible scenarios for the same instance with different values for each
extra feature, resulting in different costs for each scenario when solving the OR problems.

To further elucidate the data augmentation process used in our framework, we defined
specific scenarios for the missing variables based on realistic and plausible situations in the
context of waste management. For the time window of the pickup and delivery nodes ( j1 and
j2), we assume two distinct scenarios:

1. A long time window with a duration uniformly distributed in the range [6, 8] hours. The
opening time for this scenario is uniformly distributed between 6:00 AM and 10:00 AM.

2. A short time window with a duration uniformly distributed in the range [2, 4] hours. The
opening time for this scenario is uniformly distributed between 6:00 AM and 3:00 PM.

Regarding the service time for the pickup and delivery nodes ( j3 and j4), we also assume
two different situations:

1. A long service time scenario, where the service time is uniformly distributed in the range
[30, 90] minutes.

2. A short service time scenario, where the service time is uniformly distributed in the range
[10, 30] minutes.

It is challenging to estimate the distributions of missing data for generating their synthetic
samples. These specific ranges and distributions were meticulously determined through con-
sultation with domain experts, ensuring that they closely mirror real-world conditions in RL
operations. For the data augmentation, we create κ = 4 copies of each operating day, with
two copies sampled using the long scenarios for both the time window and service time, and
two using the short scenarios. this process results in a dataset comprising 668 × 4 unique
instances.

The data augmentation process, therefore, has a dual purpose. First, it allows testing the
assumption that the extra features substantially impact the client cost. Second, it enables
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the training of the machine learning model to incorporate this knowledge and provide more
accurate cost predictions based on the newly generated data. It is essential to ensure that
the values for the DA features are drawn from distributions that accurately reflect real-world
conditions and constraints.

These distributions can be adjusted based on domain-specific knowledge or expert input
to better adhere to realistic scenarios.

With these augmented scenarios forming a robust and varied dataset, we proceeded to the
next step of creating the machine learning dataset, as described in the following subsection.

3.2 Creating themachine learning dataset

In this section, we describe the process of creating the dataset for themachine learningmodel,
which involves determining target values and extracting relevant input features from both the
original and augmented datasets.

3.2.1 Target values: cost allocation

Wemodel the VRP problemwith pickups, deliveries, and semi-soft timewindows as outlined
in Sect.AppendixA: Todetermine howmuchof a route’s total cost should be allocated to each
of the clients served, we use the allocation strategy proposed and described in Appendix B: .
Specifically, we calculate the arithmetic average of three different allocation rules described
therein: Isolated Cost Allocation (ICA), Neighbors Savings (NS), and Normalized Marginal
Allocation (NMA). The resulting costs serve as the target values for training the machine
learning model. The reader can refer to Appendix B: for all further details.

3.2.2 MLmodel input features

The machine learning model’s input features comprise instance-independent client charac-
teristics, along with additional features engineered from the original dataset through DA.
Focusing on instance-independent characteristics ensures that the model can generalize well
to new clients and scenarios, rather than overfitting to the specific instances present in the
training data.

The engineered features are constructed to facilitate the model’s comprehension of the
interplay between client attributes and the corresponding service costs. A key aspect of these
features is their emphasis on the influence of client proximity in driving cost efficiencies.
The feature columns are:

• demand: number of containers that the client asks to pick up
• distHtoP: shortest path distance in km from the depot (H) and the pickup node (P)
• distHtoD: shortest path distance in km from the depot (H) and the delivery node (D)
• distPtoD: shortest path distance in km from the pickup node and the associated delivery

node
• distSingleTour: shortest path distance in km of the tour depot - pickup node - delivery

node - depot
• timeWindowPD: sum of the widths of the pickup time window and delivery time window,

expressed in minutes. For example, if the pickup node has a 9am − 3pm time window,
and the delivery node has a 11am − 4pm time window, the variable timeWindowPD will
have a value of 60 · 6 + 60 · 5 = 660
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• serviceTimePD: sum of the service time of the pickup node and delivery node, expressed
in minutes

• concentration20km: number of other clients, across the whole dataset, that are within a
20km shortest path distance from the client

• concentration50km: number of other clients, across the whole dataset, that are within a
50km shortest path distance from the client

• concentration100km: number of other clients, across the whole dataset, that are within a
100km shortest path distance from the client

The ’concentration’ columns in the dataset deserve special attention. These columns,
indicating the number of other clients within specific distances, help the model understand
cost allocation in relation to client proximity. The model’s hypothesis is that clients who are
geographically closer to each other can be served more efficiently, resulting in lower costs.
This feature becomes particularly relevant when considering isolated clients who, due to their
remoteness, may incur higher service charges.

Thedistance-related features, calculated using theOpenSourceRoutingMachine (OSRM)
(Luxen & Vetter, 2011), intuitively play a significant role in determining service costs.

