	IP project number 247950Project duration: February 2010 – February 2014Project coordinator: Joe GormanProject Coordinator Organisation: SINTEF, NorwayStrategic Objective: 7.1.bwebsite: www.universaal.org			
SEVENTH FRAMEWORK PROGRAMME: PRIORITY 7.1B LARGE SCALE INTEGRATING PROJECT (IP)	Universal Open Architecture and Platform for Ambient Assisted Living			
Document Type <u>"Deliverable:"</u> Item Appearing in "List of Deliverables in	Supplementary Report, with independent sub-parts. Each sub-part forms a coherent whole in its own right, and has been edited and reviewed independently. The sub-parts are integrated in this document, to form the deliverable as a whole.			
DoW with delivery date shown in bold <u>"Supplementary Report"</u> As "Deliverable", but delivery date <i>not</i> shown in bold. These documents are formally internal to the consortium, but can be delivered on request.	X Supplementary Report (single document, no sub-parts). Sub-part of a Supplementary Report.			

Document Identification				
Deliverable ID:	D1.3-A Deliverable universAAL Reference Architecture			
Release number/date: V1.0		V1.0 25.06.2	010	
Checked and released by: Se		Sergio Guillén/ITACA		

Key Information from "Description of Work" (from the Grant Agreement)			
Deliverable Description	Specification of the Reference Architecture. Text, reference figures, UML		
	diagrams. Rules about how to interpret the specification. Includes universAAL		
	protocol specifications, API specifications and ontology.		
Dissemination Level	PU=Public		
Deliverable Type	R = Report		
Original due date	Month 3 / 30.04.2010		
(month number/date)			

Authorship& Reviewer Information				
Editor (person/ partner):	Gema Ibáñez/ITACA			
Partners contributing	Erlend Stav (SINTEF), Ståle Walderhaug (SINTEF), Saied Tazari (FhG), Stefano Lenzi (CNR), Francesco Furfari (CNR), Peter Wolf (FZI), CERTH, Laura Belenguer (ITACA), Juan Carlos Naranjo (ITACA), Gema Ibáñez (ITACA), Patricia Abril (UPM), Sandeep Kumar (Philips), Venelin Arnaudov(ProSyst), Oliver Höftberger (TUW), Miran Mosmondor (ENT)			
Reviewed by (person/ partner)	Ivan Benc (ENT) – Sten Hanke (AIT)			

Release number	Date issued	* Milestone	eRoom version	Release description /changes made	
0.1	26.03.2010	TOC approved	V1	ToC First internal release.	
0.2	29.03.2010	ToC approved	V2	Chapter sections extended.	
0.3	29.03.2010	ToC proposed	V3	ToC external review proposed.	
0.4	30.03.2010	ToC proposed	V4	Sections assigned to partners	
0.5	30.03.2010	ToC approved	V5	ToC external review approved	
0.6	15.04.2010	Intermediate	V5	Editor changed	
0.7	28.04.2010	Intermediate	V6	Added section 4.1	
0.8	11.05.2010	Intermediate	V7	Added section 6.2	
0.9	12.05.2010	Intermediate	V8	Added section 4.2	
1.0	25.06.2010	Release	V19	Technical manager release	
1.0	22.09.2010	Release	V20	Front cover, template and footer corrections	

Release History

* The project uses a multi-stage internal review and release process, with defined milestones. Milestone names include abbreviations/terms as follows:

- PCOS = "Planned Content and Structure" (describes planned contents of different sections)
- Intermediate: Document is approximately 50% complete review checkpoint
- External For release to commission and reviewers;
- proposed: Document authors submit for internal review
- revised: Document authors produce new version in response to internal reviewer comments
- approved: Internal project reviewers accept the document
- released: Project Technical Manager/Coordinator release to Commission Services

universAAL Consortium

universAAL (Contract No. 247950) is an Large Scale Integrating Project (*IP*) within the 7th Framework Programme, Priority 7.1.b (ICT & Ageing). The consortium members are:

STIFTELSEN SINTEF (SINTEF, Project	UNIVERSIDAD POLITECNICA DE		
Coordinator)	VALENCIA I OLITECIACA DE		
Contact persons: Joe Gorman	(ITACA, Technical manager)		
Email: joe.gorman@sintef.no	Contact person: Laura Belenguer Querol		
	Email: laubeque@upvnet.upv.es		
AUSTRIAN INSTITUTE OF TECHNOLOGY (AIT)	CONSIGLIO NAZIONALE DELLE RICERCHE		
Contact person: Sten Hanke	(CNR-ISTI)		
Email: sten.hanke@ait.ac.at	Contact person: Francesco Furfari		
	Email: francesco.furfari@isti.cnr.it		
CENTRE FOR RESEARCH AND TECHNOLOGY	FRAUNHOFER-GESELLSCHAFT ZUR		
GREECE (CERTH)	FOERDERUNG DER ANGEWANDTEN		
Contact person: Nicos Maglaveras	FORSCHUNG E.V (Fh-IGD)		
Email: nicmag@med.auth.gr	Contact person: Saied Tazari		
	Email: saied.tazari@igd.fraunhofer.de		
ERICSSON NIKOLA TESLA (ENT)	IBM ISRAEL – SCIENCE AND TECHNOLOGY		
Contact person: Ivan Benc	LTD. (IBM)		
Email: ivan.benc@ericsson.com	Contact person: Yardena Peres		
	Email: peres@il.ibm.com		
FORSCHUNGSZENTRUM INFORMATIK AN	PHILIPS ELECTRONICS NEDERLAND B.V.		
DER UNIVERSITAET KARLSRUHE (FZI)	(PHILIPS)		
Contact person: Andreas Schmidt	Contact person: Milan Petkovic		
Email: Andreas.Schmidt@fzi.de	Email: milan.petkovic@philips.com		
IMPLEMENTAL SYSTEMS SL (IMPLEMENTAL)	REGION SYDDANMARK (RSD)		
Contact person: Jordi Valles	Contact person: Casper Dahl Marcussen		
Email: jordi.valles@implementalsystems.com	Email: cma@medcom.dk		
PROSYST SOFTWARE GmbH (PROSYST)	TECHNICSHE UNIVERSITATET WIEN		
Contact person: Kai Hackbarth	(TUW)		
Email: k.hackbarth@prosyst.com	Contact person: Roman Obermeisser		
	Email: romano@vmars.tuwien.ac.at		
TSB SOLUCIONES TECNOLOGICAS (TSB)	VDE VERBAND DER ELEKTROTECHNIK		
Contact person: Juan-Pablo Lázaro-Ramos	ELEKTRONIK INFORMATIONTECHNIK EV		
Email: jplazaro@tsbtecnologias.es	(DKE)		
	Contact person: Henriette Boos		
	Email: henriette.boos@vde.com		
UNIVERSIDAD POLITECNICA DE MADRID			
(UPM)			
Contact person: cvera@lst.tfo.upm.es			
Email: cvera@lst.tfo.upm.es			

UNIVERSAAL

Table of Contents

Release History	2
universAAL Consortium	3
Table of Contents	4
Table of Figures	5
List of Tables	5
Executive summary	6
1 About this Document	7
1.1 Role of the deliverable	7
1.2 Relationship to other versions of the deliverable	8
1.3 Structure of this Document	
2 Roadmap to the universAAL Reference Architecture	10
2.1 From Reference Model to Reference Architecture	
2.2 Rationale behind the Collection of Former Project Architectures	
2.3 Methodology to Consolidate former Architectures: ARCADE	
2.3.1 Views	13
2.3.2 Assets	
2.3.3 Applying ARCADE to D1.3	14
<i>3</i> Input to reference model from other projects	
3.1 Terminology model (or concepts and relationships)	15
3.2 Layer model	
3.2.1 AMIGO Layer Model	16
3.2.2 GENESYS Layer Model	
3.2.3 MPOWER Layer Model	20
3.2.4 OASIS Layer Model	23
3.2.5 PERSONA Layer Model	
3.2.6 SOPRANO Layer Model	
4 universAAL Reference Model	
4.1 universAAL Terminology Model	
4.2 universAAL Layer Model	
4.2.1 Consolidation of the layer models from the input projects	
4.2.2 The universAAL layer model	
5 Future work	
References	
APPENDIX A	
1. AMIGO Terminology Model	
2. GENESYS Terminology Model	
3. MPOWER Terminology Model	
4. OASIS Terminology Model	
5. PERSONA Terminology Model	
6. SOPRANO Terminology Model	

Table of Figures

Figure 1: ARCADE artifacts addressed in the different universAAL deliverables	3
Figure 2: A scheme of the development process in universAAL	
Figure 3: Project results in the first iteration	
Figure 4: The relationships between the main technical deliverables of universAAL	1
Figure 5: Amigo layer model	
Figure 6: Waistline structure of GENESYS services	
Figure 7: The MPOWER layer model)
Figure 8: OASIS Conceptual Architecture	3
Figure 9: Using peer-to-peer connections to form a dynamic ensemble of networked nodes in	
PERSONA	
Figure 10: The PERSONA layer model	7
Figure 11: Example of communication ways in PERSONA when components from the application	n
layer need to access platform core services	7
Figure 12: The SOPRANO pyramid. The semantic hierarchy from top level abstract system behaviou	r
down to attached devices is depicted)
Figure 13: Overview of universAAL terminology and relationships	3
Figure 14: Consolidation of layer models	7
Figure 15: universAAL layer model (simple, strict variant)	
Figure 16: universAAL layer model (relaxed variant)	9
Figure 17: The process of architectural design in universAAL	1
Figure 18: Example concept map	1

List of Tables

Table 1: Term definitions relevant for architectural design	11
Table 2: Layers from Amigo project	16
Table 3: Layers from GENESYS project	19
Table 4: Layers from MPOWER project	20
Table 5: Layers from OASIS project	24
Table 6: Definition of the layers in PERSONA	28
Table 7: Layers from Soprano project	30
Table 8: universAAL Terminology Model	33
Table 9: Definition of the layers in universAAL	

Executive summary

This deliverable D1.3 is related to Task 1.4 "Consolidated AAL Reference Architecture specification" in work package 1 (WP1), and is connected with D1.1 "universAAL Reference Requirements" and D1.2 "universAAL Reference Use Cases" deliverables, and several work packages. Both requirements and use cases drive the architecture development. From the context and requirement view described in D1.1 and D1.2, the component and distribution views will be defined in this deliverable. In WP2 will be implemented the components defined in the reference architecture. Scope and boundaries of services can be implemented with the platform, which are defined in WP3 and includes development tools and services. The reference architecture is main result of the project, which is subject of standardization in WP8.

Also, the deliverable acts as roadmap for the current and the future work concerned to this deliverable and it captures initial work done at this first stage in the analysis and consolidation phase of the development process in universAAL, giving a first look on a universAAL Reference Model.

Terminology and layered reference model, as component views, are presented and consolidated from various input projects (SOPRANO, MPOWER, PERSONA, OASIS, AMIGO and GENESIS) in order to establish a common understanding of the AAL domain. The AAL reference terminology captures most important concepts used in documentation of the AAL Reference Architecture. The AAL layer model presents a generic pattern for structuring AAL software components. Both terminology and layered reference model correspond with the first version of the reference model that will be validated in order to be used as base for the universAAL Reference Architecture in further deliverables. Later versions of this deliverable will report next steps undertaken to arrive at the universal Reference Architecture that will be used to define platform components and services and their relationships. Further, the resulting Reference Architecture will be described according to the ARCADE methodology.

yersAAL

1 About this Document

1.1 Role of the deliverable

Deliverable 1.3 will report on work done in Task 1.4 "Consolidated AAL Reference Architecture specification". As a specification tailored to the AAL domain the reference architecture facilitates the development of an AAL platform that subsequently enables provision of AAL services.

In general, software architecture comprises software components, the externally visible properties of those components, and the relationships between them. The specification or documentation of a system's software architecture facilitates communication between stakeholders, documents high-level design, and enables reuse and maintainability of components and patterns between projects. The specification of the universAAL reference architecture follows the ARCADE [1] architecture description framework. The ARCADE framework was developed to assist the software architect by providing documentation formats and structure, by handling important quality related concerns and by ensuring successful reusability and maintainability of architectural components.

Furthermore, a consistent AAL terminology and AAL layered reference model is presented. This deliverable describes the component and distribution views that can be considered follow ups to context and requirement view described in D1.1 and D1.2, respectively. Both views consolidate input coming from various projects including SOPRANO, MPOWER, PERSONA and OASIS. The AAL reference terminology captures most important concepts used in documentation of the AAL Reference Architecture. The AAL layered reference model presents a generic pattern for structuring AAL software components. Both terminology and layered reference model have been derived from various AAL-related and technical sources to ensure a complete and useful representation from a domain and technical point of view.

The AAL Reference Architecture will define platform components and services and their relationships. To some extent it will also outline possibilities of future platform extensions, scope and design of applications providing services to the user, possibilities for the integration of tools and maintainability and reusability of software components. Further, terminology and reference model will outline the general scope the system and the domain that is taken into consideration.

In particular, this deliverable is related to the following universAAL deliverables and work packages:

D1.2 -- **universAAL Reference Requirements and D1.1** – **universAAL Reference Use Cases for AAL:** Both requirements and use cases drive the architecture development. They define scope and boundaries that the system's architecture has to comply with. Accordingly, the ARCADE framework defines that component and distribution view as follow-ups to context and requirement view (see Figure 1).

	D1.1	D1.2	D1.3	WP2, WP3, WP4
ASSETS OVERVIEW	ROLES, ACTORS, USE CASES, SCENARIOS FROM INPUT PROJECTS	ROLES, ACTORS, REQUIREMENTS FROM INPUT PROJECTS	TERMINOLOGY AND LAYERED MODELS FROM INPUT PROJECT	CODE FROM INPUT PROJECTS
VIEWS	STAKEHOLDERS AND CONCERS CONTEXT VIEW	REQUIREMENTS VIEW	REF. MODEL COMPONENT AND DISTRIBUTION VIEWS	REALIZATION VIEW (PLATFORM, TOOLS, SERVICES)
ASSETS APPENDICES	APPENDIX, OR SUBDELIVERABLE CONTAINING ASSETS	APPENDIX, OR SUBDELIVERABLE CONTAINING ASSETS	APPENDIX, OR SUBDELIVERABLE CONTAINING ASSETS	APPENDIX, OR SUBDELIVERABLE CONTAINING ASSETS

Figure 1: ARCADE artifacts addressed in the different universAAL deliverables

- WP2 Open Source AAL Platform and Implementation: WP2 implements the components as defined in this reference architecture. The process of implementation as well as the consideration of runtime properties of the system contributes to the realization view of the system (see Figure 1)
- WP3 Tools and Tutorial and WP4 Innovative service concept implementation: As explained above the platform architecture will to some extend define scope and boundaries of services that can be implemented with the platform. This includes development tools and services of the Developer Store as well as services stored within the uStore targeting at end users and uAAL authorities.
- WP8 Community building & standardization and WP9 -- Dissemination & Exploitation: The AAL reference architecture will be a main result of universAAL project. Parts of it or the whole architecture are subject of standardization in WP8. Due to its importance for the AAL community and its stakeholders, the reference architecture is a major constituent of scientific and community dissemination as well as exploitation.

Note that roles and actors are common in both deliverables, but are involved in different processes, Appendix, or subdeliverable containing assets could be different information contained in each deliverable.

1.2 Relationship to other versions of the deliverable

Later versions of this deliverable will report further steps undertaken to arrive at the universAAL Reference Architecture. This includes a more detailed description of how distribution and consolidation view have been achieved. Further, the resulting Reference Architecture will be described according to the ARCADE approach. The layered reference model as well as the terminology may be updated according to information gathered in the later stages of the project. For a broader overview on future work regarding universAAL Reference Model and Architecture, please have a look at Section 6 "Future Work".

1.3 Structure of this Document

This deliverable captures initial work done on the universAAL Reference Architecture and provides a first look on a universAAL Reference Model. Section 3 describes the relationship between and the rationale behind the reference model and the reference architecture and acts as a roadmap for this and further deliverables. Section 4 provides the input to the terminology as part of the reference model. This input is structured according to the external projects that it has been extracted from. The next section lists the similar information as input to the layered model. Section 5 closes the discussion on the reference model by presenting the consolidated universAAL result. Finally, Section 6 outlines future work in relation to the universAAL Reference Model and Architecture.

2 Roadmap to the universAAL Reference Architecture

2.1 From Reference Model to Reference Architecture

Figure 2 shows a scheme of the development process as outlined in the Description of Work (DoW) Annex of the project contract. At a first glance, this looks quite similar to common development processes; however, there is at least this decisive difference when considering that the analysis phase comprises also the consolidation of known and accessible results from earlier R&D. The rationale behind this and the scope of the consolidation, however, is discussed in the next section.

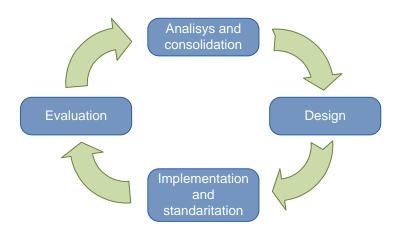


Figure 2: A scheme of the development process in universAAL

If we map the project results from the first few months to the first iteration in the above process, the scene will change as shown in Figure 3. This means that we see the version A of D1.3 (this report) as the result of consolidating the design work done in the input projects in order to establish a common understanding of the AAL domain. We call this common understanding of AAL systems the universAAL reference model. Then the version B will introduce a first version of the universAAL reference architecture based on this reference model.

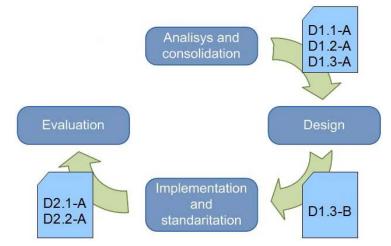


Figure 3: Project results in the first iteration

Putting the above thoughts together, we end up with the relationships of the main technical deliverables of the project as summarized in Figure 4. This is also conform with the common

definitions of the terms reference model, reference architecture, and realization architecture, for instance, the definitions provided by the Organization for the Advancement of Structured Information Standards¹ summarized in Table 1.

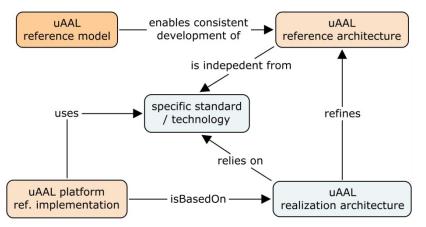


Figure 4: The relationships between the main technical deliverables of universAAL

Accordingly, the reference model defined in this report is supposed to enable the consistent development of the reference architecture without any technological bias, while the universAAL platform as the reference implementation of that architecture will have to make technological choices.

Term	Definition	Source
Reference Model	A reference model is an abstract framework for understanding significant relationships among the entities of some environment. It enables the development of specific reference or concrete architectures using consistent standards or specifications supporting that environment. A reference model consists of a minimal set of unifying concepts, axioms and relationships within a particular problem domain, and is independent of specific standards, technologies, implementations, or other concrete details.	SOA-RM [2]
Reference Architecture	A reference architecture models the abstract architectural elements (building blocks) in the domain independent of the technologies, protocols, and products that are used to implement the domain. It differs from a reference model in that a reference model describes the important concepts and relationships in the domain focusing on what distinguishes the elements of the domain; a reference architecture elaborates further on the model to show a more complete picture that includes showing what is involved in realizing the modelled entities.	SOA-RA [3]
Realization Architecture	By increasing the level of detail in a reference architecture, we can end up with a concrete architecture	universAAL (derived from

Table 1: Term	definitions	relevant for	architectural	design

¹ Actually, by a technical committee at this standardization body that is working on the topic of Service-Oriented Architectures. OASIS – not to be mixed up with the EU-FP7 project OASIS that is one of the input projects to universAAL

that specifies all the technologies, components and their	SOA_RA)
relationships in sufficient detail to enable direct	
implementation. We refer to such a concrete architecture	
as the realization architecture.	