To illustrate this, consider the scatter plot, as depicted in Fig. 2, shows the relationship
between distSingleTour and ServiceCost. We can see that this relationship, while indicative,
does not capture the full complexity of cost estimation. The plot clearly shows that distance
alone is an incomplete predictor of service costs.

This limitation is evident in the upcoming numerical experiments detailed in Sect. 4. These
experiments confirm that a broader range of features, beyond just distance, is necessary for

Fig. 2 Scatter plot service cost–dist single tour
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accurate cost estimation. The ML model, by considering variables like client concentra-
tion, time windows, and service times, achieves a more accurate and comprehensive cost
prediction.

4 Experimental results

This section presents the results from the application of our framework to the dataset detailed
in Sects. 3 and 3.1. The objectives are to assess the framework’s accuracy in service cost
prediction and to identify key influencing variables using XAI techniques.

First, we explore the OR model implementation and our adopted strategy for cost alloca-
tion, forming the basis for determining service costs.

Following this, we focus on describing the training of our ML models commenting on
their performance, and comparing them with two conventional methods typically used for
cost estimation in this use-case context.

4.1 ORmodel and cost allocation strategy

We model the VRP problem with pickups, deliveries, and semi-soft time windows as
described in Appendix A: . Our analysis employs the dataset comprising both the original
and the augmented data, following the augmentation methodology outlined in 3.1

Model instances are coded in Python3 and tested on a PC running a 1.60GHz Intel Core-
i5-10210U CPU with 16 GB RAM. For each of the 668 operating days, we solve different
instances (one for each copy that differs in the values of the time windows and service time
of each client) for a total of 2672 instances. These are solved via branch-and-cut using the
Gurobi 9.5.2 solver hosted on a server running on an Intel Xeon Gold 6136 CPU@3.0 GHz
with 250 GB RAM, with a solution time limit of 60min.

When considering the model from a practical standpoint, where industry practitioners use
it on a daily basis, the computational requirements of themodel align reasonablywell with the
available time for resolution, being six hours in the considered use case. However, for larger
instances, a natural trade-off exists between resolution time and the quality of the solution.
Indeed, out of the total number of instances, 2172 (or 82% of the total) are solved with a gap
of less than 0.05. Out of them, 1433 are exactly solved, finding the optimal solution.

In the following phase of the experiment, the ML model is trained only using the 2172
instances solved with the gap < 0.05. While this approach might introduce a bias towards
smaller, less complex instances, it leverages the most accurately solved examples to enhance
model reliability. It would be interesting for future studies to explore how different trade-offs,
such as accepting a higher gap and consequently a larger set of instances, might impact the
model’s performance.

The solutions of these instances, along with the objective function presented in Appendix
A: , allow for the determination of the total cost associatedwith a vehicle’s route. Specifically,
the total cost comprises the sum of all addends of the objective function that are pertinent to
the particular vehicle. Notably, these cost elements are primarily associated with the route’s
total distance and duration, along with additional costs that may arise due to a delayed visit
or the need for an overnight stay.

To determine how much of a route’s total distance and duration should be allocated to
each served client, we use the allocation strategy described in Appendix B: . This allocation
choice is just one of the possible allocation choices that can bemade, and any other allocation
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Table 2 ML models performance Model Metric Training set Test set

XGBoost MAE 33.20 34.43

MAPE 0.50 0.76

LightGBM MAE 28.76 31.65

MAPE 0.29 0.48

could be used without affecting the validity of the framework as long as it distributes costs
fairly.

In the next section, we describe the training of the ML model and analyze the impact of
each feature on the service cost prediction.

4.2 Model training and performance evaluation

For this study, we employed the XGBoost (Chen&Guestrin, 2016) and LightGBM (Ke et al.,
2017) algorithms, both recognized for their exceptional performance on tabular data. These
models frequently exhibit superior results when compared to traditional machine learning
approaches (Shwartz-Ziv & Armon, 2022; Borisov et al., 2022).

For our dataset of 14,669 individual service records, we meticulously divided the data into
training and testing sets using an 80–20 split. A critical measure was taken to ensure data
integrity: if any record of a client on a specific day was placed in one set, all instances from
that day were assigned consistently to prevent information leakage.

The implementation of both models was conducted using Python 3.8.10. The tuning
of hyperparameters-such as learning rate,number of estimators, subsample, max_depth,
colsample_bytree, and alpha -was accomplished through a random search, guided by five-
fold cross-validation.

The random search spanned a pre-established array of values and ranges, allowing for
comprehensive hyperparameter exploration. The optimal hyperparameter set was chosen
based on its ability to minimize the Mean Absolute Error (MAE) across the validation folds.