2.2 Rationale behind the Collection of Former Project Architectures

The number of research projects and industrial labs dedicated to the area of Ambient Assisted Living (AAL) is constantly increasing. It becomes more and more crucial to identify reusable results in different areas of architecture, technologies, protocols, and standard building blocks. Apart from those domain-specific solutions for rather constrained scenarios, there have also been general-purpose results coming from several research projects in the field of AAL. It seems to be high time for an evaluation of significant existing solutions in order to foster the identification and re-usability of domain-independent units in an AAL environment and avoid re-inventing the wheel over and over.

Hence, universAAL decided to be a pioneer in reusing existing AAL technology by identifying and utilizing available solutions in a consolidation process. These include the results from the projects Amigo, GENESYS, MPOWER, OASIS, PERSONA, and SOPRANO.

To force reuse, we chose to break the normal software engineering sequence of use case and requirement analysis, design and implementation, and evaluation and feedback and rely on parallel work in several threads, each collecting, categorizing, comparing, harmonizing, merging, and prioritizing one of the engineering results from the input projects. We basically believe that well-founded work based on software engineering techniques has already been done in those input projects and we should benefit from it.

One of those parallel threads is dedicated to the architectural design of AAL systems. Taking the roadmap from the previous section into account, it should be obvious now that the collection of the basic concepts from the input projects is an essential step towards the provision of the universAAL reference model for AAL. The question of further steps in this process is discussed in the next section.

2.3 Methodology to Consolidate former Architectures: ARCADE

The ARCADE methodology for developing architectural descriptions is being used in universAAL as the overall methodology with local customizations to meet the needs of the various tasks. ARCADE defines a small set of high-level artefacts that constitute the software architecture (For a description of these artefacts please consult ARCADE handbook [4]). Central artefacts for this deliverable are the *views* that will be defined as the result of the work done in Task 1.4 "Consolidated AAL Reference Architecture Specification". In addition, a number of *assets*² have been imported from the input projects and constitute the basis for the architecture work in Task 1.4.

It is important to note that this version of the deliverable does not yet contain all the necessary views. Views will be defined gradually and will be available in later versions of this deliverable. For this version of the deliverable the main focus has been the collection, analysis and structuring of some of

UNIVERSAAL

 $^{^2}$ System assets are sources of information that can be used when developing the architecture descriptions. System assets can be considered as implicit requirements, which are not necessary to include in the requirement view, however assets may be included in component, deployment and realisation views. Examples of assets that are available are: a dictionary as a reference list of important concepts, standards that is a formalised model or example developed by a standardisation organisation or established by general consent and patterns, which are descriptions of a recurring, well-known problem and a suggested solution.

the assets that are central to Task 1.4. This chapter describes how ARCADE will be used throughout the task, and how end results will look like in terms of artefacts and deliverables.

2.3.1 Views

Views in ARCADE define ways of looking at the software architecture. ARCADE proposes a set of standard views, and allows the definition of new views or customization of existing views. For the purpose of universAAL a new Reference model view has been defined, while two of the standard views are used in this deliverable. Figure 1 in section 2.2 gives an overview of which deliverables that address the other ARCADE views.

2.3.1.1 Reference model view

Reference model view is defined specifically for universAAL universAAL aims at defining a reference architecture that can be instantiated in various forms. The reference model view is constituted by two parts:

- Terminology model: A set of terms and concepts, and the relationships among them, which are defined by the universAAL reference model.
- Layered model: A set of architectural layers with the corresponding service areas and responsibilities. The collection of these layers will cover the areas of responsibility for the entire universAAL platform.

In the context of universAAL the reference model will be used to:

- Compare and consolidate concepts from the different input platforms
- Compare and consolidate the architectural layers of the input platforms (using the layered model)
- Guide the development of the reference architecture (use both terminology and layers)

2.3.1.2 Component view

The component view defines the logical/functional components of the reference architecture, the interfaces among the components, and the interfaces to the external world. Component view is a standard view defined by ARCADE. UML and similar formalisms will be used to define the component view. This view will be added and further described in the next version of this deliverable.

2.3.1.3 Distribution view

The distribution view defines the logical distribution of the components from the component view. The distribution view will define which components logically belong together and which don't, and how communication among the different groups of components will be realized.. This view will be added and further described in the next version of this deliverable.

2.3.2 Assets

In the current version of this deliverable, the type of asset most relevant for universAAL architecture are the ones provided by the input projects. For each of the views above there is a large body of knowledge residing in the input projects. The following assets have been identified to be of importance to current work:

• Terminology models: The terminology models from input projects are collected and are presented in this version of the deliverable. See Section 4.1.

UNIVERSAAL

- Layered models: An analysis of layering in input projects is done compared to the initial layered model in the universAAL description of work. For each input project attempt is done to find a mapping to the universAAL layered model. This is documented in Section 4.2.
- Component models: An analysis of existing components from input projects will be done in the next version of D1.3. The goal is to identify existing components and overlaps in functionality in these components.
- Distribution models: Similar to component models, distribution models from input projects will be analyzed in the next version of the deliverable and be used as input to constructing the universAAL reference architecture.

2.3.3 Applying ARCADE to D1.3

Although ARCADE will be deployed in universAAL using various tools such as modelling and design tools, the resulting artefacts will be documented in the contractual deliverables. The set of deliverables in WP1 (D1.1, D1.2 and D1.3) together with design and realization deliverables from WPs 2, 3 and 4 will document all the resulting artefacts as described in ARCADE. Figure 1 in Section 2.2 illustrate what each deliverable will contain. For D1.3, the content of the final D1.3 will consist of the following main parts:

- Assets overview: A list of references to input material, including material from input projects but also input from e.g. standardization bodies, other methodologies, dictionaries, and other reference material.
- Reference model view: will document the reference model for universAAL. Will consist of section for universAAL terminology and layered model. UML class diagrams, entity-relationship diagrams and similar will be used.
- Component view: will document universAAL component model. UML class diagrams, component diagrams and similar will be used.
- Distribution view: will document universAAL distribution view. UML distribution diagrams and similar will be used.
- Appendices: will document assets used in Task 1.4 as described in Assets overview chapter.

3 Input to reference model from other projects

3.1 Terminology model (or concepts and relationships)

This subchapter presents a collection of relevant terminology, concepts and ideas from each of the following input projects: AMIGO, GENESYS, MPOWER, OASIS, PERSONA, and SOPRANO.

The terminology from the input projects is an important input to creating a consolidated terminology which is part of the initial reference model of universAAL. The terminology from each project is summarized in a table with the following columns:

- **Concept**: This is the concept in question. These are concepts which can be central to the universAAL reference model and the reference model's purpose (see 3.3.1.1 for a definition of what the reference model will be used for)
- **Definition**: This is a textual definition of the term, explained in a way that makes sense to a person not knowing the platform in detail. It can also identify relation to other terms in the list.
- **Relevance to universAAL**: This gives a brief and concrete explanation for why the term is relevant to the universAAL reference model and why it should be in the reference model.
- **Reference**: When possible, references are provided to the original resource in which the term is explained. A summary of the reference documents with URLs are provided before the table of each project.

Due to the large extension of the tables where the terminology from each project is summarized, they have been moved and can be found in the Appendix A at the end of this deliverable.

3.2 Layer model

This subchapter presents the layer models of the following input projects: AMIGO, GENESYS, MPOWER, OASIS, PERSONA, and SOPRANO. In cases where the input project does not define an explicit layer model, a description has been provided of the "de-facto" layer model used.

The description of the layer models consists of an introduction, one (or more) figure(s), and a table with the following columns:

- Layer/sidecar: This name used for the layer.
- **Description**: A description of what the layer does and/or contains.
- *Project* use: An explanation of how this layer was used in the input project

3.2.1 AMIGO Layer Model

The Amigo Open Source Software follows the paradigm of Service Orientation, which allows developing software as services that are delivered and consumed on demand. The benefit of this approach lies in the loose coupling of the software components that make up an application. Discovery mechanisms can be used for finding and selecting the functionality that a client is looking for. Many protocols already exist in the area of Service Orientation. The Amigo project supports a number of these important protocols for discovery and communication in an interoperable way. This makes it possible for programmers to select the protocol of their choice while they can still access the functionality of services that are using different methods.

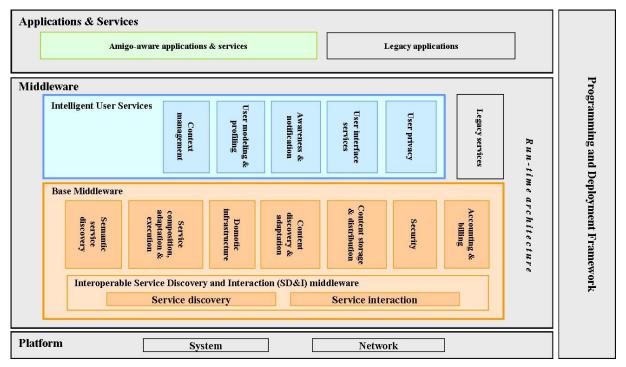


Figure 5: Amigo layer model

Layer/sidecar	Description	Amigo use
Applications	Both functional and non-functional properties	In the application layer of the
& Services	of services are specified, both syntactically and	Amigo abstract reference service
	semantically.	architecture, Amigo services enjoy
		an enriched service description.
Base	The Base Middleware contains the	Amigo project develops
Middleware	functionality that is needed to facilitate a	middleware that dynamically
	networked environment. It provides the	integrates heterogeneous systems
	semantics to communicate and discover	to achieve interoperability between
	available services and devices in the network,	services and devices.
	including the ones that are based on existing	
	communication and discovery standards, such	
	as UPNP, WS, or SLP. This implies that	
	independence is accomplished for existing	
	hardward- and software, and new services can	
	be discovered and composed. In addition,	
	security mechanisms for authentication,	
	authorisation, and encryption are provided.	

UNIVERSAAL

T 4 11º 4		
Intelligent	The Intelligent User Services broker between	The Intelligent User Services in
User Services	users and service providers, and provide	Amigo contain the functionality
	context information, combine multiple sources	that is needed to facilitate an
	of information and make pattern-based	ambient in-home network.
	predictions. Information is tailored to user	
	profiles and adapts to the user's situation and	
	changes in the context.	
Programming	The Programming and Deployment	Facilitates the development of
and	Framework contains modules that facilitate the	Amigo-aware services in .NET or
Deployment	development of services in by providing	Java.
Framework	support for interoperability, security and	
	service description to service developers.	
	Amigo supports and abstracts over several	
	important protocols used for discovery and	
	communication. Therefore, heterogeneous	
	services can be integrated into the networked	
	home independently of their underlying	
	software and hardware technologies.	

UNIVERSAAL

3.2.2 GENESYS Layer Model

In GENESYS services are structured forming a waistline, as depicted in Figure 6. This layer model is inspired by the Internet, where the Internet Protocol (IP) forms a waist between underlying communication technologies (e.g., Ethernet networks, wireless protocols) and higher level protocols on top of the IP (e.g., UDP, TCP). These higher level protocols can further be refined to more application specific protocols, like HTTP, FTP, etc.

Similarly to this, GENESYS defines *core services* that represent the waist. These core services (i.e., global time, communication, configuration and execution control) are required in all instantiations of GENESYS. For each of the core services different underlying implementation options exist. As an example, the communication service can be based on a switched Network-on-a-Chip (NoC), Ethernet or wireless protocol.

Towards the top of the waistline, platform services can be successively refined and extended. This way, more powerful and specialized platform services can be obtained. At first, *domain-independent optional services* are built above the core services. These services can further be refined to construct *domain-specific services*, where *central* and *optional* services can be distinguished. Actual *application services*, that use domain-specific services of underlying layers, are situated at the top of the waistline. In the subsequent table the rationale of each layer will be explained.

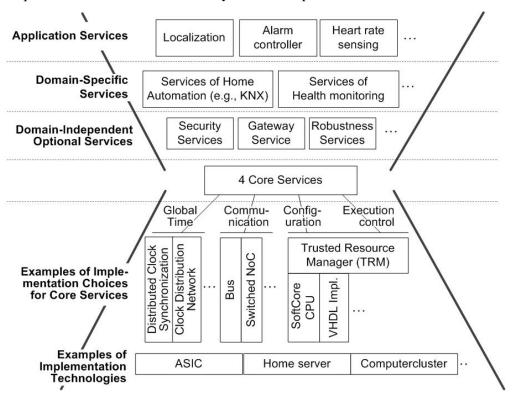


Figure 6: Waistline structure of GENESYS services

Layer/sidecar	Table 3: Layers from GENESYS Description	GENESYS use
Core Services	Provide capabilities which are required	In the GENESYS architecture core
	in every target application domain (e.g.,	services comprise global time services,
	Home Automation, Health care, etc.).	communication services, configuration
	These services are at the waist of the	services and execution control services.
	layer model. The actual implementation	
	of core services depends on the choice of	
	underlying implementation technologies.	
Domain-	Are built on top of the core services and	Domain-independent optional services
Independent	provide functionalities that can be used	are not required for every instantiation of
Optional Services	for different application domains.	GENESYS, but extend the capabilities of the core services.
		Exemplary services are security services, gateway services, robustness services, etc.
Domain-Specific	These services are focused towards a	GENESYS distinguishes domain-specific
Services	specific application domain. Domain-	central services, which are considered
	independent optional services and core	essential for the specific application
	services below the domain-specific	domain, and domain-specific optional
	services are further enhanced.	services, that supplement the service set
		provided to the layer above.
		An example of a domain-specific service
		would be the implementation of a KNX-
		interface for the home automation
		domain.
Application	Application services are situated at the	At the application service layer of the
Services	top of the waistline structure. Services of	GENESYS architecture services are
	all underlying layers can be used. This layer provides services that represent the	implemented which the user of the
	actual value for the user of the platform.	platform actually requires.
	actual value for the user of the platform.	For example an emergency service, that
		can locate the assisted person, perceive its
		heart rate and in case of need trigger an
		alarm, may be such an application
		service.

 Table 3: Layers from GENESYS project

UNIVERSAAL

3.2.3 MPOWER Layer Model

The MPOWER layered model is an adaption of the layer model from the IBM SOA Reference Architecture [11]. As shown in the figure, it consists of five main layers – each layer comprising a set of "components" that conforms to the rules and requirements specified for the layer. In addition, three "sidecars" and their relations to the layers are included in the model. Each layer and "sidecar", and their application in MPOWER is briefly described in the table. The figure also indicates how the different groups of MPOWER services map to the reference architecture.

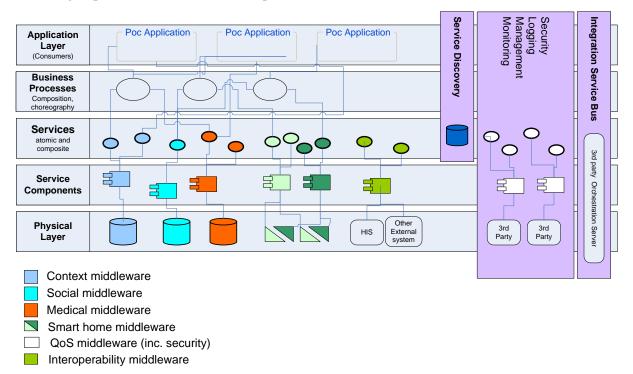


Figure 7: The MPOWER layer model

Layer/sidecar	Description	MPOWER use
Application	Provides user interface and application	Applications built using MPOWER,
layer	specific components, decoupling these	including the pilots, belong to this layer.
	from the underlying (business) services	These provide the access point through
	on which they build.	which the users of applications access the
		services.
Business	Defines the business rules and process of	Used to define business rules of the
processes	the applications. Services are bundled	MPOWER pilot applications. An
	into a flow through orchestration or	example of an assistive care business
	choreography, and thus act together in	process is management of a shared
	supporting use cases and business	calendar where calendar, patient and
	process of the application.	caregiver information, and medical plans
		are accessed through a set of services and
		service components.

NIY ERSAAL

G •		
Services	Provides services available for	The main functionality of the MPOWER
	invocation. Service implementations	platform is provided as services.
	may use service components in their	Examples of services from MPOWER are
	realization, and expose their	Authentication, Calendar Management,
	functionality through service interface	Medication Management, External
	descriptions. Services can be made	Notification, Door Control Management,
	available for service discovery through a	and iCal Calendar Export.
	registry.	
Service	Exposes the functionality of the	A typical service component in
components	components and databases in the	MPOWER is a smart house sensor driver
	resource layer. The Service components	that encapsulates and implements the
	provide a high-level access to their	sensor communication logic for the
	information and control functions.	higher layer services.
Physical	Consists of databases, existing custom	In MPOWER, examples are databases
layer	built applications, and low level resource	storing medication and administrative
	such as physical sensors and actuators.	information, and (smart) sensors for e.g.
		physiological monitoring and door
		control.
Service	Service discovery is referring to finding	In MPOWER, a service discovery
discovery	a suitable service for given task. It could	implementation is based on the UDDI.
	be described as "the automatic	(Universal Description, Discovery and
	identifying of a software-based service	Integration). The UDDI is a platform-
	which allows processing functions to be	independent, XML-based registry for
	offered and then executed after they	businesses worldwide to list themselves
	have been located. Also includes design	on the Internet. The UDDI specification
	time notification".	defines a way to publish and discover
		information about web services. The
		service requestor or web service client
		locates entries in the broker registry using
		a service discovery component (which
		uses various find operations) and then
		invokes the requested web service.
QoS layer	This layer provides the capabilities	In MPOWER, QoS layer includes
	required to monitor, manage, and	security. The objective of the MPOWER
	maintain QoS such as security,	security middleware is to ensure
	performance, and availability. This is a	sufficient protection (i.e. security level)
	background process through sense-and-	for any of the MPOWER enabled
	respond mechanisms and tools that	services when they are used. This implies
	monitor the health of SOA applications,	that security middleware is orthogonal to
	including all important standards	the other services in a way that it is an
	implementations of WS-Management	implicit part of each service, ensuring a
	and other relevant protocols and	satisfactory security level of any
	standards that implement quality of	combination of services in the MPOWER
	service for a SOA.	platform.
		pianoriii.

UNIVERSAAL

Integration	This layer enables the integration of	MPOWER project uses OpenESB which
Service Bus	services through the introduction of a	is SUN's implementation of ESB. The
	reliable set of capabilities, such as	ESB is the piece of software that lies
	intelligent routing, protocol mediation,	between the business applications and
	and other transformation mechanisms,	enables communication among them. It
	often described as the Enterprise Service	works as distributed infrastructure for
	Bus (ESB). Web Services Description	enterprise integration and consists of
	Language (WSDL) specifies a binding,	service containers and provides services
	which implies a location where the	for transforming and routing messages.
	service is provided. On the other hand,	
	an ESB provides a location independent	
	mechanism for integration.	