The performance of the models is summarized in Table 2, where both MAE and Mean
Absolute Percentage Error (MAPE) are reported for the training and test sets. Notably, the
MAE exhibits close alignment between the training and test sets, underscoring the mod-
els’ effective generalization capabilities. However, the MAPE demonstrates some variance,
reflecting the sensitivity of this metric to the distribution of errors relative to actual service
costs, as will be further discussed later in this section.

In addition to the advancedMLmodels, two baseline methodologies, herein referred to as
naive and H ICE , are employed to provide a comparative perspective on the performance
of our framework.

The naive method estimates the client cost by exclusively considering a dedicated round
trip route from the depot to the client’s pickup and delivery locations, taking into account
both the distance and the time required to complete the journey. This method also incorpo-
rates overnight costs for routes exceeding a single driving shift, the activation cost of the
truck departing from the depot, and the time window enlargement cost. The time window
enlargement is necessary when the time windows and service times of pickup and delivery
nodes are incompatible with the travel time required to visit them. This approach is rather
simple; it does not consider any savings that may result from serving another client in the
neighborhood, nor does it take into account historical data.

123



126 Annals of Operations Research (2024) 342:113–139

Table 3 Performance comparison
of ML and naive models. Bold
stands for minimum values
between each metric values

Model MAE MAPE

XGBoost 34.43 0.76

LightGBM 31.65 0.48

naive 192.24 3.80

HICE 92.64 0.94

Fig. 3 Box and whisker plot of prediction residuals comparing XGBoost, LightGBM, naive and HICE

TheHistorical Integration Cost Estimation (HICE)method employs a data-driven strategy
to estimate the client cost. This method involves selecting 10 random historical instances for
each new client where he was not previously served. For each instance, a new instance
that includes the additional client is generated. Then, by applying the optimization model
outlined in Appendix A, the method recalculates the routes to identify the incremental costs
associated with servicing the new client. This recalibration allows for an assessment of how
each new client addition impacts operational costs, taking into account the variations inherent
in historical routing patterns. The incremental costs discovered across these new instances are
then averaged to provide an estimate of the service cost of the new client. While this method
offers a more comprehensive analysis by factoring in variations in historical instances, it
is computationally demanding, since it requires solving the routing optimization problem
multiple times for each client.

Table 3 and Fig. 3 present the empirical results from these naivemethods alongside theML
models. The performance metrics displayed in the table and the error distributions illustrated
in the box and whisker plot delineate the accuracy and reliability of each method.

The data demonstrate that both machine learning (ML) models exhibit significantly lower
absolute errors compared to the naive and H ICE approaches, underscoring the sophisti-
cation and adaptability of ML in capturing the complexities of cost prediction in logistics
services. Notably, the MAE, representing the actual monetary value of errors, is consis-

123



Annals of Operations Research (2024) 342:113–139 127

tently lower for ML models, highlighting their superior accuracy in monetary terms, which
is particularly crucial in operational contexts.

To further substantiate our findings, we performed the Friedman (Friedman, 1937, 1940)
and Quade (Quade, 1979) non-parametric statistical tests to determine whether the observed
performance differences among the evaluated algorithms were statistically significant. These
tests specifically aimed to evaluate the null hypothesis that there are no significant perfor-
mance differences between the algorithms against the alternative hypothesis that at least one
algorithm exhibits distinct performance.

The results from the Friedman test indicated highly significant differences among the
algorithms, with chi-squared statistics significantly deviating from the null hypothesis. The
Quade test corroborated these findings, revealing significant performance variations across
the methods, with the largest p-value observed being 10−22. This strongly suggests the
presence of distinct performance differences among the evaluated models.

To further support these findings, a post-hoc analysis employing the Benjamini/Hochberg
method was carried out. This analysis confirmed the significance of the observed differences,
with all pairwise comparisons between the algorithms yielding p-values significantly below
the 0.05 threshold. These statistical validations, implemented using the statsmodels (Seabold
& Perktold, 2010) and scikit_posthocs (Terpilowski, 2019) Python libraries, affirm that the
performance discrepancies between our machine learning models and the naive approaches
are not only empirically observed but also statistically significant.

To conduct amore comprehensive analysis of the results, we examine theMAEandMAPE
across various service cost ranges, recognizing that the distribution of service costs is heavily
skewed towards the lower end.

Indeed, a significant proportion of client instances incur service costs below 100 units,
which can disproportionately influence the MAPE metric. Table 4 provides a detailed break-
down of the MAE and MAPE for different service cost intervals, highlighting how the
performance of the models varies across these ranges.

The analysis of Table 4 reveals valuable insights about the performance of the models
across different service cost brackets. For all service cost ranges, both naive and H ICE
approaches exhibit markedly higher MAE and MAPE compared to the machine learning
models. This indicates that the simplistic assumptions of naive and H ICE are less effective,
underscoring the superiority of the more sophisticated ML-based methodologies.