3.2.4 OASIS Layer Model

Although OASIS has not been explicitly designed having a layer-based approach in mind, its architecture can be described from a layer-based point of view. Figure 8 provides an overall picture of the major components that participate in the OASIS architecture and how these inter-operate with each other.

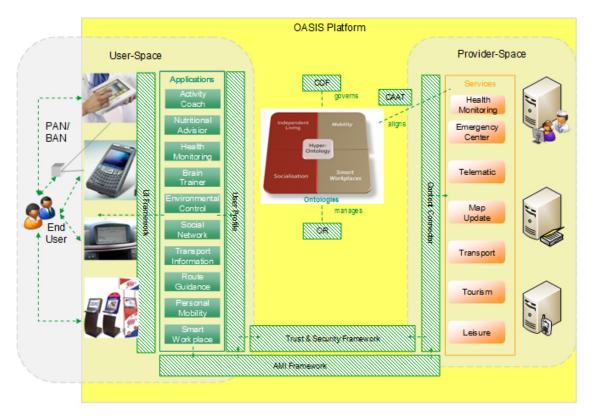


Figure 8: OASIS Conceptual Architecture

All the components involved in the OASIS architecture may be arranged on different architectural layers that are derived from a top level conceptualization of the OASIS architecture. The specific concepts that are involved in the OASIS architecture are explained in what follows and the corresponding layer to which each component belongs is indicated in parenthesis.

- *Services and devices*. Multiple services will be part of OASIS in order to provide all the desirable functionality to the rest of the OASIS components. In OASIS there are two types of services: local services that will reside inside the platform and remote services provided by all the external application providers (Service Layer).
- *AMI Framework*. The Ambient intelligence framework that provides seamless interactivity between OASIS services, applications and the hyper-ontology. It is comprised of the multiagent platform (Middleware Layer).
- *Common Ontological Framework (COF).* The COF defines a formal specification of ontology modules, and how they relate. The COF defines a methodology and best practice for ontology construction. It makes possible to define a hyper-ontology and also facilitates the integration of new emerging ontologies (Middleware Layer).
- *Content Anchoring and Alignment Tool (CAAT).* This tool aligns the functionality of the provided WS to the ontologies stored in the Ontology Repository. The concepts of the same or different application areas, after being aligned with other ontological concepts, will be able to anchor in the hyper ontology framework, thus being ready to be used seamlessly through the CCM (Support Application Layer).

IVERSAAL

- *Content Connector Module (CCM).* The role of the CCM is twofold: it supports automatic integration of WS and devices, which takes place when new service providers or hardware developers are willing to register their assets in OASIS, and it receives a request for service by the end-user (client) application via the AmI and invokes the appropriate service that returns the required content to the client (Middleware Layer).
- Ontology Repository (OR). It is the physical infrastructure that supports ontologies storage and management. The COF provides one specific repository for OASIS, the ORATE (Support Application Layer).
- *Trust & Security Framework* (TSF). The TSF is a module responsible for identification, authentication, authorization, including delegation, federation between domains and the integration of the identity services (Trust & Security Layer).
- *User Profile*. It contains all the context information related to a specific user. If one OASIS components needs to retrieve some information related to the user context but out of its own scope, it should make a query to this user profile (Trust & Security Layer).
- *UI Framework*. Allows automatic user interface self-creation for new connected services and self adaptation to the device used, the context of use and the user needs and preferences (End-user Application Layer).

The various layers are presented in more detail in the following table.

Layer/sidecar	Description	OASIS use
Service	This layer includes all external and	In OASIS this layer is used to encompass
Layer	internal services that are provided to the system. On one hand external services can be seen as the various resources provided by external service providers who register themselves in the system and semantically align their services to the system ontologies. It also supports hardware developers that aim at aligning the functionality of a new device with	all assets that are registered in the system including WS and hardware devices that are interconnected and invocable. Service layer is used to integrate all available service in a seamless and semantics- aware way in order to make them visible to the other architectural layers and implement SOA functionalities.
	respect to the ontologies.	
Middleware Layer	Provides a reference implementation of the reference architecture and OASIS platform. This layer includes the technical infrastructure required for the semantic search and integration of services and devices with respect to the ontologies, as well as the invocation of services, consumption of the available resources that are provided in a service- oriented way and the deliverable of requested resources to the end-user applications.	It includes all major OASIS middleware elements and components, such as the AMI, COF and CCM.
Support Application Layer	This is a support layer that provides all appropriate tools that are required by various operations related to elements of the middleware layer.	This layer consists of all necessary concepts and frameworks for ontology storage / management, service alignment and integration. Specifically it includes the CAAT, as well as various ontology support tools such as the ontology backup, update and maintenance tool, mappings visualisation tools, etc.

Table 5: Layers from OASIS project

NIY ERSAAL

Trust and	The trust and security layer is	The Trust and security layer is the core
Security	responsible for identification,	subsystem for performing user
Layer	authentication, authorization, including	registration, authentication and profile
-	delegation, federation between domains	management, including privacy
	(local/remote and OASIS/third party	management through the security module,
	providers), user profiles and the	using central and/or federated identity
	integration of the identity services.	management functionality.
End-user	This layer encompasses the end-user	It is used to support the functionality and
Application	applications that run on the user's	design aspects of the end-user
Layer	device. It covers issues and concepts	applications.
-	also related to the user interface	
	adaptation mechanisms.	

3.2.5 PERSONA Layer Model

The aim of PERSONA architecture was not necessarily focused in following a traditional 3-layered model nor the IBM SOA layered Reference Architecture. However, looking backward it is possible to find many similarities with any of those layered models or even others.

PERSONA is not a unique monolithic system that runs in a unique runtime environment. PERSONA is based on a model where several nodes that can be located in a unique runtime environment or in different runtime environments (in different machines, in different instances of Java Virtual Machines...) can communicate one to the other thanks to the transparent communication mechanisms offered by the middleware. It is in fact a dynamic ensemble of networked nodes, where the middleware helps that this ensemble takes form by supporting seamless connectivity and facilitating communication based on goal-based interoperability³.

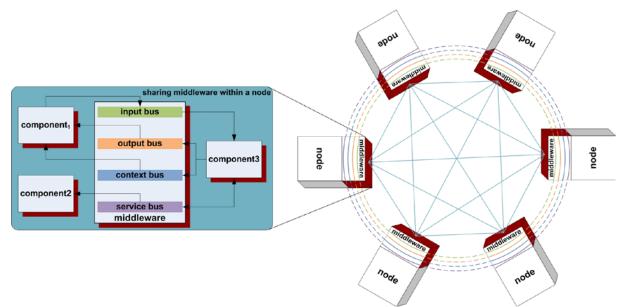


Figure 9: Using peer-to-peer connections to form a dynamic ensemble of networked nodes in PERSONA

From the logical perspective of a layered model, PERSONA can be divided into layers shown in Figure 10, namely the middleware layer, the platform core layer, the platform plug-ins layer, and the AAL services layer. The middleware is responsible for resolving the challenges of seamless connectivity (e.g. node discovery) and goal-based interoperability (e.g. providing a message brokering mechanism) while hiding the distribution and possible heterogeneity of underlying operating systems and networking protocols. After having guaranteed integration and interoperability by the middleware, the question that had to be answered was about shared functionality needed by AAL applications and services. PERSONA divides such functionality into two parts: the mandatory part and the plug-in part. Components that provide the platform core / general-purpose services are mandatory, and hence an integral part of every installation of a PERSONA-based system. The plug-in part, which is represented by the *Platform Pluggable (special-purpose) Services* layer, consists of all components that provide installation-specific shared functionality.

NY ERSAAL

³ For further explanations, please refer to the definition of the PERSONA concepts in PERSONA Terminology Model of APPENDIX A especially the terms Seamless connectivity, Goal-based interoperability, Message brokering, Self-organizing system, Middleware and its distributed realization, Sodapop Model, and Virtual communication bus.

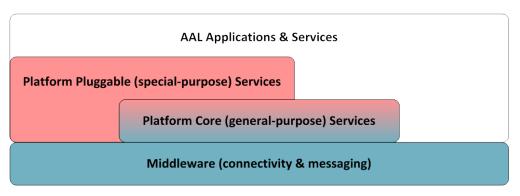


Figure 10: The PERSONA layer model

All components residing on the top three layers, no matter on which of the three logical layers above the middleware, are supposed to perform their communications through the middleware; in other words, "outsourced" functionality from a layer below or from the same layer should be requested by sending a request to the middleware. The middleware is then responsible to (1) find out which concrete component on which layer is providing the requested functionality, (2) send the request in an appropriate form to that component, (3) get its response, and (4) return it in an appropriate form to the original requester. That is, direct component-to-component communication is forbidden in PERSONA. In this way, the only syntactical interface on which the components are dependent is the one of the middleware (cf. Figure 11).

The relevant or visible middleware components that provide these interfaces are the PERSONA buses: Service Bus, Context Bus, Input Bus and Output Bus. As indicated by Figure 9, local instances of these buses in the different nodes cooperate to provide the components using them with a virtually global view on them, this way hiding the distribution of the system.

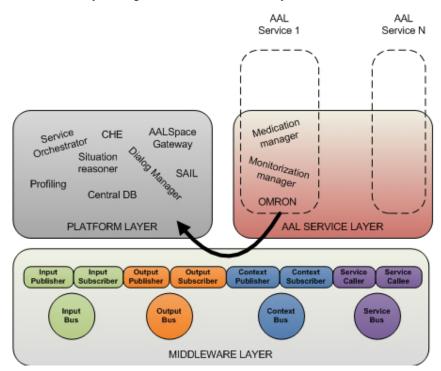


Figure 11: Example of communication ways in PERSONA when components from the application layer need to access platform core services

The above discussion reveals that a layer model as shown in Figure 10 is not reflecting the reality of interfacing between the different layers because there is no API of the pluggable or core components! Getting back to Figure 9, we can see that at a physical level, all the components from the three top

layers can be distributed on the nodes of an ensemble freely and from the viewpoint of the middleware all of them are its "users" with "equal rights". Despite the fact that the set of components residing on the application and the plug-ins layers is undetermined, such a hierarchical **view** like in Figure 10, however, can indeed be derived for each concrete configuration / installation based on the real dependencies between the components, although it is likely that the result would differ from installation to installation.

It is worth to mention that the internal architecture of the middleware itself was originally described using a layer model due to strict hierarchical dependencies that were defined during the conceptual design of the middleware. However, the details of the implementation of the middleware are not so relevant at the level of Reference Model or Reference Architecture though it has a lot of interesting features from a requirements perspective or implementation point of view.

Layer/sidecar	Description	Persona use
Middleware	The "middleware" is the intermediate piece of software allowing the ensemble to take form by defining high-level protocols and providing uniform interfaces for	The integration of components from all the other layers into the system is done through the visible interfaces of the middleware that are the PERSONA buses: Context Bus, Service Bus, Input Bus and Output Bus
	 integrating components into the system enabling the communication between them 	In PERSONA, middleware also provides a level of security mechanisms that ensure that components are allowed to call other components' services.
	It hides: • distribution of components	PERSONA middleware also ensures that communications between nodes are encrypted.
	• heterogeneity of the various hardware components and their operating systems and networking protocols	
Platform core services	The logical grouping of components that provide shared funtionality that is mandatory and application-independent. It is also possible that they publish and consume services among themselves. They attach to the middleware using the visible interfaces of the middleware provided by the PERSONA Buses.	Components that belong to this logical layer: Service Orchestrator, Context History Entrepôt, Profiling component, Dialog Manager, IOHandlers, Situation reasoner, Activity Monitor, Sensor Abstraction and integration layer
Platform plug-ins	Components that enhance the platform toward a certain configuration by providing shared functionality beyond the functionality provided by the mandatory components, without realizing any use case for the human users of the system, belong to this logical layer.	By defining a placeholder for platform plug-ins, PERSONA has made its platform extensible with high potential for customizing it based on real needs and preferences.

Table 6: Definition of the layers in PERSONA

UNIVERSAAL

AAL applications and Services	· · · · ·	This layer is used to symbolize the relation between AAL applications and the PERSONA platform.
	same layer.	

3.2.6 SOPRANO Layer Model

In the following, the different layers of abstraction, their planned manifestation in the system architecture and their role for the SOPRANO [5] system are explained in more detail. For a better understanding, a scheme is introduced that depicts the layers and illustrates the information flow within the proposed system architecture. The system behaviour will be determined by rules and assumptions processed at each level of the scheme, the SOPRANO pyramid. Therefore, the pyramid is a representation of the logical data processing in SOPRANO, and corresponds to the actual system architecture with its different hardware and software components.

In the sequel, the layers of the pyramid and their respective concepts are explained in more detail, starting from the bottom. The pyramid is meant as a reference model for a partition of the different components of the SOPRANO system.

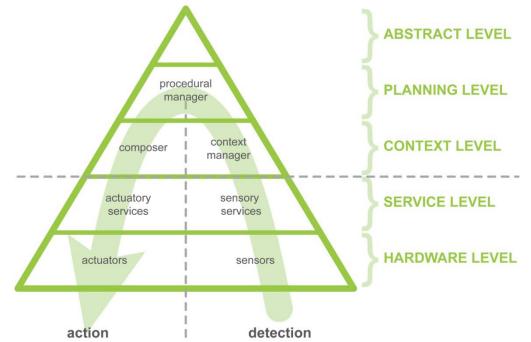


Figure 12: The SOPRANO pyramid. The semantic hierarchy from top level abstract system behaviour down to attached devices is depicted

	Table 7: Layers from	
Layer/sidecar	Description	Soprano use
Hardware Level	The lowest level of the SOPRANO pyramid is the level of the actual hardware devices. There are two types of hardware devices: sensors and actuators.	The logical entities introduced on this level are the providers of raw data on the sensoric side, and the consumers of low-level commands on the actuator's side. The Hardware Level exposes its interface to the above-lying service level. The corresponding interface in the system architecture will be the hardware drivers that expose the sensor's
Service Level	The Service Level provides the first abstraction and aggregation of raw data, yielding semantic data. The creation of meaningful semantic data can be achieved by temporal aggregation ("is still in bed") or by means of semantic interpretation of raw data, e.g. by crossing thresholds ("has fever").	functions to the service level. The Service Level makes use of the underlying Hardware Level for the triggering actuators or receiving sensor data. It offers its services to the above-lying Context Level. In the proposed system architecture, this will be done via OSGi Service Bundles. Hereby, the interface definition evolves out of the concepts introduced by the SOPRANO ontology. The Service Level (and likewise the Hardware Level) is individual to a single SOPRANO installation in a household, depending on the actual sensors and actuators installed. The levels on top of the Service Levels are common for the entire SOPRANO system, hence for the entirety of SOPRANO installations. This entails the necessity of a service registration with the upper level components of the proposed system architecture.
Context Level	The Context Level aggregates Services to high-level sensory events and offers aggregated functionality to the upper planning level.	The Context Level offers high-level semantic events to the planning component above and is ready to take goal-oriented instructions. While at the lower Service Level, a dedicated device is triggered, actions on the Context Level refer to the desired impact only, e.g.: "The AP needs to be notified" instead of "display message on interactive TV". The Context Level delivers the context conditions that are processed at the Planning Level. At the Context Level, the desired system behaviour is describes regardless of the actual devices attached to a local SOPRANO installation. Hence, the context level modelling is valid for all local installations; modifications of the procedures concern all local installations. The corresponding system components that implement the system behaviour on the context level are the context manager (for the sensory branch) and the composer (for the actuatory branch). Their common set of concepts is the context ontology.

Table 7: Layers from Soprano project

UNIVERSAAL

Planning	At the Planning Level, the stack of	This level contains and applies the rules for
Level	sensory aggregation is evaluated,	taking decisions. The events are evaluated in
	and appropriate action is triggered.	the current context and the result could be the
		triggering of a workflow of high-level
		procedures. The responsible SOPRANO
		component is the procedural manager. The
		procedures described in the workflow are
		passed for realisation to the composer.
Abstract	The top level of the SOPRANO	The SOPRANO allows abstraction at several
Level	pyramid as a representation of the	levels of both knowledge and functionality. The
	semantic hierarchy is meant as the	reasoning engine allows uplifting of the
	theoretical superstructure only.	collected knowledge (from low-level sensor
		bound statements to high-level statements
		events handled by the system can lead to
		creation of new logical statements). The
		Composer is capable to select the best matching
		low-level services that realise the high-level
		procedures.

UNIVERSAAL

4 universAAL Reference Model

This chapter defines the first version of the reference model. As mentioned in Chapter 4, in this version of the deliverable we present only the terminology and layer model. The component and distribution models will be defined in the future version. The terminology comprises the definition of a set of basic concepts and their interrelationships. The layer model specifies a set of very high-level and abstract architectural layers along with a generic representation of entities that can reside on each layer. The first version of the universAAL reference model is based on the alignment of the terminology and layer models from the previous projects as described in previous chapter. More details about the consolidation of terminology and layer model are given in the sub-sections of this chapter.

4.1 universAAL Terminology Model

The terminology model for universAAL was done by consolidating the terminology used in the various projects. For the purpose of consolidation, the terminology from the previous projects were categorised into terminology groups. The terminology groups that emerged from the process were the following: Architecture, Behaviour, Bus, Components, Content, Devices, Domotic Infrastructure, Frameworks, Infrastructure, Messages, Ontology, Participant, Quality of Service, Reasoner, Service, and System. This grouping of terminology from the existing standards. SoaML [6], AALIANCE [7] and Continua [8] were used as existing standards and external projects to guide the grouping of terminology. This grouping is preliminary and will be refined or extended with other groups in the future version of the terminology model.

Once the grouping of the terminology was done, the important terms from each group were identified that were considered to be the most relevant concepts for the universAAL reference model. For certain terms that required a broader definition than the ones provided by existing projects or standards, a universAAL specific definition has been provided. Figure 12 below shows the reference model terms and the relationships between them. The types of relations used here are *specialize* (solid line with filled arrow), *realize* (dotted line with filled arrow) and *use* (dotted line with unfilled arrow with <<<us></s></s>

UNIVERSAAL

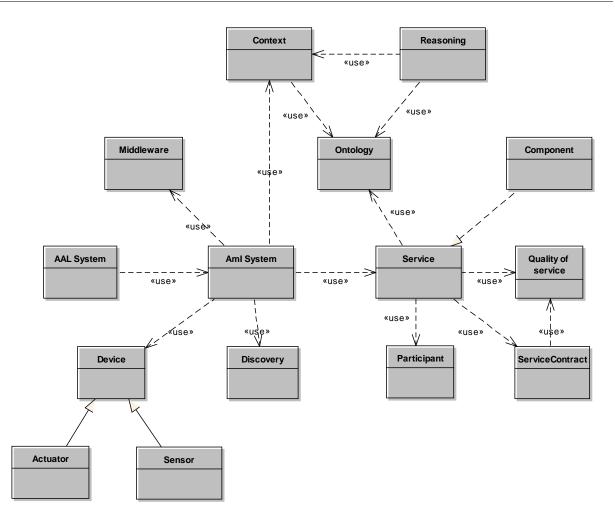


Figure 13: Overview of universAAL terminology and relationships

For certain terminology multiple definitions are listed from the previous projects. All the term definitions listed in the table below are taken directly from their source. In this first version of the Reference Architecture Terminology they are not adapted to universAAL. However, this will be done in the next version of the deliverable. In a future version of the deliverable we aim to consolidate these definitions into a single definition. Some terms are also still to be defined – these are generally the more generic terms that were added to represent a group of terms from the input projects. When the source is listed as OASIS_Std this refers to the terminology from the OASIS Standard SOA reference model, and not to the OASIS project.