Moreover, H ICE outperforms naive in all cost ranges. The latter is indeed an upper
bound of H ICE cost estimation, as naive strategy simplifies cost estimation by considering
dedicated routes for service delivery, which inherently does not account for potential cost
reductions through client aggregation. On the contrary, the H ICE method leverages the OR
model and its formulation to predict cost savings by simulating the incorporation of a new
client into the historical routes, expecting to capitalize on the efficiencies of shared services.

4.2.1 Explainable AI

In response to the increasing emphasis on interpretability in machine learning, we utilized
XAI techniques to demystify the predictive mechanisms of our models. Particularly, we
utilized SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017), a powerful tool
for interpreting model predictions. SHAP values, derived from cooperative game theory
(Shapley, 1953), assign an importance value to each feature for a given prediction, offering
insights into how each feature influences the model’s output.

Figure 4 presents a summary plot for our LightGBMmodel, combining feature importance
with their effects on the predicted service costs.
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Table 4 Breakdown of MAE and MAPE metrics

Service cost range Test records Model MAE MAPE

0–100 1687 (58%) XGBoost 19,76 1.15

LightGBM 15,08 0,68

naive 110,24 5,76

HICE 26,76 1,1

101–200 420 (15%) XGBoost 48,61 0,34

LightGBM 50,16 0,35

naive 214,09 1,45

HICE 155,72 1,04

201–500 580 (20%) XGBoost 46,58 0,15

LightGBM 44,67 0,15

naive 252,39 0,90

HICE 167,13 0,6

501–1062 207 (7%) XGBoost 90,37 0,11

LightGBM 91,30 0,11

naive 650,10 0,75

HICE 293,72 0,35

Fig. 4 SHAP values explaining feature importance in the LightGBM model

The plot reveals that the feature distSingleTour, indicating the shortest complete tour
distance, is themost impactful. Lower values of distSingleTour correlate with negative SHAP
values, while higher values correspond to positive SHAP values, suggesting that shorter tour
distances typically lead to lower service costs.

Client density features, namely concentration20km, concentration50km, and concentra-
tion100km, display similar patterns. They underscore the model’s recognition of logistical
efficiencies gained through servicing clustered clients. Higher client concentrations often
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result in shared service routes and thus lower predicted costs, reflecting the hypothesized
advantage of geographical client proximity on service cost efficiency.

Time-related features like timeWindowPD and serviceTimePD, though less influential,
still reflect the nuances of scheduling constraints and service durations on cost predictions.

It is important to note that a similar SHAP plot analysis for the XGBoost model exhibited
analogous behavior in terms of feature impacts. However, for brevity, we present only the
LightGBM model’s plot here. This consistency across models reinforces our confidence in
the robustness and generalizability of the observed feature importance trends.

5 Conclusions

In conclusion, this study represents a significant advancement in integrating Operations
Research and Machine Learning to enhance decision-making processes in the realm of
sustainable business management, especially within the logistics and service sectors. This
integration effectively combines the operational efficiency of ORwith the predictive power of
ML in service cost estimation, considering the diverse characteristics of different clients. This
innovative approach is instrumental for businesses operating in the dynamic and complex
environment of a circular economy.

5.1 Theoretical and practical implications

Theoretically, our research introduces a novel framework that integrates OR and ML/AI
methodologies. This framework addresses several key challenges, such as data uncertainty
and equitable cost allocation, prevalent in various industry contexts. Practically, it serves as a
versatile decision-support tool that enables rapid and precise cost estimation, enhancing mar-
gin assessments and facilitating more informed client-specific cost allocation. Consequently,
it provides a practical solution to the challenges of low margins and uncertainties, which are
often encountered in circular economy processes across different service sectors.

5.2 Research contributions

Our study presents a unique integration of OR and ML, significantly improving service cost
forecasting in the circular economy context. This integration not only boosts the accuracy of
cost estimations but also brings a nuanced understanding of how different client characteris-
tics influence these costs. Additionally, the incorporation of XAI methods in our framework
increases the transparency and interpretability of the ML models. This dual approach is a
substantial contribution to both academic research, by showcasing an innovative use of inte-
grated methodologies, and to industry practices, by offering a sophisticated yet practical
approach to cost management in various service sectors.

5.3 Practical advantages

The framework developed in this study addresses some critical gaps found in traditional
methods of cost estimation, which often fail to consider the full spectrum of efficiency gains
and client interdependencies. By integrating a wider range of client features and employing
MLmodels, the framework can discern more complex relationships and interactions, leading
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to more accurate client cost estimations. This enhanced accuracy, in conjunction with the
principles of fairness, not only improves operational efficiency and cost-effectiveness for
service providers but also promotes equitable treatment of clients.

5.4 Research limitations and future directions

This study, while providing valuable insights, is subject to several certain that also pave the
way for future research directions. A primary theoretical limitation stems from our reliance
on a simplified cost allocation rule. Due to the practical challenges in applying more com-
plex approaches like Shapley Values, which demand extensive computational resources, we
adopted a more straightforward rule. While effective in our context, its optimality and gen-
eral applicability across various scenarios remain unverified. Future research could focus on
exploring alternative strategies for cost allocation, including high-quality approximations to
Shapley values, or further validation of our current approach.

Practically, the current application of our framework is confined to the waste management
industry. This limitation highlights the need for future studies to expand its applicability to a
diverse range of service industries, thereby enhancing its adaptability to different operational
contexts. Additionally, the efficacy of our framework is highly dependent on the availability
and quality of historical data, which is a critical factor for the effective training of themachine
learning model. This dependency underscores a limitation, as the framework may not apply
to companies without established data collection practices.

Furthermore, conducting sensitivity analyses on feature importance in cost allocation
strategies could provide deeper insights into the effectiveness of different methodologies.

In summary, this study lays a robust foundation for future research and practical applica-
tions in diverse logistics and service industries, offering innovative and sustainable solutions
in service cost forecasting and allocation. It demonstrates the potential of integrating OR
and ML as a decision-support tool, contributing significantly to the evolution of sustainable
business practices and the advancement towards a circular economy.

Appendix A: Operational problem definition andmodeling

This appendix provides a detailed description of a novel mixed-integer linear programming
model designed for optimizing route planning in pick-up and delivery services. This general
problem is one of the main operational tasks of supply chain management and is known as
the Vehicle Routing Problem (VRP), a NP-Hard and well-known combinatorial optimization
problem (Toth & Vigo, 1998). The presented formulation is intended to find the optimal set
of routes for a single depot fleet of trucks to pick up goods from a given set of customers
and deliver them to another given set of delivery nodes. A feasible solution of this model
simultaneously satisfies the network system constraints, transport capacity constraints, and
constraints associated with each customer and delivery location. Each graph node, represent-
ing either a customer or a delivery node, has a time window that constrains the timeframe
during which the node can be visited. Truck units are heterogeneous in terms of operating and
emissions costs and can haul goods according to specific hauling capacities. Non-linear costs
are factored in for truck drivers, using a two-part tariff comprised of a fixed fee plus a cost per
driving hour. Moreover, an additional overnight cost can be incurred, potentially allowing
trucks to take multiple driving shifts to reach remote locations. If a node’s time window is
particularly small, potentially causing infeasibility or limiting route savings, the window can
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be extended with an additional cost per hour. The presented formulation can be regarded
as a variant of the VRP with pickups and deliveries (VRPPD) (Toth & Vigo, 2002) which
only considers penalties on late arrivals while allowing waiting for early arrivals without any
cost. This specific problem is known as the Vehicle Routing and Scheduling Problem with
Semi Soft Time Windows (VRPSSTW) (Qureshi et al., 2010). A logistic service request i
is characterized by two nodes, node i and node n + i , corresponding, respectively, to the
pickup and delivery stops of the request. Different nodes may represent the same geograph-
ical location. The set of pickup nodes is denoted by P = {1, ..., n} and the set of delivery
nodes is denoted by D = {n + 1, ..., 2n}. If request i consists of transporting di units from i
to n + i , let li = di and ln+i = −di . Furthermore, let K represents the set of vehicles. The
objective of the VRP is to determine routes serving all the customers, respecting vehicle and
user constraints, while minimizing the total travel costs.
To provide a clearer introduction to the formulation and its additional features compared to
those presented in Toth and Vigo (2002) and Qureshi et al. (2010), the model notation for
parameters, indexes, and variables is outlined below.

n: number of customers to be served
P = {1, ..., n}: set of pickup nodes
D = {n + 1, ..., 2n}: set of delivery nodes
N = P ∪ D: overall set of pickup and delivery nodes to visit
o: depot as a departing node
d: depot as a returning node
od = o ∪ d
No = N ∪ o
Nd = N ∪ d
Nod = o ∪ N ∪ d: overall set of graph nodes
K : set of heterogeneous vehicles
[ai , bi ]: service time window for node i
ci, j : cost of arch i, j as the sum of distance and duration costs
ti, j : arch i, j travel time
si : service time at node i
li : pickup or delivery demand at node i
Ck : carrying capacity of vehicle k
uk : activation cost of vehicle k related to expected operating and emissions costs
O: overnight cost
R: maximum number of driving hours in a shift
Z: maximum number of subsequent driving shifts
�: time window enlargement cost per hour

The model consider the following variables.

xi, j,k ∈ {0, 1}: equal to 1 if vehicle k crosses arch (i, j), 0 otherwise
Ti,k ∈ R