Term	Source(s)	Definition
AAL System	«PERSONA»	A system consisting of networked physical and virtual resources
		that are set up to collectively provide intelligent assistance towards
		wellbeing in preferred living environments.
Actuator	«PERSONA»	A device that is able to cause certain changes in the physical realm
		upon receipt of related requests through an interface provided in the
		virtual realm.
AMI System	«PERSONA»	A highly distributed system that uses different facilities for bridging
		between the virtual and physical realms (e.g., I/O channels, sensors,
		and actuators), in addition to utilizing pure virtual resources and
		services, in order to provide human users with ambient assistance in
		performing their tasks and reaching their goals. The provision of
		assistance in AmI systems happens normally in a personalized and

IVERSAAL

		multimodal way. Usually AmI systems also provide automatic assistance in terms of automatic reactions to environmental changes and / or detected intentions, referred to as context-awareness.
Component	«GENESYS, Continua»	To be consolidated in next version of reference model.
		Continua: A Component is an entity in the Continua architecture. In general, for any Interface, there is a Service Component, with a well-defined set of functions depending on its type, on one side of the interface and one (or more) Client Components on the other side. Each Component is contained within a Device
		Genesys: A component is regarded as a self-contained composite hardware/software subsystem that can be used as a building block in the design of a larger system. The component can have a complex internal structure that is neither visible, nor of concern, to the user of the component. The behavior of a component, which is visible at the component's <i>LIF</i> , has to be specified in the value and time domain
Context	«universAAL»	To be specified in next version of this reference model
Device	«Continua»	A Device is a physical entity (box) and contains one or more Components (functionality)
Discovery	«universAAL»	To be specified in next version of this reference model
		PERSONA: A piece of software that glues the distributed components of a self-organizing system to each other, thus allowing the system to emerge. It resolves the challenges of seamless connectivity (e.g. node discovery) and goal-based interoperability (e.g. providing a brokering mechanism) while hiding the distribution and possible heterogeneity of underlying operating systems and networking protocols - no architectural layer but a piece of software!
		 Other sources: "Middleware Architecture with Patterns and Frameworks" [9] states that "intermediate software layers have come to be known under the generic name of middleware". More specifically, it states that this intermediate software "resides on top of the operating systems and communication protocols to perform the following functions. 1. Hiding distribution, i.e. the fact that an application is usually made up of many interconnected parts running in distributed locations. 2. Hiding the heterogeneity of the various hardware components, operating systems and communication protocols that are used by the different parts of an application. 3. Providing uniform, standard, high-level interfaces to the application developers and integrators, so that applications can

UNIVERSAAL

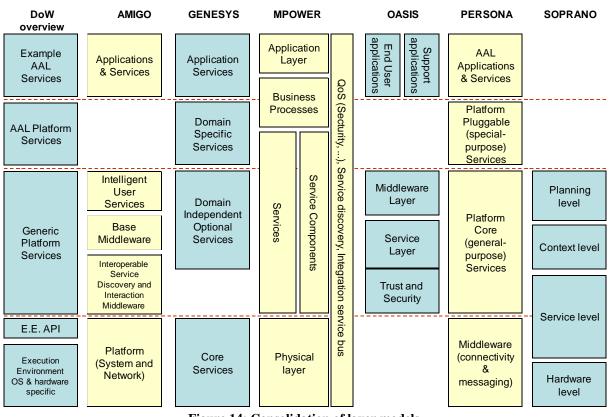
		easily interoperate and be reused, ported, and composed.
		4. Supplying a set of common services to perform various
		general purpose functions, in order to avoid duplicating efforts and
		to facilitate collaboration between applications."
Ontology	«SOPRANO»	To be refined in next version of reference model.
		This is not a functional component of SOPRANO, but it is a very
		fundamental part of the system. All other modules rely on it as a
		common means of understanding. It defines information that can
		be exchanges, knowledge that can be stored and its datatypes.
Participant	«SOAML»	A participant is the type of a provider and/or consumer of services.
		In the business domain a participant may be a person, organization
		or system. In the systems domain a participant may be a system,
		application or component.
Quality of	«Continua»	Quality of service is the collection of properties that define
service		characteristics of an interface connection. This set of properties
		includes aspects of the communication link such as reliability,
		latency, bandwidth, and etc.
Reasoning	«universAAL»	To be specified in next version of this reference model
Sensor	«PERSONA,	To be consolidated in next version of reference model.
	Continua»	
		Continua:
		A Sensor Service Component allows access to digital
		representations of external conditions and events. This includes
		measurements of temperature, motion, or electrical conditions.
		Persona:
		A device that can measure something in the physical realm and
		represent the related info in terms of data in the virtual realm.
Service	«universAAL,	To be consolidated in next version of reference model.
	SOAML,	
	PERSONA,	GENESYS:
	GENESYS»	The service delivered by a system is its intended <i>behaviour</i> as it is
		perceived by its users. The behaviour is the sequence of observable
		outputs of a system.
		PERSONA:
		The provision of something of value, in the context of some domain
		of application, by one party (service provider) to another (service
		consumer); more precisely: the actual value provided to achieve a
		consumer's goal. In the virtual realm, provision of value has
		traditionally been called functionality; hence, service can be seen as
		a general abstract way of talking about accessible functionality that
		can be utilized using pull mechanisms. Services accessible in the
		virtual realm can be utilized by activating a related service utility
		(e.g., using the terminology of Web Services, an "operation" of a
		"Web Service"), which in turn will start a provision process
		realized by the corresponding service providing component (e.g. the
		Web Service component). In such a process, human participants as
		web service component). In such a process, numan participants as well as other service components may be involved. The process
		may also incorporate access to several physical or virtual resources,

		such a printer or a database. However, the process is encapsulated by the	
		SOAML: A service is value delivered to another through a well-defined	
		interface and available to a community (which may be the general public). A service results in work provided to one by another.	
ServiceContract	«SOAML»	A ServiceContract is the formalization of a binding exchange of information, goods, or obligations between parties defining a service.	

4.2 universAAL Layer Model

This section describes the consolidation of the layer models, and the initial definition of a layer model for universAAL.

When describing the layer model of universAAL, we have some main usages in mind:


- Comparing and relating other architectures to the universAAL architecture
- Guidance during positioning attempts for components which are being considered for integration with the universAAL platform
- Guidance for the design of the more detailed reference architecture of universAAL and for universAAL compliant components

The approach taken here to describing the layered model is inspired by the "layered style" introduced by Clements [10] in addition to the layer view of ARCADE described in chapter 3.3.

4.2.1 Consolidation of the layer models from the input projects

As a first step towards consolidation of the layer models of the input projects, we arranged the layer models of the input projects along with the description of the universAAL platform from the universAAL Description of Work (DoW) in a common diagram (see Figure 1613). This work revealed that the model used in universAAL DoW and the models introduced by GENESYS and PERSONA are very similar. Further, most of the other layer models have a good mapping to these models. The alignment lines in the figures were added to help visualize this mapping.

Figure 14: Consolidation of layer models

4.2.2 The universAAL layer model

Based on the mapping between the layer models of the input projects, we have designed a first version of the universAAL layer model. As most of the input models mapped well to the model in the DoW, GENESYS, and PERSONA, our initial layer model is close to these. A first variant of a simple (strict) layer model is presented in Figure 15. Note that the layer view is a logical view of the system, and does not include aspects such as distribution.

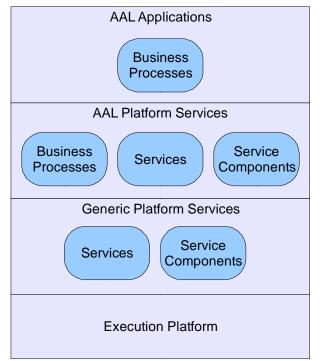


Figure 15: universAAL layer model (simple, strict variant)

In the model, the universAAL platform is divided into three layers, namely the Execution Platform, the Generic Platform Services, and the AAL Platform Services. As a result, the application layer resides on top of the AAL Platform Services.

The execution platform is assumed to extend the native system layer of the different physical nodes participating in an AAL system and hence hide the distribution of these nodes as well as the possible heterogeneity of their native system layers. In addition to that, this layer is supposed to act as a container for integration of all components from the above layers and facilitate the communication among them.

We distinguish between domain specific services (AAL platform services) and domain independent services (generic platform services) because the generic services are common to all AmI-based systems and facilitate the construction of all kinds of smart environments. To this end, we are emphasizing that the AAL platform services tend to be higher level services which depend on generic services for their realization.

Compared to the DoW model, the universAAL layer model does not represent the API of Execution Environment as a separate layer. Rather, this API defines the interface to the Execution Environment layer, and the layer interfaces are not shown explicitly in the figure.

In the figure, we have also mapped the layers from the IBM SOA model (used also in MPOWER) into the proposed model as the types of entities that can reside on each of the layers, as they can present a different dimension of decomposition. The notion of Service is taken from the terminology introduced in the previous section and is meant as an abstract unit for referring to functionality. Service Components are software components that bring with themselves a possible realization for such services. And, last but not least, the business processes emphasize the need for composability at a meta level, based on a workflow involving services.

In a layered model the main elements are layers, and the main relations expressed are "allowed to use" relations between the layers. The simple layer model of Figure 15 can be interpreted as a strict model where usage between layers are restricted to only allow usage of the layer directly below. A more relaxed variant is presented in Figure 1616. While the strict model can be seen as the ideal to fully profit from a layered system, the relaxed model can map more easily to real-life situations. For example, with the above understanding of the execution platform, if this layer is going to be responsible for dealing with the distribution of functionality and heterogeneity of the networked nodes, then it would be more convenient to assign the brokerage task for realizing the communication between all components to the execution platform and hence allow all layers to directly use this functionality.

UNIVERSAAL

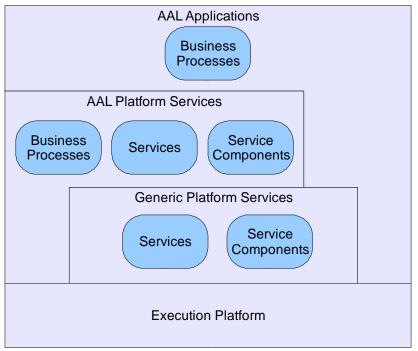


Figure 16: universAAL layer model (relaxed variant)

Since a well-defined layer model should also describe the intra- and inter-layer usage rules, we close the description of the universAAL layer model with the following rules:

- 1. The inter-layer rules
 - components belonging to one layer can freely use the services provided by the layer below through its interface
 - components belonging to one layer can, when necessary, use the services of other layers below (in addition to the one directly below it) through their interfaces, but this usage should be avoided when possible because it weakens the layering. The rules for such usage is subject to further detailing in the reference architecture
 - components of one layer are not allowed to make direct calls on or to have any other dependencies on layers above unless such a call involves the realization of an interface that is defined by the lower layer itself; in such a case, layers above are allowed to register the related realizations for receiving notifications / callbacks
- 2. The intra-layer rules
 - components of a layer are allowed to interact with other components defined in the same layer using well-defined interfaces, subject to rules that will be further defined in the reference architecture
 - more specifically, for business processes, services, and service components in a layer, the following rules apply: service components may utilize services realized by other components on the same layer and business processes can use services. Other uses are not allowed.

	Table 9: Definition of the layers in universAAL			
Layer/sidecar	Description	Interface		
AAL	Ambient Assisted Living applications			
Applications	using the platform for their realization.			
AAL	Reusable services for the AAL domain	The interface of this layer to layers above		
Platform		consists of selected services and business		
Services		processes. Service components are not		
		visible outside this layer, but are the only		
		parts that use the layers below directly.		
Generic	This layer provides ambient intelligence	The interface of this layer to layers above		
Platform	functionality and other domain	is a selected set of services. Service		
Services	independent services to the layers above.	components are not visible outside the		
		layer. Service components depend on the		
		Execution platform, while the services do		
		not use this directly.		
Execution	This layer extends the native system	The interface of this layer to layers above		
platform	layer of the different physical nodes	is a platform-independent API.		
	participating in an AAL system, hiding			
	distribution and heterogeneity issues for			
	the layers above.			

Table 9: Definition of the layers in universAAL

The layered reference model does not indicate which layers contain component frameworks or other means for extensibility. This will be covered in the reference architecture. Also, the layer model does not define the set of components that will be mapped to the layer. The reference architecture will cover this, and will also consider whether any particular subset of components will be mandatory for the platform, and/or whether we will have different "profile" versions of the platform (i.e. for mobile / desktop / server).

The current layer model does not cover any aspects of communication enforced by the platform (e.g. should all communication go through the execution platform?). Such aspects will be defined in the reference architecture.

5 Future work

Based on the methodology described in Section 3, we can summarize the role of the achievements presented in Section 5 in the process of architectural design of the universAAL platform as shown in Figure 171916.

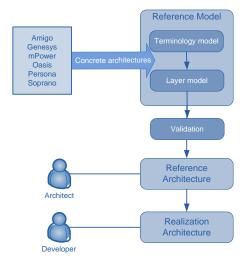


Figure 17: The process of architectural design in universAAL

The first version of the universAAL reference model is based on the alignment of the terminology and layer models from the previous projects. The terminology model requires further refinement to consolidate multiple definitions used for certain terms. Additionally universAAL specific terminology needs to be defined in the future versions of the reference model.

In the next version of the document, we also intend to include concept maps, similar to the one provided in Figure 1817 below. Note that the current content of the concept map in the figure should currently only be regarded just as an example.

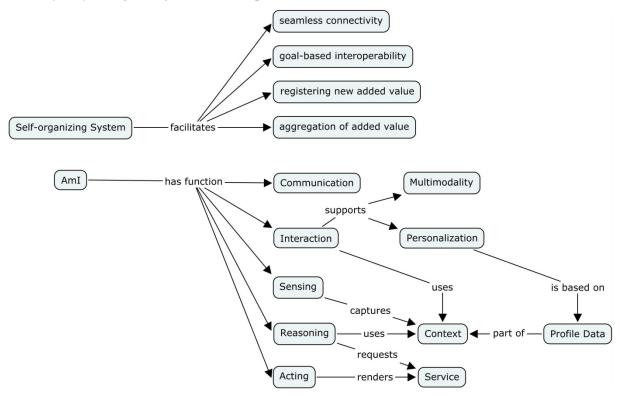


Figure 18: Example concept map

For the layer model, further detailing is needed for the services, service components and business processes and how these are mapped into the reference model. Also, the inter- and intra-layer rules will be defined in more detail.

The main work in the next version of this deliverable, however, will be to define the first version of our reference architecture based on our reference model through a validation step. As part of this initial step, we plan to map the main components of each input project to the reference model, and to group these components based on the functionality they provide. Further, the initial reference architecture will be derived covering the initial selected groups of functionality.

References

[1] ARCADE, An Open Architectural Description Framework [online at: http://www.arcade-framework.org/], accessed on: 09.06.2010

[2] *Reference Model for Service Oriented Architecture 1.0*, [online at: <u>http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf</u>], accessed on: 09.06.2010

[3] Boston, MA, *Reference Architecture Foundation for Service Oriented Architecture*, Committee Draft 02, [online at: <u>http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf</u>], accessed on: 09.06.2010

[4] Stav E., Walderhaug S., Johansen U., ARCADE - An Open Architectural Description Framework, SINTEF

[5] Content taken from SOPRANO Deliverable: Analysis and abstraction of the identified needs and requirements

[6] Beta 2 version from OMG at the time of writing, *Service oriented architecture Modeling Language* (*SoaML*), [online at: <u>http://www.omg.org/spec/SoaML/</u>], accessed on: 09.06.2010

[7] AALIANCE Ambient Assisted Living Roadmap [online at: <u>http://www.aaliance.eu/]</u>, accessed on: 09.06.2010

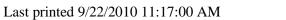
[8] Continua Health Alliance, [online at: <u>http://www.continuaalliance.org/</u>], accessed on: 09.06.2010

[9] Krakowiak, S., *Middleware Architecture with Patterns and Frameworks* [online at: <u>http://sardes.inrialpes.fr/~krakowia/MW-Book/</u>], accessed on: 09.06.2010

[10] Clements P., et. al., Documenting Software Architectures: Views and Beyond

[11] Arsanjani A., *Service-oriented modeling and architecture: How to identify, specify, and realize services for your SOA*, vol. 2007: IBM developerWorks, 2004

UNIVERSAAL


APPENDIX A

1. AMIGO Terminology Model

The AMIGO terminology is extracted from the AMIGO project deliverables, which can be found at:

http://www.hitech-projects.com/euprojects/amigo/deliverables.htm

Concept	Definition	Relevance to universAAL	Reference
Programming and Deployment Framework	The .NET / OSGi programming framework is an essential part of the Amigo Software which is used as a basis by nearly all application/component developers. The goal of the framework is to support developers to write their application or component software in a short timeframe by relieving them of time consuming and complex tasks, such as protocol-specific details for remote communication and discovery.	universAAL requires a programming and deployment framework for developers universAAL will	Deliverable D3.1b Detailed Design of the Amigo Middleware Core Section 4.3 P77-87 Deliverable D4.7
Context Management Service	The Amigo Context Management Service (CMS) is an open infrastructure for managing context information. The role of the CMS is to acquire information coming from various sources, such as physical sensors, user activities, and applications in process or internet applications and to subsequently combine or abstract these pieces of information into "context information" to be provided to context aware services.	universAAL will require some form of context management	Deliverable D4.7 Intelligent User Services 2 - Context Management Service Software Developer's Guide
Awareness and Notification	The Awareness and Notification Service (ANS) provides the basic functionality required to develop applications allowing people and other applications to stay aware of any significant change in context with minimal effort. ANS is able to keep track of changes in various types of context, for example activities and presence of people. ANS makes application layer services aware of context changes by notifying them. Applications register monitoring rules that specify what changes in context should be notified to them. From the user perspective, the Awareness and Notification Service provides notifications with appropriate rendering of intensity, based on the user's preferences and current context.	universAAL requires a mechanism to notify or make aware other people or components of the system to major changes to other parts of the system	Deliverable D4.7 Intelligent User Services 4 - Awareness and Notification Service Software Developer's Guide

UNIVERSAAL

Drive er and	This component provides cause to the	univona A A I	Deliverable D4.7
Privacy and	This component provides access to the	universAAL	
Security	Amigo authentication and authorization	with 24x	0
	service. It encapsulates the communication	surveillance	User
	and cryptographic primitives that are used	requires a good	Services
	for device/user registration, authentication,	privacy and	Privacy and
	and authorization with the centralized	security	Personal
	Amigo security service.	component	Security
User	User modeling and profiling provides the	universAAL	Deliverable D4.7
Modeling and	methodology to enhance the effectiveness	caters to various	Intelligent User
Profiling	and usability of services and interfaces in	categories of	Services
	order to (a) tailor information presentation	users with	3 - User
	to user and context, (b) reason about user's	different needs	Modeling and
	future behavior, (c) help the user to find	which requires	Profiling
	relevant information, (d) adapt interface	user	Service
	features to the user and the context in which	personalization	Software
	it is used, (e) indicate interface features and	using profiles	Developer's
	information presentation features for their		Guide
	adaptation to a multi-user environment.		
	These goals are achieved by constructing,		
	maintaining and exploiting user models and		
	profiles, which are explicit representations		
	of individual user preferences.		
Interoperable	The role of the interoperable service	universAAL	Deliverable
Service	discovery & interaction (SD&I) middleware	needs to work in	D3.1b
Discovery &	is to identify the discovery and interaction		Detailed Design
Interaction		a very	Ũ
Middleware	middleware protocols that execute on the	heterogenous	of the Amigo Middleware
Middleware	network and to translate the	environment and	
	incoming/outgoing messages of one	requires good	Core
	protocol into messages of another, target	interoperability	
	protocol. The system parses the	and discovery	Section 4.1 and
	incoming/outgoing message and, after	mechanisms	4.2
	having interpreted the semantics of the		P44-77
	message, it generates a list of semantic		
	events and uses this list to reconstruct a		
	message for the target protocol, matching		
	the semantics of the original message. The		
	interoperable SD&I middleware acts in a		
	transparent way with regard to discovery		
	and interaction middleware protocols and		
	with regard to services running on top of		
	them. The supported service discovery		
	protocols are UPnP, SLP and WS-		
	Discovery, while the supported service		
	interaction protocols are SOAP and RMI.		

Demestic	The Amire Demotion Informations since at		Dallar and L	
Domotic	The Amigo Domotic Infrastructure aims at	universAAL	Deliverable	
Infrastructure	presenting heterogeneous physical hardware	needs to connect	D3.1b	
	devices as unified software services using	to various	Detailed Design	
	standard service technologies. Nowadays,	sensors with	of the Amigo	
	there is a great diversity of physical device	different	Middleware	
	technologies and protocols. Further, there	interfaces and	Core	
	are a number of service technologies that	therefore		
	should be supported within the Amigo	requires	Section 4.4	
	system. Therefore, the purpose of the	abstraction at the	P87-97	
	Amigo Domotic Infrastructure is to enable	physical layer.		
	the integration of different device			
	technologies presenting them by means of			
	software services, but isolating the final			
	users (service clients) from the specific base			
	technologies.			
Content	The Content Distribution service provides	universAAL	Deliverable	
Distribution	available content in the Amigo home to	requires various	D3.1c	
	Amigo services and applications according	kinds of content	Detailed Design	
	to the DLNA standard. This is done by	(related to	of the Amigo	
	gathering available content descriptions (not	educational	Middleware	
	the actual content to avoid time-consuming	material for an	Core Security &	
	and unnecessary copying of content) from	illness etc) to be	Privacy, Content	
	UPnP Digital Media Servers (like Windows	distributed in a	Distribution,	
	Media Connect, etc.). Moreover, it has the	secure and	Data Storage	
	ability to provide content in a format which	copyright	ε	
	suits the renderer's capabilities in the best	protected way.	Section 3	
	possible way.	F	P15-29	
Content	This component offers a generic storage	universAAL	Deliverable	
Storage	service to other components and	needs to consider	D3.1c	
	applications inside an Amigo system. There	how to store the	Detailed Design	
	is no restriction on the kind of content that	huge amount of	of the Amigo	
	can be stored, and each component or	data that will be	Middleware	
	application can open and control access to a	generated from	Core Security &	
	sub-store inside the Data Store. It supports	sensors and	Privacy, Content	
	also notifications on changes in a sub-store.	consumed by the	Distribution,	
	Data is automatically backed up and	end-user	Data Storage	
	restored when necessary.		Data Storage	
	restored when needsbury.		Section 4	
			P29-33	
			1 27 33	

Accounting and Billing	The Accounting and Billing component of the Amigo middleware offers a basic service for managing IPDR documents. Authorized applications will be able to introduce, search for and filter and share IPDR documents via the Accounting and Billing Service. This component offers validation of IPDR documents as well as service specific IPDR schema caching. Furthermore it enables advanced searches with criteria based on IPDR creation time,	universAAL needs good business models to be adopted by industry and accounting and billing is the first step in that.	Deliverable D3.3 Amigo Middleware Core Enhanced: Prototype Implementation & Documentation Section 10
User Interface Services	service type and service specific element matching. Encompasses several interface related services, such as a multimodal dialogue	universAAL needs an good	P110-112 Deliverable D2.3 Specification of
	manager and services supporting interaction via specific modalities (e.g., speech, GUI, gesture).	UI customized to the target end- users.	the Amigo Abstract System Architecture
			Also: D4.7 series
Semantic	This component offers a comprehensive		Deliverable D3.3
Service	approach to semantic service description,		Amigo
Description	discovery, composition, adaptation and execution in the Amigo home, collectively		Middleware Core
	called SD-SDCAE, using the Amigo-S		Enhanced:
	language, thereby enabling integration of		Prototype
	heterogeneous services into complex		Implementation
	services based on their abstract		&
	specification.		Documentation
			Section 4
			P55-88
VantagePoint	The VantagePoint component is a Java		Deliverable D3.5
	application that can visualize, query and edit		Amigo overall
	OWL ontologies that model a user-specified		middleware:
	physical environment.		Final prototype implementation
			& documentation
			Section 6 P70-96
Management	The management console provides a single	universAAL	Deliverable D3.5
Console	point of control and diagnostics for the	needs to be	Amigo overall
	whole connected home. It is able to connect (remotely) to the different deployment	managed in an easy way and	middleware: Final prototype
	platforms on the devices for control	allow easy	implementation
	(software update) and diagnostic purposes.	diagnosis of	& documentation
		problems.	
			Section 10
			P126-130

2. GENESYS Terminology Model

The GENESYS terminology is defined in the GENESYS book, which is available from:

http://www.genesys-platform.eu/genesys_book

or internally for the universAAL project from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf

Concept	Definition	Relevance to	Reference
		universAAL	
Application	The application service is the intended	Conceptual basis for	<u>GENESYS</u>
Service	sequence of messages produced by a job via	component-based	<u>book</u>
	output ports at the LIF and the controlled	design	(Glossary,
	object interface in response to the		page 175)
	progression of time, inputs and state.		
Architectural	The architectural style consists of rules and	Architectural principles	<u>GENESYS</u>
Style	guidelines for the partitioning of a system	facilitate significant	<u>book</u>
	into subsystems and for the design of the	properties (e.g.,	(Glossary,
	interactions among subsystems. Subsystems	robustness,	page 175)
	must comply with the architectural style to	composability, etc.)	
	avoid a property mismatch at the interfaces		
	between subsystems.		
Architecture	A set of descriptions that define an	An architecture model	GENESYS
Model	architecture or a configuration or a	is also basis of	book
	combination of an architecture and a	universAAL.	(Glossary,
	compatible configuration (that obeys the		page 175)
	rules defined by the architecture).		10 /
Architecture	The architecture is a framework for the	It is the goal of	GENESYS
	construction of a system for a chosen	universAAL to develop	book
	application domain. It provides generic	an architecture.	(Glossary,
	platform services and imposes an		page 175)
	architectural style for constraining an		10 /
	implementation in such a way that the		
	ensuing system is understandable,		
	maintainable, and extensible and can be		
	built cost-effectively.		
Behavior	The sequence of messages (i.e., intended	When different	GENESYS
	and unintended) produced by a subsystem at	components are	book
	its <i>LIF</i> .	integrated to an	(Glossary,
		universAAL	page 175)
		implementation, their	F-8
		behavior (as	
		perceptible from	
		outside the component)	
		is important, but not	
		the internal structure.	
Behavioral	A model that describes the dynamic internal	(see behavior)	GENESYS
Model	evolution (operation) of the object of		book
	reference (system, subsystem, component)		(Glossary,
	and its response to external stimuli.		(01033ary, page 175)
	and its response to external sumun.		page 175)

			CENTRAVA
Channel	A channel serves for the exchange of messages between ports. It is associated with a communication topology, a data- direction (e.g., unidirectional or bidirectional), temporal properties and dependability properties.	Necessary for interaction of universAAL components.	GENESYS book (Glossary, page 175)
Cluster	A cluster is a physically distributed computer system that consists of a set of nodes interconnected by a physical network.	Facilitates description of physical structure of a universAAL system.	GENESYS book (Glossary, page 176)
Component	A component is regarded as a self-contained composite hardware/software subsystem that can be used as a building block in the design of a larger system. The component can have a complex internal structure that is neither visible, nor of concern, to the user of the component. The behavior of a component, which is visible at the component's <i>LIF</i> , has to be specified in the value and time domain.	universAAL systems will be composed of self-contained hardware/software subsystems which internal structure is not of concern to the user.	GENESYS book (Glossary, page 176)
Composability	Composability is a concept that relates to the ease of building systems out of subsystems. A system, i.e., a composition of subsystems, is considered composable with respect to a certain property (e.g., timeliness, certification) if this property, given that it has been established at the subsystem level, is not invalidated by the integration.	A universAAL implementation will be composed of multiple subsystems which are individually developed and tested.	GENESYS book (Glossary, page 176)
Constrained Access Controlled	The access of the platform services through the application is temporally constrained in order to ensure consistency in read/write operations without explicit synchronization. This depends on clock synchronization between application and platform for temporal access coordination.	In order to constrain access to shared resources (e.g., shared memory) the instant and duration of the access to this resource should be temporally constrained. The universAAL	GENESYS book (Glossary, page 177) GENESYS
Object	environment, sensors and actuators that are to be controlled by the computer system.	platform controls several devices (controlled objects) in the environment of the assisted person.	book (Glossary, page 177)
Core Platform Services (Core Services)	Core platform services are mandatory in every instantiation of the reference architecture template (e.g., networking service, robustness service, etc.). The core platform services provide the foundation for higher-level, <i>optional services</i> .	The universAAL platform needs to provide a set of services that are a stable foundation for each instantiation.	GENESYS book (Glossary, page 177)

Cross Domain	The group domain analytications 1 -t-1-	univers A AI mar and	CENEQVO
Cross-Domain	The cross-domain architectural style	universAAL may profit	<u>GENESYS</u>
Architectural	consists of views, concepts, and design	from cross-domain	book Character
Style	principles that have been consolidated from	architectures as the	(Glossary,
	the different application domains. This	development cost of	page 177)
	includes the description of fundamental	devices and	
	architectural principles, the identification of	applications can be	
	commonalities between application domains	amortized to multiple	
	and the identification of different	domains (e.g.,	
	integration levels required in each	including automotive).	
	application domain.	"Economics-of-scale"	
Cross-Domain	The cross-domain methodology framework	(see Cross-Domain	<u>GENESYS</u>
Development	consists of a set of methods, techniques and	Architectural Style)	<u>book</u>
Methodology	tools for diverse development processes that		(Glossary,
	are applicable across multiple application		page 177)
	domains.		
Declared State	The declared state is the state of a	Necessary for	<u>GENESYS</u>
	subsystem, which is considered as relevant	robustness w.r.t.	book
	by the system designer for future behavior	transient faults.	(Glossary,
	of the subsystem.		page 177)
Determinism	A model behaves deterministically if and	Foundation of	GENESYS
	only if, given a full set of initial conditions	robustness by active	book
	(the initial state) at time t0, and a sequence	redundancy, and of	(Glossary,
	of future timed inputs, the outputs at any	certification	(erostar), page 177)
	future instant t are entailed.	•••••••••	puge 1//)
Distributed	A Distributed Application Subsystem is a	Logical structuring of	GENESYS
Application	nearly independent distributed subsystem of	universAAL systems.	book
Subsystem	a large distributed real-time system that		(Glossary,
(DAS)	provides a well-specified application		(erossar), page 178)
	service.		page 1/0)
	For example the multimedia system in an		
	AAL system can be such a DAS. Since		
	DASs may be of different criticality, the		
	probability of error propagation across DAS		
	boundaries must be sufficiently low to meet		
	the dependability requirements. A DAS is		
	further decomposed into smaller units called		
	jobs.		
Error	An error is that part of the system state	Conceptualization of	GENESYS
	which is liable to lead to a subsequent	dependability issues.	book
	<i>failure</i> . A failure occurs when the error		(Glossary,
	reaches the service interface.		
From		One universAAL	page 178)
Error Containment	Although a <i>fault containment region</i> can demarcate the immediate immediate factor		<u>GENESYS</u>
Containment	demarcate the immediate impact of a fault,	component cannot affect other	book (Clossory
	fault effects manifested as erroneous data		(Glossary,
	can propagate across the boundaries of fault	universAAL	page 178)
	containment regions. Therefore the system	components.	
	must also provide error containment for		
	avoiding error propagation by the flow of		
	erroneous messages.		

r			
Error Containment Region (ECR)	The set of <i>fault containment regions</i> that performs error containment is denoted as an error containment region. An ECR consists of at least to independent fault containment regions. The error detection mechanism must be part of a different FCR than the message sender, otherwise the error detection service can be affected by the same fault that caused the message failure.	Errors in one subsystem of the universAAL implementation may not propagate to affect other subsystems. Thus ECRs have to be defined to detect errors within subsystems.	GENESYS book (Glossary, page 178)
Event Message	An event message is a message that contains event observations. An event observation contains the difference between the "old state" and the "new state". The time of the event observation denotes the point in time of the state change. In order to maintain state synchronization, the handling of event messages requires exactly-once semantics.	To notify distinct components of the system of the occurrence of an event, this type of messages is necessary (e.g., when the doorbell is ringing).	GENESYS book (Glossary, page 178)
Fail- operational System	A fail-operational system is able to tolerate one or several <i>faults</i> . Fail-operational systems send correct messages despite the <i>failure</i> of their subsystems.	The universAAL platform will contain services which are essential to the life of the assisted person (e.g., fire alarm, fall detection,). These services must also operate correctly despite the failure of subsystems.	GENESYS book (Glossary, page 179)
Fail-safe System	In a fail-safe system all <i>failures</i> , to an acceptable extend, only minor ones. In case of a failure, the system responds in a way that harm to persons and things is reduced as much as possible (e.g., if the fire detection system fails, an automatic alarm is triggered as maybe the failure was caused by the fire itself).	Subsystems of universAAL may require being fail-save.	GENESYS book (Glossary, page 179)
Failure	A failure occurs when the delivered service deviates from fulfilling its specification.	(see Error)	GENESYS book (Glossary, page 179)
Fault	A fault is the adjudged or hypothesized cause of an <i>error</i> . Faults can be internal (e.g., a design fault) or external (e.g., a malicious attack) of the system. A fault can remain in a system without having any effect (e.g., a design fault). It needs to be activated to become an <i>error</i> .	(see Error)	GENESYS book (Glossary, page 179)

Fault-	A Fault-Containment Region is a collection	Appropriate design of	<u>GENESYS</u>
Containment	of components that operates correctly	fault containment	<u>book</u>
Region (FCR)	regardless of any arbitrary logical or	regions in the	(Glossary,
	electrical fault outside the region.	universAAL	page 179)
		architecture ensures	
		that one faulty	
		subsystem cannot	
		influence computations	
		of other FCRs.	
Fault	The fault hypothesis is the specification of	In the universAAL	<u>GENESYS</u>
Hypothesis	the <i>faults</i> that must be tolerated without any	architecture it needs to	<u>book</u>
	impact on the essential system services. The	be defined which kind	(Glossary,
	fault hypothesis states the assumptions	of faults the system is	page 179)
	about units of failure (i.e., Fault-	able to tolerate without	10 /
	Containment Region), failure modes, failure	the failure of the whole	
	frequencies, failure detection, and state	system. For example, if	
	recovery.	a new application,	
		which contains design	
		faults, is installed on	
		the universAAL	
		system, it should be	
		able to tolerate this	
		fault without requiring	
II.e.e.4	The heat is the write used to encourte is he	explicit repair action.	CENECVC
Host	The host is the unit used to execute <i>jobs</i> .	Physical structuring of	<u>GENESYS</u>
		a universAAL system.	book Character
			(Glossary,
.		T	page 180)
Integrated	Integrated resource management is the	In universAAL most	<u>GENESYS</u>
Resource	simultaneous management of multiple	services depend on the	<u>book</u>
Management	resources (e.g., bandwidth, power, energy,	actual context, thus	(Glossary,
	memory) in order to globally optimize	also resource	page 180)
	different resources.	requirements vary in	
		different situations.	
Integration	The integration level denotes the layer in a	Physical structuring of	<u>GENESYS</u>
Level	system-of-systems at which it is composed	universAAL systems.	<u>book</u>
	out of its components. Different integration		(Glossary,
	levels can be distinguished, e.g., chip level,		page 180)
	device level, system level.		
Job	A job is a constituting element of a DAS and	Logical structuring of	<u>GENESYS</u>
	forms the basic unit of work. It interacts	universAAL systems.	<u>book</u>
	with other jobs through the exchange of		(Glossary,
	messages in order to work towards a		page 180)
	common goal and provide the <i>application</i>		- ·
	services.		
L		1	

UNIVERSAAL

		m • • • -	(T) TOTAL
Linking	A job provides its real-time services, and	The universAAL	<u>GENESYS</u>
Interface	accesses the real-time services of other jobs	platform needs to	<u>book</u>
(LIF)	by the exchange of messages across its	provide precisely	(Glossary,
	Linking Interface. These messages have to	specified interfaces for	page 181)
	be fully specified in a LIF specification	services provided as	
	which consists of an operational	well as to provide	
	specification and a LIF service model	services to other	
	specification.	components. This	
		improves	
		composability.	
Linking	The linking interface specification is the	An exact specification	<u>GENESYS</u>
Interface	mediating middle between a service supplier	of the interfaces in the	<u>book</u>
Specification	and the service user. It comprises a syntactic	value and temporal	(Glossary,
	specification, a temporal specification, and a	domain of services	page 181)
	LIF service model specification. The	provided helps to	
	syntactic specification forms out of the	reduce the potential of	
	sequence of bits in a message larger chunks	mismatch between	
	(e.g., a number, a string, a method call, etc.)	service suppliers and	
	and assigns a name to each chunk. The	service users.	
	temporal specification of the messages	Furthermore, erroneous	
	defines their send and receive instants, e.g.,	components can be	
	at what instants the messages are sent and	detected by means of	
	received, how the messages are ordered, and	assertions at these	
	the rate of message arrival.	interfaces.	
		This improves	
		composability.	
Message	A message is any data structure that is	Concept for interaction	<u>GENESYS</u>
	formed for the purpose of inter-job	between universAAL	<u>book</u>
	communication. In order that errors in a	components.	(Glossary,
	message may be detected, an output guard		page 181)
	and an input guard can be associated with a		
	message. Such a guard is a predicate on		
	values of the message, and relevant state		
	variables that define an application-specific		
	acceptance criterion. Using such assertions,		
	it is possible to classify messages as: valid,		
	checked, permitted, timely, value-correct		
	correct, or insidious.		
Optional	The optional platform services which are	universAAL will	<u>GENESYS</u>
Platform	built upon the <i>core platform</i> service can be	provide services which	<u>book</u>
Services	generic in the sense that they can be used in	are not required in	(Glossary,
(Optional	multiple application domains or specific for	every instantiation of	page 182)
Services)	a focused domain. These are not required in	the architecture, but	
	every instantiation of the architecture, but	available for optional	
	extend the provided services of the core	use.	
	platform services.		
1	I U	1	1

Platform	A platform is the hardware/software	Foundation for	GENESYS
Flatiofin	A platform is the hardware/software foundation for the execution of applications.	universAAL services.	book
	The platform comprises generic services for		(Glossary,
	the development of applications, which are		page 183)
	denoted as platform services (see Core		
	Platform Services and Optional Platform		
	Services).		
Platform	Platform services facilitate the development	universAAL should	<u>GENESYS</u>
Services	of distributed applications and separate the	provide a set of	<u>book</u>
	application functionality from the	platform services	(Glossary,
	underlying platform technology to reduce	which can be selected	page 183)
	design complexity and to enable design	for a specific	
	reuse. Platform services can be	universAAL	
	distinguished into Core Platform Services	instantiation.	
	and Optional Platform Services.		
Reference	The reference architecture template is a	To facilitate building	<u>GENESYS</u>
Architecture	template for building concrete architectures.	of concrete	<u>book</u>
Template	The reference architecture template	architectures,	(Glossary,
	provides specifications for a comprehensive	universAAL should	page 183)
	set of <i>platform services</i> , including domain-	provide an appropriate	
	independent services that can be used across	template.	
	application domains. In a specific		
	application, a subset of these platform		
	services can be selected and implemented.		
	The selection and implementation of the		
	platform services is part of the instantiation		
	of the template used to arrive at a concrete		
	architecture.		
Reliability	Reliability is the ability of a system or	For several	<u>GENESYS</u>
	component to perform its required functions	universAAL services it	<u>book</u>
	under stated conditions for a specific period	will be essential that	(Glossary,
	of time.	the user can rely on the	page 183)
		correct operation over	
		a long period of time.	
		For example, high	
		reliability of the fire	
		detection system means	
		that the probability of a	
		malfunction within a	
		specified period of	
		time is very low.	