+: service starting time at node i by vehicle k
Li,k ∈ Z

+: load of vehicle k when leaving node i
yk ∈ R

+: bounds the time span between departure and returning to depot of vehicle k
zk ∈ Z

+: number of subsequent driving shifts of vehicle k
ok ∈ Z

+: number of subsequent overnights stay for vehicle k
γi ∈ R

+ node i time window upper bound enlargement
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The model minimizes the sum of several transport costs and is detailed as following:

min Z =
∑

k∈K

∑

i∈Nod

∑

j∈Nod

ci, j xi, j,k +
∑

k∈K
(uk zk + O ok) +

∑

k∈K
yk + �

∑

i∈N
γi (A.1)

s.t.
∑

i∈od
Li,k = 0 ∀k ∈ K (A.2)

∑

k∈K

∑

j∈Nd

xi, j,k = 1 ∀i ∈ P (A.3)

∑

j∈N
xi, j,k =

∑

j∈N
x j,n+i,k ∀k ∈ K , i ∈ P (A.4)

∑

j∈P

x0, j,k ≤ 1 ∀k ∈ K (A.5)

∑

i∈D
xi,2n+1,k =

∑

j∈P

x0, j,k ∀k ∈ K (A.6)

∑

i∈No

xi, j,k =
∑

i∈Nd

x j,i,k ∀k ∈ K , j ∈ N (A.7)

Ti,k + si + ti, j − Tj,k ≤ M(1 − xi, j,k) ∀k ∈ K , i ∈ Nod, j ∈ Nod, i �= j (A.8)

ai ≤ Ti,k ≤ bi − si + γi ∀k ∈ K , i ∈ N (A.9)

Ti,k + si + ti,n+i ≤ Tn+i,k ∀k ∈ K , i ∈ P (A.10)

Li,k + l j − L j,k ≤ M(1 − xi, j,k) ∀k ∈ K , i ∈ N , j ∈ N , i �= j (A.11)

li
∑

j∈N , j �=i

xi, j,k ≤ Li,k ≤ Ck ∀k ∈ K , i ∈ P (A.12)

Li,k ≤ (Ck + li )
∑

j∈N , j �=i

xi, j,k ∀k ∈ K , i ∈ D (A.13)

T|N |+1,k − T0,k ≤ yk ∀k ∈ K (A.14)
∑

i∈N ,i �= j

∑

j∈N , j �=i

(si + ti, j )xi, j,k ≤ R zk ∀k ∈ K (A.15)

zk ≤ Z(
∑

j∈P

x0, j,k) ∀k ∈ K (A.16)

zk ≥
∑

j∈P

x0, j,k ∀k ∈ K (A.17)

ok ≥ 0 ∀k ∈ K (A.18)

ok ≥ zk − 1 ∀k ∈ K (A.19)

γi ≥ 0 ∀i ∈ N (A.20)

x0, j,k = 0 ∀k ∈ K , j ∈ D (A.21)

xi,i,k = 0 ∀i ∈ Nod, k ∈ K (A.22)

xi,0,k = 0 ∀i ∈ N , k ∈ K (A.23)

The objective function (A.1) aims to minimize the sum of routing costs, which include
emissions and operating costs per kilometer and hour, driving shift activation and overnight
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costs, and time window enlargement costs. Additionally, the function encompasses the unit
cost of the auxiliary variable y, which bounds the time span between a vehicle’s departure
from and return to the depot for each utilized vehicle.

Constraints (A.2) ensure that each truck is empty when exiting or entering the depot;
constraints (A.3) guarantee that each customer i ∈ P is served by one and only one truck;
constraints (A.4) describe the network flow conservation and simultaneously ensure that
each pickup is delivered to its respective delivery location; constraints (A.5) guarantee that
each used truck departs from the depot to reach a pickup node; constraints (A.6) force used
vehicles to return to the depot; constraints (A.7) ensure network flow conservation; for all
subsequently visited nodes, constraints (A.8) introduce time coherence between arrivals,
service and travel times; constraints (A.9) mandate that each node i is visited within its time
window while considering service time and the option of extending the upper bound bi ;
constraints (A.10) ensure that delivery occurs later than pickup; constraints (A.11) introduce
truck load coherence between each subsequently visited node; constraints (A.12) and (A.13)
limit truck load capacity and guarantee truck load coherence when visiting a pickup and a
delivery node respectively; constraints (A.14) bound vehicle time spans between the exit and
the return to depot; constraints (A.15) limit each vehicle travel timewith respect to the driving
shifts and their maximum driving hours; constraints (A.16) bound the maximum number of
subsequent shifts for each used truck; constraints (A.17) ensure the activation of at least one
driving shifts of each used truck; constraints (A.18) and (A.19) imply that for each truck,
the number of overnights is zero unless it is used for more than one driving shift; constraints
(A.20) ensure that timewindows can only be extended; constraints (A.21) prevent trucks from
traveling directly from the depot to a delivery node; constraints (A.22) avoid node loops, and
constraints (A.23) ensure that no vehicle returns to the depot as a departing node.