UNIVERSAAL

		-	
Replica Determinism	Replica determinism is a desired property between replicated systems. A set of replicated subsystems is replica determinate if all subsystems in this set produce exactly the same output messages that are at most an interval of d time units apart, as seen by an omniscient outside observer.	In case of replicated computation in the universAAL architecture for fault tolerance reasons (e.g., for live critical applications), the replicated subsystems need to be replica determinate in order to come to the same result.	GENESYS book (Glossary, page 183)
Robustness	Robustness is the capability of a system to deliver an acceptable level of service despite the occurrence of transient and permanent hardware faults, design faults, imprecise specifications, and accidental operational faults. A system must be resilient with respect to unanticipated behavior from the environment of the system or of subsystems. In case such unanticipated behavior occurs, the system should still exhibit some sensible behavior, and not be completely unpredictable.	The universAAL architecture can comprise several subsystems that need to operate even in the presence of faults (e.g., the fire alarm subsystem). Thus, the universAAL must follow the concept of robustness.	GENESYS book (Glossary, page 184)
Service	The service delivered by a system is its intended <i>behavior</i> as it is perceived by its users. The behavior is the sequence of observable outputs of a system.	Conceptual foundation of component-based design.	GENESYS book (Glossary, page 184)
Sparse Time Base	If the time base of the global time in a distributed system is dense (i.e., the events are allowed to occur at any instant of the timeline), then it is in general not possible to generate a consistent temporal order of events on the basis of the time-stamps. Due to the impossibility of synchronizing clocks perfectly and the denseness property of real time, there is always the possibility that a single event is timestamped by two clocks with a difference of one tick. By introducing the concept of a sparse time base this problem can be solved. In the sparse time model the continuum of time is partitioned into an infinite sequence of alternating durations of activity and silence. Thereby, the occurrence of significant events is restricted to the activity intervals of a globally synchronized action lattice. In this time model, the costly execution of agreement protocols can be avoided, since every action is delayed until the next lattice point of the action lattice.	Enables the consistent ordering of events without agreement protocols.	GENESYS book (Glossary, page 184)

UNIVERSAAL

G		• -	OT THE OTHER
State	The state enables the determination of a	Important concept for	<u>GENESYS</u>
	future output solely on the basis of the	robustness.	<u>book</u>
	future input and the state the system is in. In		(Glossary,
	other word, the state enables a "decoupling"		page 184)
	of the past from the present and future. The		
	state embodies all past history of the given		
	system. Apparently, for this role to be		
	meaningful, the notation of the past and		
	future must be relevant for the system		
	considered.		
State Message	A state message is a periodic message that	Many applications	<u>GENESYS</u>
	contains state observations. An observation	need periodic update of	<u>book</u>
	is a state observation, if the value of the	the state. This	(Glossary,
	observation contains the state of a real-time	information is	page 184)
	entity. The time of the state observation	transported by the state	
	denotes the point in time when the real-time	messages (e.g., the	
	entity was sampled. The handling of state	actual heart rate of the	
	messages occurs through an update in place	assisted person is	
	and non-consuming read.	checked several times	
		per minute).	
State	State recovery is the action of (re-)	After the failure of a	GENESYS
Recovery	establishing a valid state in a subsystem	subsystem in an	<u>book</u>
	after a failure of that subsystem.	universAAL	(Glossary,
		implementation a valid	page 185)
		state needs to be	
		established, e.g., after	
		rebooting the faulty	
		component.	
Unconstrained	Unconstrained access does not restrict the	(antonym to	GENESYS
Access	points in time of access operations	Constrained Access)	<u>book</u>
	performed by the application. In order to		(Glossary,
	support consistency, asynchronous		page 185)
	handshake protocols are employed that do		
	not require clock synchronization between		
	application and platform.		
	approvidin una planorini.		

UNIVERSAAL

3. MPOWER Terminology Model

The MPOWER terminology is extracted from the two sources. The first source is the MPOWER project deliverable "MPOWER D1.1 Overall architecture". This deliverable is available from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf

The second source is the presentation "MPOWER - Basic architectural concepts" created for a training session in the universAAL project. It is available from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt

Concept	Definition	Relevance to universAAL	Reference
Service Platform	A set of software services and components offering secure interfaces to access local and central communication and information services.	universAAL must define platform (some ideas already defined in DoW).	MPOWERD1.1Overallarchitecture(section 3.1, page14)
Common Services	A set of reusable information and communication services enabling the development and deployment of smart home care solutions. - Is part of service platform.	universAAL must define what a service is.	MPOWER D1.1 Overall architecture (section 3.1, page 14)
Applications	Two Proof-of-Concept applications have been developed using the MPOWER Middleware services as the core artefacts; one demonstrates information access and sharing aspects, while other demonstrates MPOWER smart home environment. Applications provide functionality to end users. Applications use (common) services.	universAAL must define what we name what the end users/seniors see and use.	<u>MPOWER - Basic</u> <u>architectural</u> <u>concepts</u> (slide 31)
Architecture	The MPOWER Architecture package consists of the: (1) Reference Architecture, (2) MPOWER HL7 Information models, and (3) UML models that specify reusable services and components. Using UML Patterns defined in the MDSD Healthcare Framework, and Profiles defined in the MPOWER UML Extensions, domain-specific and technology independent UML models are described as Platform Independent Models (PIMs). The PIMs can be transformed into PSMs adding platform specific mappings using the transformation scripts described in the framework.	universAAL must define the role of the reference architecture. An architecture could be an instance of a reference architecture?	MPOWER D1.1 Overall architecture (section 6, page 25.)

UNIVERSAAL

r	1		· · · · · · · · · · · · · · · · · · ·
Reference	The MPOWER project uses IBM	The universAAL	MPOWER D1.1
architecture	Service Oriented Architecture (SOA)	reference architecture	<u>Overall</u>
	as reference architecture.	must justify itself, that	architecture
		is, how it should be	(section 6.1, page
	This example shows how MPOWER	used.	25., and Appendix
	used a reference architecture.		A, page 56.)
			,1.0
			MPOWER - Basic
			architectural
			<u>concepts</u>
			(Slide 10)
SOA	IBM defines SOA architectural style	universAAL should	http://www.ibm.co
Architect-	as: "A set of patterns and guidelines	define what it means	m/developerworks/
ural style	for creating <i>loosely coupled</i> ,	with service orientation.	<u>library/ar-</u>
	business-aligned services that,		archtemp/
	because of the separation of concerns		
	between description,		OR
	implementation, and binding,		
	provide unprecedented flexibility in		MPOWER D1.1
	responsiveness to new business		Overall
	threats and opportunities."		architecture
			(section 6.2, page
			26.)
Middleware	The MPOWER Middleware holds	In MPOWER	MPOWER D1.1
	reusable and compiled (runnable)	middleware is the same	Overall
	services and components that can be	as service platform.	architecture
	easily utilized by application	universAAL should	(section 7, page
	developers. The MPOWER	choose one (my	(section 7, page 32.)
	middleware consists of five	suggestion is that	52.)
			OR
	C C	platform is better).	UK
	services, Contextual services,		MDOWED Deet
	Information (Medical and Social)		MPOWER - Basic
	services, Security services, and		architectural
	Interoperability services.		<u>concepts</u>
			(Slide 12)
Sensor	Systems that provides measured	universAAL must define	MPOWER - Basic
system	information through a defined	what a sensor is (and	architectural
	interface. A sensor can be both	probably actuator).	<u>concepts</u>
	physiological and non-physiological.		(Slide 13)
	Automation		
	services rely on sensor information		
	from e.g. door sensors, water-		
	temperature		
	sensors, light sensors and movement		
	sensors. A sensor system can be		
	composed of		
	-		
	several sensor-s/systems).		

Ename	Samoon/Actuation materials about at		MDOWED Desis
Frame	Sensor/Actuator network abstract architecture model which solves	universAAL must to	MPOWER - Basic
Sensor		define a layer/service	architectural
Adapter (FSA)	problem of communication among services and different sensor	towards the physical world of sensors and	<u>concepts</u> (Slide 14)
(FSA)			(Slide 14)
	protocols	actuators. Suggest other name than FSA, but	
	It defines a framework providing unified access to sensors and	something similar in	
	actuators that use different	nature.	
	communication channels and	nature.	
	different data formats.		
Context	The context understood as a current	universAAL could	MPOWER - Basic
information	state of the MPOWER environment	define context.	architectural
model	describes the environment state at a	define context.	<u>concepts</u>
mouer	certain moment.		(Slide 18-21)
	Two spaces have been defined to		(5110-21)
	manage context within MPOWER:		
	first one – "user personal profile"		
	and second - "the Inward		
	environment info".		
Service	In order to be interoperable, the		MPOWER - Basic
components	MPOWER platform implements a		architectural
•••••• p ••••••	set of service components that		concepts
	contain the functionality needed to		(Slide 11- figure)
	interoperate with external system		(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(1. Health information systems –e.g.		
	information exchange with Google		
	Health,		
	2. SMS messaging, external calendar		
	services, voice and video over IP)		
Service	A reference implementation of a		MPOWER - Basic
	service discovery implementation		architectural
discovery	based on the standards UDDI. The		concepts
	UDDI allows for lookup of services		(Slide 11- figure)
	that is important in cases when loose		
	coupling of services is needed.		
Service	Is the implementation of a service.		MPOWER D1.1
provider			<u>Overall</u>
provider			architecture
			(page 25)
Service	Describes the services.		MPOWER D1.1
description			<u>Overall</u>
Prion			architecture
			(page 25)
Service	can either use the uniform resource		MPOWER D1.1
consumer	identifier (URI) for the service		<u>Overall</u>
	description directly or can find the		architecture
	service description in a service		(page 25)
	registry and bind and invoke the		
	service		

Service broker	provides and maintains the service registry. The next diagram shows the main interaction between the above mentioned parties.	MPOWERD1.1Overallarchitecture(page 25)
Integration service bus	A reference implementation of an Enterprise Service Bus. ESB works as distributed infrastructure for enterprise integration and consists of service containers and provides services for transforming and routing messages.	<u>MPOWER - Basic</u> <u>architectural</u> <u>concepts</u> (Slide 19)

4. OASIS Terminology Model

The OASIS terminology is extracted from the following OASIS project deliverables.

OASIS D1.6.1, which is available at:

http://www.oasis-

 $project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf$

OASIS D1.3.1 (after peer-review), which is available internally at the universAAL eRoom:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf

Concept	Definition	Relevance to	Reference
-		universAAL	
Adaptive	Agent-based framework that provides	Can provide	OASIS D1.6.1
Multiagent	seamless interactivity between OASIS	interactivity between	p.55
Integration	services, OASIS applications and the	universAAL	
framework	hyper-ontology	applications and	
(AMI)		ontologies. Provision	
		of personalization	
		services.	
Common	The COF defines a formal specification	This framework can	<u>OASIS D1.6.1</u>
Ontological	of ontology modules, and how they	be used for ontology	p.33
Framework	relate. The COF defines a methodology	support in conjunction	
(COF)	and best practice for ontology	with Ontology	
	construction. It makes possible to define	Repository (OR).	
	a Hyper-Ontology and will also facilitate and optimize the integration of new		
	emerging ontologies. This Hyper-		
	Ontology will reside in the OOR (OASIS		
	Ontology Repository) also provided by		
	the COF.		
Content	This tool aligns the functionality of	Can be used for the	OASIS D1.3.1
Anchoring	SOAP-compatible web services as well	alignment of external	(after peer-
and	as hardware devices with the ontologies	web services without	review)
Alignment	stored in the OASIS Ontology	significant effort.	p.31
Tool (CAAT)	Repository. The concepts of the same or		
	different application areas, after being		
	aligned with other ontological concepts,		
	will be able to anchor in the hyper		
	ontology framework, thus being ready to		
	be used seamlessly through the CCM.		

Contract	The sele of the Court of C	M: dallarererererererererererererererererere	OAGIS D1 C1
Content	The role of the Content Connector	Middleware for	<u>OASIS D1.6.1</u>
Connector	Module (CCM) is twofold: it supports	invocation of web	p.35
Module	automatic integration of Web services,	services and delivery	
(CCM)	which takes place when new service	of appropriate content	
	providers are willing to register their	to any requesting	
	Web services in OASIS, and it receives a	party.	
	request for service by the end-user		
	(client) application via the AMI and		
	invokes the appropriate service that		
0.4.676	returns the required content to the client.		
OASIS	A wide range of connected applications,	The OASIS paradigm	<u>OASIS D1.6.1</u>
Application	all integrated within the OASIS System,	for application	p.106
	and interoperating in integrated Use	integration could be	
	Cases defined, covering the needs of the	useful in universAAL.	
	elderly and their caregivers in terms of		
	Independent Living, Socialisation,		
	Autonomous Mobility and Smart		
	Workplaces.		
OASIS	Defines the logical platform, on which	A variation of this	OASIS D1.6.1
Platform	resources from different providers can be	platform can be used	p.43
	shared in an integrated way.	for services	
		integration.	
OASIS	Defines the content that can be shared on	Part of the reference	<u>OASIS D1.6.1</u>
Reference	the OASIS Platform by means of	architecture can be re-	p.25
Architecture	ontologies. It is composed of the COF,	used.	
	the ontologies and the support tools		
	(Content Connector Module and other		
	ontology management modules), both		
	available as open source, that allow the		
	automatic or semi-automatic connection		
	of existing and emerging ontologies and		
	services to the OASIS Architectural		
	Framework		
OASIS	Multiple services will be part of OASIS	OASIS services may	
Service	in order to provide all the desirable	be used also as	
	functionality to the rest of the OASIS	universAAL services.	
	components. In OASIS there are two		
	types of services: local services that will		
	reside inside the platform and remote		
	(web) services provided by all the		
	external application providers.		
Ontology	It is the technological layer that supports	Can be used as	http://ontologies
Repository	the Ontologies storage and management.	ontology storage and	<u>.informatik.uni-</u>
(OR)	The COF (Common Ontological	management for	bremen.de/
	Framework) provides one specific	universAAL	
	repository for OASIS, the OOR.	ontologies.	

r		r	1
Trust &	The TSF will be implemented inside an	Framework for	<u>OASIS D1.6.1</u>
Security	OASIS module which will be responsible	universAAL user	p.70
Framework	for identification, authentication,	identification,	
(TSF)	authorization, including delegation,	authentication and	
	federation between domains	authorization.	
	(local/remote and OASIS/third party		
	providers) and the integration of the		
	identity services.		
UI	Allows automatic UI self-creation for	Adaptive UI	
Framework	new connected services and self	principles may be	
	adaptation to the device used, the context	adopted for the end	
	of use and the user needs and preferences.	user applications.	
	All the UI's that comprises this		
	framework have followed a specific user-		
	centric methodology for its development		
	called OPAF, so we can ensure that all		
	the user requirements will be		
	accomplished.		
User Profile	It contains all the context information	Can be used as a basis	OASIS D1.6.1
	related to a specific user. If any OASIS	for universAAL user	p.60
	component needs to retrieve some	profile.	
	information related to the user context		
	but out of its own scope, it should make a		
	query to this user profile.		

5. PERSONA Terminology Model

Concept	Definition	Relevance to universAAL	Reference
I/O channel	Channels between the virtual realm and the physical realm for capturing user input that was intended to be used by the virtual system (then talking about an input channel) or making info prepared by the system perceivable for human users (then talking about an output channel). Displays, keyboards, loudspeakers, and microphones are examples of devices that realize I/O channels.	I/O channels belong to the reality of AAL systems and must be utilized in an intelligent way in the course of providing assistance.	PERSONA internal reports IR3.1.1 & IR3.1.2 & deliverable D3.1.1
Sensor	A device that can measure something in the physical realm and represent the related info in terms of data in the virtual realm.	ditto	ditto
Actuator	A device that is able to cause certain changes in the physical realm upon receipt of related requests through an interface provided in the virtual realm.	Ditto	ditto
AAL System	A system consisting of networked physical and virtual resources that are set up to collectively provide intelligent assistance towards wellbeing in preferred living environments.	Obvious	ditto
AAL Space	A physical space equipped with a concrete setup of an AAL system, thus able to effectively contribute to the provision of intelligent assistance. Two important characteristics of AAL spaces are awareness and reactivity; that is, they are always gathering info about certain changes in the space and may be able to automatically react upon recognition of certain situations. Example AAL spaces are the near-body AAL space, the home, the neighbourhood (with its shopping centers, local authorities, etc.), and the village or town.	Defines some locality, a physical boundary,that helps to decide about security policies of concrete setups of AAL systems. Provides an abstraction for discussing certain situations, such as relationships between users and spaces (e.g., ownership or interaction while being inside or outside the space) and interoperability between AAL	PERSONA DoW

UNIVERSAAL

		spaces.	
Service	The provision of something of value, in the	Nowadays, the	see the eRoom
	context of some domain of application, by	most frequently	doc "WP1
	one party (service provider) to another	used concept that	Terminology"
	(service consumer); more precisely: the	provides an	for several
	actual value provided to achieve a	abstract unit for	references
	consumer's goal. In the virtual realm,	sharable	Terenees
	provision of value has traditionally been	functionality.	
	called functionality; hence, service can be	runetionanty.	
	seen as a general abstract way of talking		
	about accessible functionality that can be		
	utilized using pull mechanisms. Services		
	accessible in the virtual realm can be		
	utilized by activating a related service		
	· ·		
	<u>utility</u> (e.g., using the terminology of Web Services, an "operation" of a "Web		
	Services, an operation of a web Service"), which in turn will start a		
	<u>provision process</u> realized by the corresponding service providing component		
	(e.g. the Web Service component). In such		
	a process, human participants as well as		
	other service components may be involved.		
	The process may also incorporate access to		
	several physical or virtual resources, such a		
	printer or a database. However, the process		
	is encapsulated by the service utility and		
0	hence hidden to the service consumers.	The concert of	A
Open distailante d	A system with several communicating	The concept of	see AmI-08
distributed	physical nodes, each possibly hosting	open distributed	paper on
system	several logical units, that allows to	systems is	PERSONA
	dynamically add and remove components –	conform with the	CASF
	physical as well as logical – and	reality of AAL	(Framework
	nevertheless guarantees a certain level of	systems as it	Supporting
	operation without having to recompile,	respects the two	Context-
	reinstall or restart any part of the existing	most important characteristics of	Awareness)
	and running system. The components of an		
	open distributed system may be redundant,	them, namely	
	competing with some existing components,	distribution of	
	or bring new functionality with them. In	resources and	
	order to join to such a system, a component	evolvability.	
	must follow the provided specifications and	Especially	
	be somehow authorized. The WWW is the	relevant for	
	largest known open distributed system	universAAL,	
	constantly in dynamic evolution. As	because the	
	components are removed and added, the	platform should	
	WWW continues to work without essential	be open for	
	affection even if some end-points and users	dynamic	
	may experience difficulties with certain	configurability	
	changes.	and hosting new	
		components.	<i>a a i</i>
AmI system	A highly distributed system that uses	one of the major	See, for instance,

[• , •• • ••	T 1 4 5 C
Seamless connectivity	different facilities for bridging between the virtual and physical realms (e.g., I/O channels, sensors, and actuators), in addition to utilizing pure virtual resources and services, in order to provide human users with ambient assistance in performing their tasks and reaching their goals. The provision of assistance in AmI systems happens normally in a personalized and multimodal way. Usually AmI systems also provide automatic assistance in terms of automatic reactions to environmental changes and / or detected intentions, referred to as context-awareness. However, they are bound to a certain locality and hence physically limited. Therefore, it is crucial for such systems to possess enormous potential for sharing functionality in an evolvable process. As a result, AmI systems realized as open distributed systems fit their circumstances best as they allow for dynamic configurability and respect the reality of distribution as well as the physical limitations adequately. Seamless connectivity is given if nodes participating in an open distributed system find each other and connect in a dynamic way and can use the connections to communicate in an appropriate way. Seamless connectivity is especially appropriate for AmI systems because they provide a boundary for such automatism per se due to being bound to a certain locality.	input disciplines for realizing AAL systems and spaces.	Emile Aarts and José Encarnação, True Visions: The Emergence of Ambient Intelligence, Springer, 2006
Goal-based interoperability	Utilization of functionality (also known as service utilization) takes place in a goal- based way if requests simply express the meaning of what is requested to be achieved and hence both addressing concrete target components and using syntactical artifacts, such as interfaces, can be avoided. That is, goal-based interoperability can be achieved when in communication there is no dependency on technical details of the "how"s, but participants just focus on the "what"s. To realize goal-based interoperability, usually a brokering mechanism takes over the responsibility of finding an appropriate responder, mapping the request to a related "call", routing the "call" to that responder,	Goal-based interoperability is particularly useful in open distributed systems because the independence from physical addresses and syntactical artifacts leads to more openness of such systems.	See "Goal-based Service Utilization Using SPARQL and OWL-S" in <u>the</u> <u>latest OWL-S</u> <u>site</u>

Last printed 9/22/2010 11:17:00 AM

UNIVERSAAL

getting the response, and forwarding it back to the requester, thus hiding all the technical details of the "how"s. SQL-like query languages generally provide a suitable formalism for goal-based communication as they just rely on a <i>data</i> <i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech acts", such as DELETE, INSERT,
technical details of the "how"s. SQL-like query languages generally provide a suitable formalism for goal-based communication as they just rely on a <i>data</i> <i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
SQL-like query languages generally provide a suitable formalism for goal-based communication as they just rely on a <i>data</i> <i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
provide a suitable formalism for goal-based communication as they just rely on a <i>data</i> <i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
communication as they just rely on a <i>data</i> <i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
<i>model</i> and per se pose no technological or methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
methodical requirements on query handling. In such queries, the goal can be formulated starting with simple "speech
handling. In such queries, the goal can be formulated starting with simple "speech
formulated starting with simple "speech
acts", such as DELETE, INSERT
SELECT, and UPDATE, while the
remaining of the query allows to
unambiguously interpret what the query is
supposed to achieve.
Message In PERSONA used as opposed to object Contributes Cf. WebSphe
brokering brokering. Object brokers can find objects towards more Message Brok
based on their interface specification and independence in & wikiped
return a reference to them so that their the development message brok
methods can be called on a syntactical of pluggable versus wikiped
basis. PERSONA chose a message components <u>object broker</u>
brokering approach to realize the brokering
mechanism defined under goal-based
interoperability to increase the chances for
avoiding syntactical dependencies. In this
approach, the broker takes over all the tasks
of (1) matchmaking between requests and
offers as well as between subscriptions and
notifications, and (2) handing over
messages between the endpoints without
need for direct connection between the
endpoints, thus avoiding endpoint-specific
interfaces.
Self-organizing An open distributed system that builds on Obvious PERSONA
system seamless connectivity and realizes goal- IR3.1.1, IR3.1
based interoperability. Important & D3.1.1
characteristics of such a system are: several
1) It is usually based on the provision of publications
certain <i>connection points</i> (CPs) with related the Germa
interfaces, protocols, and roles possibly at research project
different levels of detail. EMBASSI ar
2) Each component respecting those DynAMITE, the
interfaces and protocols that is plugged into SODAPOP spe
the system must initially announce its roles the strateg
with related offers and subscriptions on research agend
each CP. Similarly, it must announce its of ARTEMI
requests on related CPs whenever it needs and wikipedia
functionality that it assumed to be available
in the system.
3) As a consequence of plugging a new
component into the system, its offers will

UNIVERSAAL

	immediately be available to the system. All		
	the consequent communication will be		
	performed through the CPs to which it has		
	connected, no matter if it is on the sender		
	side or on the receiver side. Being a part of		
	an open distributed system, the component		
	must however come with a high level of		
	fault tolerance as there is no guarantee		
	about the constant availability of sources		
	that can fulfil its needs.		
	4) In addition to abstraction over messaging		
	routes, the dependency between the		
	endpoints (of requests, responses, and		
	notifications) is limited to shared		
	vocabularies used in constructing messages,		
	thus avoiding the definition of additional		
	interfaces and protocols beyond those of the		
	system CPs.		
	5) Such a system must provide facilities for		
	aggregating over available values so that		
	effort needed for composing new offers		
	(services) out of other available offers		
	(services) is minimized. The same applies		
	also to generating high-level notifications		
	that are derived from previous relatively		
	low-level notifications.		
	The above conditions imply that there is a		
	good level of automatism in the		
	organization of the system even if the		
	selection and authorization of components		
	may need human intervention.		
Middleware	A piece of software that glues the	Obvious	see INRIA book,
	distributed components of a self-organizing		several
	system to each other, thus allowing the		publications of
	system to emerge. It resolves the challenges		the German
	of seamless connectivity (e.g. node		research projects
	discovery) and goal-based interoperability		EMBASSI and
	(e.g. providing a brokering mechanism)		DynAMITE, the
	while hiding the distribution and possible		SODAPOP spec,
	heterogeneity of underlying operating		the strategic
	systems and networking protocols \rightarrow no		research agenda
	architectural layer but a piece of software!		of ARTEMIS,
	······································		and PERSONA
			publications
Distributed	In self-organizing systems, the realization	Obvious	see several
realization of	of the middleware in a distributed way		publication of
the middleware	simplifies the physical architecture of the		the German
	system just as an ensemble of networked		research project
	nodes in which each instance of the		DynAMITE
	middleware represents a node in the		-
	system. Seamless connectivity will become		
	,		

UNIVERSAAL

	an issue to be solved at the level of		
	middleware instances, i.e. it will be		
	sufficient when middleware instances are		
	able to discover each other and form the		
	ensemble in this way. The middleware can		
	then provide two types of CPs. The first		
	type would be the CPs between instances of		
	the middleware: nodes discovering each		
	other join to each other at these CPs and		
	organize themselves in this way into an		
	ensemble. The cooperation between the		
	instances of the middleware can then solve		
	the two important challenges of self-		
	organizing systems, namely distribution		
	and heterogeneity of nodes in a transparent		
	way without involving components running		
	on each node. The second type of CPs is		
	provided to the local components of each		
	node to facilitate their hookup to the		
	system. From the point of view of such a		
	component, the problem is reduced to using		
	the runtime facilities of its platform to find		
	the relevant CPs of the shared instance of		
	the middleware and connect to them. In this		
	way, each component integrates itself into		
	the system independently from any other		
	local or remote component participating in		
	the emerging system.		
Sodapop Model	SODAPOP (Self-Organizing Data-flow	A reliable	the SODAPOP
I I I	Architectures suPporting Onotology-based	conceptual work	spec
	problem decomPosition) is a conceptual	for the	- <u>+</u>
	model based on which the distributed	distributed	
	middleware solution of PERSONA has	realization of the	
	been realized. It introduces two important	middleware that	
	concepts, namely <i>transducers</i> and <i>channels</i> .	provides a basis	
	Each pluggable component joins to the	for modular	
	system through its transducers (one	brokering	
	transducer per middleware CP and role).	mechanisms, one	
	Each of the transducers is a specialist in	per SODAPOP	
	exchanging certain types of messages with	channel.	
	the rest of the system and takes over the		
	responsibility of mapping internal		
	representation of those messages onto an		
	appropriate external representation and vice		
	versa (a kind of adapter for CPs).		
	A channel is a medium for message		
	brokering between connected transducers.		
	Channels may be seen as the "cutting		
	points" for distributing a system: several		
	instances of the same channel distributed		
	across multiple physical nodes cooperate in		
		L	

Last printed 9/22/2010 11:17:00 AM

UNIVERSAAL

	order to virtually form a single global		
	channel. Each piece of the channel on each		
	node provides an API to transducers and		
	defines the possible roles with which		
	transducers can connect to it along with		
	protocols based on which they can put		
	messages on the channel or are expected to		
	process a message given to them. On the		
	other hand, such pieces of the same channel		
	cooperate with each other based on the		
	channel strategy to hide the distribution of		
	the system from the transducers connected.		
	A middleware based on Sodapop model		
	realizes the channels as the CPs of a self-		
	organizing system towards transducers and		
	all other components of the system realize		
	transducers that connect to channels.		
	Hence, the essentials of a Sodapop-based		
	system are defined by identifying its set of		
	channels and for each of them specifying		
	the channel strategy and API.		
	There are two types of channels: event-		
	based channels, on which messages are		
	posted without expecting any reply, and		
	call-based channels, on which posted		
	messages will be replied with an		
	appropriate response. Possible roles on an		
	event-based channel are <i>publisher</i> and		
	subscriber, on a call-based channel,		
	however, <i>caller</i> and <i>callee</i> . A publisher		
	transducer expects that for each published		
	event, the corresponding event-based		
	channel will find (an) appropriate		
	subscriber transducer(s) that know(s) how		
	to continue with the event. In case of call-		
	based channels, the calling transducer		
	determines the further processing of the		
	result after the channel arbitrates a call and		
T 7 • 4 •	returns the response.	1 .	
Virtual	The term used in PERSONA to refer to a	obvious	Cf. <u>Enterprise</u>
communication	Sodapop channel. Reasons for using		Service Bus
bus, or simply	another name: (1) the term I/O channel was		
"bus"	already used in PERSONA with another		
	meaning, (2) in order to benefit from the		
	analogy with hardware notion of a bus, and		
	(3) a PERSONA bus does not respect the		
	Sodapop constraint of being "memory-		
	less".		
	The communication buses reflect the loose		
	connections needed in a dynamic		
	environment and represent, in a modular		

UNIVERSAAL

	way, the need for interface/ontology			
	way, the need for interface/ontology definitions, protocol specifications for			
	· · ·			
	communication, and strategies for "dispatching incoming messages" to an			
	appropriate (set of) receiver(s). The PERSONA middleware provides four			
	-			
	buses: an <i>input</i> and an <i>output</i> bus for			
	covering interoperability needs related to			
	handling explicit interaction with human			
	users and a <i>context</i> and a <i>service</i> bus for			
	realizing push and pull mechanisms for all			
	other interoperability needs between			
	components attending a self-organizing			
	system.			
	PERSONA also avoids using the term			
	transducer and uses more specific per combination of the bus to which a			
	transducer connects and the role played by			
	that transducer on that bus, this way			
	inventing different names for different transducer types.			
The PERSONA	An event-based bus for sharing explicit	obvious	PERSONA	
input bus	input provided by a human user.	obvious		&
mput bus	input provided by a numan user.		D3.1.1	a
Input event	The type of messages brokered by the input	obvious	PERSONA	
Input event	bus. Such messages encapsulate explicit	001003		&
	user input captured through channels to the		D3.1.1	a
	physical realm. Explicit user input may be		D3.1.1	
	provided to a PERSONA system in the			
	context of a dialog (see below) or in a			
	context-free way. For each input event not			
	encapsulating a context-free input, the			
	publisher of the event must enrich the input			
	event with the ID of the dialog in whose			
	context the input is provided. If such a			
	dialog ID is specified in an output event,			
	only an input subscriber (See below) that			
	has subscribed for input related to that			
	dialog will be notified to handle the input			
	event, whereas all context-free input is			
	forwarded to a default handler.			
Input publisher	The type of transducers that publish input	obvious	PERSONA	
	events onto the input bus. Important		IR3.1.2	&
	metadata to be provided by an input		D3.1.1	
	publisher: (1) the identity of the user			
	providing the input, and (2) if the input is			
	provided in the context of a dialog, the ID			
	of that dialog.			
Input	The type of transducers that subscribe to	obvious	PERSONA	
an ha an than				
subscriber	the input bus for certain input events. A specific input subscriber is assumed to exist		IR3.1.2 0 D3.1.1	&

UNIVERSAAL

	.1 . 1 1 1 0 0 11		
	that is subscribed forever for all context-		
	free input. Otherwise, subscriptions to the		
	input bus are made very dynamically by		
	specifying the dialog ID in the context of		
	which the subscriber is willing to wait for		
	input, just before publishing the		
	corresponding output event (see below) that		
	starts the dialog. The subscriber is then		
	automatically unsubscribed as soon as the		
	cycle of the dialog is closed. Applications		
	must normally have such a transducer.		
The PERSONA	An event-based bus for handing over info	obvious	PERSONA
output bus	prepared for being presented to (a) certain		IR3.1.2 &
	human user(s). This brokerage is supposed		D3.1.1
	to be done in a personalized and context-		
	aware way so that the info is eventually		
	presented to the user using output channels		
	that are most appropriate for the current		
	situation of the addressed user and are the		
	best match for his / her possible		
	impairments, capabilities and preferences.		
Output event	The type of messages brokered by the	obvious	PERSONA
Ĩ	output bus. Such messages encapsulate a		IR3.1.2 &
	modality- and layout-neutral representation		D3.1.1
	of info prepared for being presented to (a)		
	certain human user(s) through channels to		
	the physical realm. It is assumed that an		
	output event already contains content-		
	specific metadata, such as content language		
	and privacy level, and addressed user. The		
	output bus first enriches the output event		
	with adaptation parameters (location of the		
	user, possible impairments, proposed		
	modality for the current situation, modality-		
	specific parameters derived from his / her		
	possible impairments, capabilities and		
	preferences, etc.) and then for all output		
	subscribers (see below), it checks (using		
	ontological matchmaking) if the enriched		
	output event can be validated as an instance		
	of the class of output events in which the		
	output subscriber is interested. If yes, that		
	output subscriber is interested. If yes, that output subscriber is notified to handle the		
	enriched output event.		
Output	The type of transducers that publish output	obvious	PERSONA
publisher	events onto the output bus. Output	0011005	IR3.1.2 &
Publisher	publishers are supposed to already include		D3.1.1
	content-related metadata (e.g., content		J.1.1
	language and privacy level, addressed user)		
	to each published output event.		
	Applications must normally have such a		

	transducer.		
Output	The type of transducers that subscribe to	obvious	PERSONA
subscriber	the output bus for certain output events.	0011005	IR3.1.2 &
Subscriber	The subscription is supposed to be rather		D3.1.1
	static and occur once at the registration		0.0.1.1
	time with the output bus. The subscription		
	provides criteria for output events that can		
	be handled by the subscriber depending on		
	output channels controlled, e.g. how		
	privately the channels can be used, related		
	modalities and locations, set of users (e.g.,		
	because of the limitations of the used user		
	identification mechanisms). An output		
	subscriber selected by the output bus for		
	handling an enriched output event, looks		
	for metadata that provide instructions		
	regarding the addressed user, his / her		
	location, the modality to use, and modality-		
	specific parameters derived from his / her		
	possible impairments, capabilities and		
	preferences.		
Dialog	A cycle of publishing an output event and	obvious	PERSONA
	receiving a related input event.		IR3.1.2 &
			D3.1.1
The PERSONA	An event-based bus providing a general-	obvious	PERSONA
context bus	purpose push mechanism that can be used if		IR3.1.2 &
	the info to be shared is neither addressing a		D3.1.1 + AmI-
	human user nor the representation of		08 paper on
	captured user input. It is called the context		PERSONA
	bus, because it is used for the exchange of		CASF
	sharable info about changes in the system		(Framework
	and its environment, and for an interested		Supporting
	subscriber the event has happened in the		Context-
	context of its runtime environment.		Awareness)
Context	A distinct characteristic or feature of a	obvious	PERSONA
element	distinct resource. Using the RDF		IR3.1.2 &
	representation techniques, a context		D3.1.1 + AmI-
	element in this sense can be identified		08 paper on
	uniquely by a pair of URIs, namely the URI		PERSONA
	of the resource and the URI of the		CASF
	corresponding property.		
Context event	A statement reporting the state of a context	obvious	PERSONA
	element at a specific time where the state		IR3.1.2 &
	was changed into the reported value. In		D3.1.1 + AmI-
	terms of RDF, this could be as simple as an		08 paper on
	RDF statement – the two URIs identifying		PERSONA
	the underlying context element would form		CASF
	the subject and predicate of the RDF		
	statement and the state value would be the		
	object of the statement; however, as a		
	reporting statement bound to a specific		

UNIVERSAAL

[1	1
	time, a context event should be treated as a		
	reified statement in order to be able to		
	specify the associated time, too.		
	Additionally, listeners to such events may		
	need to also know who is reporting this		
	value with which level of confidence and /		
	or temporal validity. For each pair of		
	received context event and context		
	subscriber (see below), the context bus		
	checks (using ontological matchmaking) if		
	the context event can be validated as an		
	instance of the class of context events in		
	which the context subscriber is interested.		
	If yes, that context subscriber is notified to		
	handle the context event.		
Context	The type of transducers that publish context	obvious	PERSONA
publisher	events onto the context bus. Important		IR3.1.2 &
1	metadata to be provided by a context		D3.1.1 + AmI-
	publisher consists of the provider info (see		08 paper on
	below), a timestamp, confidence level, and		PERSONA
	temporal validity.		CASF
Context	The type of transducers that subscribe to	obvious	PERSONA
subscriber	the context bus for certain context events.	00 10 00	IR3.1.2 &
subscriber	Subscriptions to the context bus can be		D3.1.1 + AmI-
	made very dynamically and / or at the		08 paper on
	registration time with the context bus. The		PERSONA
	subscription provides criteria for context		CASF
	events that can be handled by the subscriber		CASI
	depending on their subjects and subject		
	types, properties, reported value, temporal		
	validity, confidence value, and / or		
	provider.		
Contort	*	ahriana	DEDSONA
Context	A component that has a transducer for	obvious	PERSONA
provider	publishing context events onto the context		IR3.1.2 &
	bus. Major subgroups of context providers (1) C		D3.1.1 + AmI-
	are: (1) <i>Controllers</i> that have the states of		08 paper on
	some context elements under their control,		PERSONA
	like an actuator controlling the lights in a		CASF
	place that can also provide info about the		
	state of the controlled light sources, (2)		
	Gauges that wrap a sensor, and (3)		
	Reasoners that estimate the state of some		
	context elements by combining different		
	known information and applying certain		
	methods of aggregation, statistical analysis		
	and / or logical deduction. The values		
	reported by gauges could be measured		
	dimensions. If so, the concepts		
	DimensionMeasure or		
	MultiDimensionMeasure (or subclasses of		
	them) are used for building the object part		