The reader can refer to the reviews presented in Braekers et al. (2016) and Tan and Yeh
(2021) to find relevant literature, recent trends and solution methodologies in the field of
VRPs and some well-known variants.

Appendix B: Fair cost allocation rule

Given the solution of a resource allocation problem, it is important to define a rule that
allocates a fair portion of the overall production or service cost to each customer. The problem
in transportation logistics is determining howmuch of a route’s total cost should be allocated
to each customer served.

This cost allocation problem is very challenging and has been addressed in past and
recent literature using different strategies, ranging from relatively simple to state-of-the-art
approaches (Kilby, 2018).

Such cost allocation problems typically exhibit two features: (i) costs must be allocated
exactly, with no profit or deficit; (ii) there is no objective basis at hand for attributing costs
directly to specific products or services. The goal is to devise criteria and methods for solving
these problems in a just, equitable, fair, and reasonablemanner (Young, 1985). Cost allocation
is thus ultimately concerned with fairness. The methods and principles of cost allocation that
are likely to find acceptancemust somehow be grounded in primitive, common-sense ideas of
fairness and equity. In the book Cost allocation: methods, principles, applications by Young
(1985), the authors propose several methods to address this widespread problem in different
scenarios. However, they state that whether the reader finds the proposed cost allocation
principles compelling will depend to some degree on taste, for fairness is partly in the eye of
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the beholder. Indeed, although there are many formal definitions of fairness and solutions to
such cost allocation problems, there is no absolute definition, as fairness is always a context-
related concept. That implies that no universal metric will indicate that one solution is more
fair than another.

Considering the logistic service scenario, these problems are usually cast in the form of
a cooperative game theory model (Ciardiello et al., 2020; Le et al., 2020). According to
this approach, an ideal solution is well-defined and is based on the Shapley value (Shapley,
1953) of the Traveling Salesman Game (TSG) (Potters et al., 1992). Essentially, the Shapley
value of player/customer i is an average of all marginal costs attributable to player i across all
possible coalitions that include player i . The Shapley value is the only attribution method that
satisfies the properties of efficiency, symmetry, dummy, and additivity (Shapley, 1953), which
together are considered a definition of a fair allocation, making it a preferred choice for a fair
cost allocation scheme (Popescu &Kilby, 2020). Unfortunately, this method has exponential
computational complexity, rendering it practical only for small-scale examples involving a
few customers. In real-case applications, scenarios involving several dozen or even a few
hundred customers are more typical. This has led to substantial research efforts dedicated
to finding approximations with lower computational complexity. In Castro et al. (2009)
an approximation approach to Shapley Values through Monte Carlo methods is presented,
while novel methodologies to generate high-quality approximations to the Shapley values
are presented in Popescu and Kilby (2020) and Levinger et al. (2021).

Given the scope of this paper, and the computational burden of computing the Shapley
values, the authors of this paper developed a cost allocation strategy outside the game theory
paradigm. The strategy presented in the following is computationally tractable and appears
to be fair as it is easy to prove that it satisfies three of the four desirable properties of
the Shapley value approach (Shapley, 1953), such as efficiency, symmetry, and null player
property. Indeed, regardless of any assumption or setting, satisfying these desirable properties
is sufficient and reasonable to present the following cost allocation approach as fair.

The proposed approach applies to the solution of a Vehicle Routing Problem (VRP) with
Pickup and Delivery, where a customer i ∈ {1, ..., n} is identified by two distinct nodes: the
pickup node Pi and the delivery node Dn+i .

The proposed allocation strategy employs a weighted average of the outcomes from three
different allocation rules, which we name as follows:

• Isolated Cost Allocation (ICA)
• Neighbors Savings (NS)
• Normalized Marginal Allocation (NMA)

The solution of the VRP can generate multiple routes to pass through all customer locations.
The allocation strategy is then applied to each of these routes assigned to a specific vehicle
k. To better introduce the allocation rules, consider the following notation:

n = number of customer to be served
P = {P1, ..., Pn}: set of pickup nodes
D = {Dn+1, ..., D2n}: set of delivery nodes
N = P ∪ D: overall set of pickup and delivery nodes to visit
o: depot as a departing node
d: depot as a returning node
Nod = o ∪ N ∪ d: overall set of graph nodes
ci, j : cost of arch i, j as the sum of distance and duration costs
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The total cost (i.e. Ctot ) of the solution is defined as follows.

Ctot =
∑

i∈Nod

∑

j∈Nod

ci, j xi, j

Where xi, j ∈ {0, 1} is equal to 1 if vehicle k crosses arch (i, j), 0 otherwise.
Considering this notation, the three allocation rules are presented below.

The Isolated Cost Allocation (ICA) rule assigns costs to each customer i in proportion to
the shortest path distances of the route that starts from the depot, moves to the pickup node
Pi , then to the delivery node Dn+i , and finally returns to the depot. Considering a customer
i , we define:

C ICA
i = Co,Pi + CPi ,Dn+1 + CDn+i ,d

Once C ICA
i is computed ∀i ∈ {1, ..., n}, these values are normalized to get the Isolated Cost

Allocation portion of Ctot to allocate to each customer i , namely %CiICA

%CiICA = C ICA
i∑

i∈{0,...,n} C ICA
i

Therefore, Isolated Cost Allocation rule assigns a cost CiICA to customer i such that:

CiICA = %CiICA ∗ Ctot

This rule can serve as an initial proxy to allocate a proportion of the total route cost. This rule
assigns a cost that is proportionate to both the Pi and Dn+i distances and takes into account
these nodes as independent of the other visited ones, embedding the non-cooperative scenario.
At the same time, this represents its main drawback, as the ICA rule does not consider the
reduction in costs due to proximity to other served customers, both in terms of pickup and
delivery.

Neighbors Savings rule is intended to recover the main drawback of the ICA rule. This is
achieved by evaluating the marginal cost of visiting Pi and Dn+i in the vehicle tour.. With
this objective, two quantities are defined for each customer i , namely Cdeviation and Clink .
Cdeviation is the sum of all travel distances to visit both Pi and Dn+i as deviations from
the tour of k not considering customer i . This is the sum of all distances associated to the
graph edges crossed by k in its tour that have Pi or Dn+i as either departing or arriving node.
Accordingly, Cdeviation is defined ∀i ∈ {1, ..., n} as follows:

Cdeviation =
∑

l∈Nod

Cl,Pi xl,Pi +
∑

l∈Nod CPi ,l xPi ,l + ∑
l∈Nod Cl,Dn+i xl,Dn+i

1 + xPi ,Dn+i

+
∑

l∈Nod

CDn+i ,l xDn+i ,l

Clink is the sum of all distances associated to the graph edges that k should cross to complete
its tour without visiting Pi and Dn+i while respecting the nodes visiting order of the original
solution. Accordingly, Clink is defined ∀i ∈ {1, ..., n} as follows:

Clink =
[ ∑

l∈Nod

∑

h∈Nod

Cl,h(xl,Pi xPi ,h) +
∑

l∈Nod

∑

h∈Nod

Cl,h(xl,Dn+i xDn+i ,h)
]
(1 − xPi ,Dn+i )+

+
[ ∑

l∈Nod

∑

h∈Nod

Cl,h(xl,Pi xDn+i ,h)
]
(xPi ,Dn+i )
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Given the above definitions, we define CNS
i as the marginal distance contribution of i :

CNS
i = Ctot − Cdeviation + Clink

Once CNS
i is computed ∀i ∈ {1, ..., n}, these values are normalized to get the Neighbors

Savings portion of Ctot to allocate to each customer i :

%CiNS = CNS
i∑

i∈{1,...,n} CNS
i

Therefore, Neighbors Savings rule assigns a cost CiNS to customer i such that:

CiNS = %CiNS ∗ Ctot

The main drawback of the NS rule is the risk of not being fair to customers in proximity of
the depot that are involved in a tour that reaches distant locations. NS would assign a portion
of cost that is related to the value of Ctot which is expected to be high in such a tour.

NormalizedMarginal Allocation rule is intended to recover thementioned drawback of the
NS rule. This is accomplished by computing the marginal distance contribution of i without
considering Ctot . Therefore, NMA employs the NS rule except for considering CNMA

i =
max(0,Cdeviation −Clink). Therefore, onceCNMA

i is computed ∀i ∈ {0, ..., n}, these values
are normalized to get the Normalized Marginal Allocation portion of Ctot to allocate to each
customer i :

%CiNMA = CNMA
i∑

i∈{0,...,n} CNMA
i

Hence, Normalized Marginal Allocation rule assigns a cost CiNMA to customer i such that:

CiNMA = %CiNMA ∗ Ctot

The final output of the proposed strategy is a cost allocation proportion that is a weighted
average of the outcomes of the ICA, NS, and NMA rules. Numerical experiments have
analyzed the effects of different weights to address the fairness of this allocation technique.
Intuitively, equal weights provide a fair balance between the objectives and drawbacks of all
rules.

The final average follows a pattern similar to the Isolated Cost Allocation rule, indicating
that the distance between the depot and the customers is the parameter with the greatest
weight. But this is dampened by the other two rules, succeeding in the goal of finding
a consistent and easy-to-compute cost allocation strategy that is outside the game theory
paradigm.
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