	<u>-</u>	•	· · · · · · · · · · · · · · · · · · ·
	of the reified statements. Such "measure"s		
	provide info about the unit and accuracy of		
	measurement in addition to the measured		
	value.		
The PERSONA	A call-based bus providing a general-	obvious	PERSONA
service bus	purpose pull mechanism that can be used		IR3.1.2 &
	for utilizing accessible functionality. As		D3.1.1 + <u>SMR2</u>
	explained earlier, "service" can be used as a		paper on
	general abstract term for talking about		PERSONA
	accessible functionality that can be utilized		Semantic RPC
	in the virtual realm using pull mechanisms.		
	The bus API, communication protocol, and		
	strategy altogether realize a brokering		
	mechanism that is providing for goal-based		
	interoperability. Obviously, the most		
	important of message types exchanged on		
	the service bus correspond to service		
	requests, service calls (forwarding a request		
	to matching callees), and service responses.		
Service Profile	For each service made available to the	obvious	PERSONA
Service I Tome	service bus, a service callee (see below)	0011003	IR3.1.2 &
	must register a service profile that describes		D3.1.1 + SMR2
	both the "what"s (what is the service for)		
	and the "how"s (how it can be utilized).		paper on PERSONA
	The bus uses the "what"s in the course of		Semantic RPC
			Semanue KPC
	matchmaking and the "how"s when the match was successful and the service is		
	going to be utilized. The structure of such a		
	profile is taken from OWL-S specification		
	for service profiles. For more info &		
	examples, please refer to "Goal-based		
	Service Utilization Using SPARQL and		
~ .	OWL-S" in the latest OWL-S site.		DEDGONIA
Service	The type of messages used by a service	obvious	PERSONA
Request	caller (see below) to request a service. They		IR3.1.2 &
	are modeled as SPARQL-like queries in the		D3.1.1 + <u>SMR2</u>
	following form:		paper on
	'CALL' [('ALL' 'ONE' 'BEST')		PERSONA
	'(' VAR ')']+		Semantic RPC
	['DELETE {' <statements possibly<="" th=""><th></th><th></th></statements>		
	using variables> '}']		
	['INSERT {' <statements possibly<="" th=""><th></th><th></th></statements>		
	using variables> '}']		
	['SELECT' <list constants="" of="" or<="" th=""><th></th><th></th></list>		
	variables (with/without aggregation)>]		
	'WHERE {'		
	<statements &="" clarifying="" filters="" th="" the<=""><th></th><th></th></statements>		
	context of the variables used>		
	`}'		
	Each variable (VAR) used in the CALL		
	clause represents a service to be called. It		

UNIVERSAAL

	must be bound to a specific class of		
	services (e.g., the class of lighting services)		
	in the WHERE clause. In this way, the		
	query is basically stating that one or more		
	services are requested. The combined or		
	standalone usage of DELETE and INSERT		
	altogether specifies the expected effects		
	either in the virtual realm or in the physical		
	realm or both. SELECT specifies the list of		
	expected return values. Only one of		
	DELETE, INSERT, and SELECT is		
	mandatory. Combined usage of DELETE		
	and INSERT is SPARQL-equivalent of		
	UPDATE in SQL. For more info &		
	examples, please refer to "Goal-based		
	Service Utilization Using SPARQL and		
	OWL-S" in the latest <u>OWL-S site</u> .		
	Upon receipt of such a query, the service		
	bus checks the set of service profiles that		
	describe services from the same class (e.g.,		
	the class of lighting services) to see which		
	one of them has the same effect and output		
	as required by the query while fulfilling all		
	conditions specified in the WHERE clause.		
	In this way, a set of matching services will		
	be found by the service bus. Then, the		
	directives ALL, ONE, and BEST are		
	considered to respectively determine if all		
	matched services should be called, just one		
	in a random way, or even just the one that		
	is the best match. Besides that, the WHERE		
	clause may provide QoS or other non-		
	functional criteria (e.g., a related entity		
	being the nearest to a specific location) that		
	already restrict the number of matched		
	services to one so that the above directives		
	may make no difference.		
Service Call	The type of messages sent by the service	obvious	PERSONA
Service Can	bus to a concrete service callee (see below)	obvious	IR3.1.2 &
	in order to instruct the addressed		D3.1.1 + SMR2
	component to start the process of providing		paper on
	a concrete service registered with the bus.		PERSONA
	Before sending such a message, the bus		Semantic RPC
			Semantic KFC
	must derive the needed input parameters		
	from the query (actually, the input		
	parameters are determined already during		
	the matchmaking as some services will		
	match only if a certain constant value from		
	the query is used as a certain input		
	parameter). Hence, a service call specifies		
	which process should be started with which		

UNIVERSAAL

	concrete input parameters.		
Service	Both messages in reply to a service call	Obvious	PERSONA
Response	returned by a service callee (see below) to		IR3.1.2 &
•	the service bus and those in reply of a		D3.1.1 + <u>SMR2</u>
	service request returned by the service bus		paper on
	to a service caller (see below) are called		PERSONA
	service response. In both cases, it consists		Semantic RPC
	of a call status (eg., succeeded, no		
	matching service found, service-specific		
	failure, or timed out) and a set of return		
	values, however, a response sent by a		
	service callee to the service bus		
	distinguishes the output values in terms of		
	IDs already used in the service profile		
	whereas in case of a response sent by the		
	service bus to a service caller, the returned		
	values are distinguished in terms of		
	variables specified in the original query		
	(service request). That is, the job of the		
	service bus is not limited to forwarding		
	original responses from callees to callers,		
	but it must first perform a backward		
	mapping. This is possible because, similar		
	to the case of determining the set of input		
	values in case of service calls, also the		
	mapping between output IDs used in		
	service profiles and output variables used in		
	service requests had certainly belonged to		
	the conditions of the match. In addition to		
	such a backward mapping, the service bus		
	may have to also combine several responses		
	received from different callees into one		
	single response if more than one callee was		
	called as a result of service brokering.		
Service Caller	The type of transducers that attach to the	Obvious	PERSONA
	service bus and are allowed to send service		IR3.1.2 &
	requests to the bus and will receive service		D3.1.1 + <u>SMR2</u>
	responses in return.		paper on
			PERSONA
			Semantic RPC
Service Callee	The type of transducers that register service	obvious	PERSONA
	profiles with the service bus and might be		IR3.1.2 &
	addressed by the bus to perform a specific		D3.1.1 + <u>SMR2</u>
	service provision process. They are		paper on
	expected to send service responses in reply		PERSONA
	to each such "address" (call).		Semantic RPC
I/O Handler	Each I/O handler manages a set of I/O	obvious	PERSONA
	channels and subscribes to the output bus		IR3.1.2 &
	by specifying its capabilities, which is used		D3.1.1 + chapter
	by the output bus in the course of match-		in <u>AISE book</u> on
	making with adaptation parameters		PERSONA

UNIVERSAAL

	-		
	associated with each output event. That is,		platform
	using the adaptation parameters, the output		
	bus tries to find a best-match I/O handler		
	that receives the content to be presented to		
	the user along with instructions in regard to		
	Ç Ç		
	modality and layout derived from the		
	adaptation parameters. The selected I/O		
	handler is then responsible for converting		
	the application output to the format		
	appropriate for the channel selected in		
	accordance with received instructions. It		
	then monitors its input channels to catch the		
	related user input. Upon recognized input, it		
	must convert it to the appropriate format in		
	accordance to the previously handled		
	application output and publishes it as an		
	event to the input bus. I/O handlers are		
	~		
	application-independent, pluggable		
	technological solutions that manage their		
	respective I/O channels to concrete devices		
	using one or more of the following		
	alternatives: A tight connection using low-		
	level protocols, a loose connection using		
	device services on the service bus, and / or		
	a loose connection using contextual events		
	on the context bus.		
Dialog	The Dialog Manager is an application-	obvious	PERSONA
Manager	independent component that handles the		IR3.1.2 &
	system-wide dialogs and hides the		D3.1.1 + chapter
	complexity of utilizing the application		in <u>AISE book</u> on
	services from the user. Another important		PERSONA
	-		platform
	task for the Dialog Manager is the		plationi
	provision of a mechanism for associating		
	service calls with situations as means for		
	providing a configurable management of		
	the reactivity of an AmI environment. For		
	this purpose, the Dialog Manager relies on		
	a configurable repository of rules		
	schematically in the form of "situation \rightarrow		
	action" (abbreviated as "s[i] \rightarrow a[j]"). Then,		
	it must subscribe to the context bus for all		
	situations s[i], for which it has an		
	associated action a[j] in its repository. The		
	association "s[i] \rightarrow [j]" is the heart of		
	controlling system behavior and hence it		
	will be very advantageous to store it in a		
	central configurable repository. Concrete		
	tasks of the DM in PERSONA are:		
	Providing system dialogs, such as		
	navigation through available services,		
	providing standard and common dialogs,		
	providing standard and common dialogs,		

Last printed 9/22/2010 11:17:00 AM

UNIVERSAAL

system reactivity using rules that associate situational events with actions (service requests), handling context-free user input in terms of service search (if an I/O handler detects user input that has no relation to any previous output, the Dialog Manager receives the input and tries to interpret it as search for services).PERSONA IR3.1.2ContextThe Context History Entrepôt (CHE) gathers the history of all context events in aobviousPERSONA IR3.1.2	ГГ			
situational events with actions (service requests), handling context-free user input in terms of service search (if an I/O handler detects user input that has no relation to any previous output, the Dialog Manager receives the input and tries to interpret it as search for services).obviousPERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA patformContext History EntrepôtThe Context History of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & & D3.1.1 + chapter in AISE book on PERSONA IR3.1.2 & & D3.1.1 + chapter in AISE book on PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexse them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators		such as "login" or "notify", handling		
requests), handling context-free user input in terms of service search (if an I/O handler detects user input that has no relation to any previous output, the Dialog Manager receives the input and tries to interpret it as search for services).obviousPERSONA IR3.1.2 & & D3.1.1 + chapter in ALSE book on PERSONA IR3.1.2 & D3.1.1 + chapter in ALSE book on PERSONA gathers the bistory of all context events in a caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & & D3.1.1 + chapter in ALSE book on PERSONA IR3.1.2 & & D3.1.1 + chapter in ALSE book on prescripting on the bogical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context tevents that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA				
in terms of service search (if an I/O handler detects user input that has no relation to any previous output, the Dialog Manager receives the input and tries to interpret it as search for services).PERSONAContext History gathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.ObviousPERSONA IR3.1.2 & & D3.1.1 + chapter in ALSE book on PERSONA platformSituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. I stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA Platform				
detects user input that has no relation to any previous output, the Dialog Manager receives the input and tries to interpret it as search for services).obviousPERSONA IR3.1.2 & R D.3.1.1 + chapter in ALSE book on PERSONA pattornContext History entrepôtThe Context History Entrepôt (CHE gathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & & D3.1.1 + chapter in ALSE book on PERSONA platformSituation Meases the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction on new relevant situations to the system by providing an overview ofbvious				
previous output, the Dialog Manager receives the input and tries to interpret it as search for services).PERSONAContext History EntrepôtThe Context History Entrepôt (CHE) gathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be necedd further on.obviousPERSONA IR3.1.2 & BA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA platform		× ×		
receives the input and tries to interpret it as search for services).Context History gathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.ObviousPERSONA IR3.1.2Situation teasonerA general-purpose context reasoner that nusc stituation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA				
search for services).PERSONAContextThe Context History Entrepôt (CHE) gathers the history ont only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & & DistributionSituation ReasonerA general-purpose context reasoner that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofobviousPERSONA platform		previous output, the Dialog Manager		
ContextThe Context History Entrepôt (CHE) gathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 && DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL Stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofpersona		receives the input and tries to interpret it as		
History Entrepôtgathers the history of all context events in a central repository not only to fill the gap caused by context publishers that provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2Situation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger is evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofpersonA		search for services).		
Entrepôtcentral repository not only to fill the gap caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2Situation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofDevices particular interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of	Context	The Context History Entrepôt (CHE)	obvious	PERSONA
 caused by context publishers that provide no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on. Situation A general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of 	History	gathers the history of all context events in a		IR3.1.2 &
no query interface, but also to provide a fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofobviousPERSONA	Entrepôt	central repository not only to fill the gap		D3.1.1 + chapter
fallback solution for those that cannot maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA IR3.1.2 & pass-subjective to context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofplatform		caused by context publishers that provide		in AISE book on
maintain the whole history of data provided by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2Situation ReasonerA general-purpose context reasoner that new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA platform		no query interface, but also to provide a		PERSONA
by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA in AISE book on PERSONA indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPersona		fallback solution for those that cannot		platform
by them. Additionally, it guarantees the essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA in AISE book on PERSONA indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPersona		maintain the whole history of data provided		
essential support to reasoners that perform statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA patron the services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofobviousPERSONA IR3.1.2 book D3.1.1 + chapter in AISE book on PERSONA pathorm		• •		
statistical analysis and need context stored over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA				
over time. As a singleton component, the CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA				
CHE takes care of logging every context event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA		•		
event that is published in the context bus by specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.obviousPERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA		÷ ^		
specifying a "pass-all" filter when subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA <b< th=""><th></th><th></th><th></th><th></th></b<>				
subscribing to the bus. In order to have the growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA		-		
growth of the repository under control, the CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPersonal platform		· · · ·		
CHE also implements a deletion policy based on the likeliness of the data to be needed further on.PERSONASituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA		÷		
based on the likeliness of the data to be needed further on.DescriptionSituation ReasonerA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofobviousPERSONA PERSONA IR3.1.2 & D3.1.1 + chapter in AISE book on PERSONA platform				
needed further on.PERSONASituationA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA PERSONA				
SituationA general-purpose context reasoner that uses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofobviousPERSONA IR3.1.2&SituationA general-purpose context reasoner that nust trigger its evaluation. It provides two services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofPERSONA IR3.1.2BersonA IR3.1.2				
ReasonerUses the database of the CHE and infers new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview ofIR3.1.2 BIR3.1.1 + chapter in AISE book on PERSONA platform	Situation		obvious	PERSONA
new contextual info using the logical power of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of		• • •	00 10 00 5	
of the RDF query language SPARQL. It stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of	Reasoner			
stores "situation queries" persistently and indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				•
indexes them based on context events that must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
must trigger its evaluation. It provides two services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
services on the service bus, one for accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				plation
accepting new situation queries and the other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
other for dropping them. These services are also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
also used by a graphically interactive tool for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
for administrators in order to facilitate the introduction of new relevant situations to the system by providing an overview of				
introduction of new relevant situations to the system by providing an overview of				
the system by providing an overview of				
existing context providers, allowing drag-				
and-drop interaction using artifacts for				
accessible context elements, catching		e e		
logical errors made by the user, and				
generating the appropriate SPARQL query				
string, to name a few of its features.		-		
	Profiling		obvious	
AAL space to the wishes and preferences of IR3.1.2 &				
its users, it is essential that a special- D3.1.1 + chapter		its users it is essential that a special-		D3.1.1 + chapter

UNIVERSAAL

		1	
	purpose component is foreseen for the		in <u>AISE book</u> on
	management of the profiles and the		PERSONA
	provision of needed shared mechanisms.		platform
	We call this component the Profiling		
	Component.		
Service	Services may exist only at a meta-level in	obvious	PERSONA
Orchestrator	terms of "composite" services made from		IR3.1.2 &
	combining really-existing "atomic"		D3.1.1 + chapter
	services. The Service Orchestrator (SO) is		in AISE book on
	the component in charge of interpreting the		PERSONA
	metadata describing a composite service		platform
	and performing the instructions within it.		•
	These descriptions are added / removed /		
	modified by a GUI for system		
	administrators. The SO registers the		
	composite services to the bus like any other		
	service callee would do so for its atomic		
	service cance would do so for its atomic services. This way, whenever a composite		
	services. This way, whenever a composite service is called on the service bus, the bus		
	will find the SO as the only object that		
	"implements" that service; hence the SO		
	-		
	implements the callee interface for handling		
	service requests. At this stage, the SO starts		
	to execute the corresponding composite		
	service by calling the sub-services through		
	its capabilities as a caller until it finishes		
	and then returns the results to the bus that		
	will forward them to the original caller.		
	Summarizing the admin tool aspect so far,		
	it is worth to mention that three repositories		
	must be kept configurable for		
	administrators of AAL spaces: a) the		
	database of the Situation Reasoner		
	regarding "conditions \rightarrow situation" rules, b)		
	the database of the Dialog Manager		
	regarding "s[i] \rightarrow [j]" associations, and c)		
	the database of the SO regarding composite		
	services.		
AAL Space	In order to facilitate remote access to AAL	obvious	PERSONA
Gateway	spaces and, the other way around, to		IR3.1.2 &
•	support AAL spaces in notifying an absent		D3.1.1 + chapter
	native user, as well as to enable the		in <u>AISE book</u> on
	bridging between AAL spaces and,		PERSONA
	furthermore, to provide a possibility for		platform
	external service providers to advertise their		L
	services to the occupants of AAL spaces,		
	we suggest to employ a special-purpose		
	component called the AALSpace Gateway.		
	The gateway provides access to the hosted		
	services in the AAL space under a fixed		
	URL. For this purpose, it must act within		

UNIVERSAAL

AAL space as input publisher and		
out subscriber so that in case of		
ming remote access and after		
entication, the remote user can start a		
og with the smart home to access info		
services for which he or she has the		
ired access rights.		
middleware must control the access to	obvious	PERSONA
ices with the help of a component that		IR3.1.2 &
call the Privacy-aware Identity &		D3.1.1 + chapter
urity Manager (PISM) that is also		in <u>AISE book</u> on
bosed to act as a service provider. The		PERSONA
n responsibilities of the PISM are: a)		platform
•		
lentials, b) management of permissions		
0		
6		
	but subscriber so that in case of oming remote access and after intentication, the remote user can start a og with the smart home to access info services for which he or she has the hired access rights.	but subscriber so that in case of oming remote access and after rentication, the remote user can start a og with the smart home to access info services for which he or she has the hired access rights. middleware must control the access to ices with the help of a component that call the Privacy-aware Identity & urity Manager (PISM) that is also posed to act as a service provider. The n responsibilities of the PISM are: a) agement of the entities' identities and lentials, b) management of permissions accessing "hosted" services, c) viding authentication services, and d) viding a tunable mechanism for

6. SOPRANO Terminology Model

Concept	Definition	Relevance to universAAL	Reference
SOPRANO Ambient	Provides the intelligence of the system.	Middleware	D2.1.1: Initial
Middleware/platform	SAM collects incoming sensor	platform that	
or openAAL	information, analyses them (in the	provides	Architecture p.
or openAAL	Context Manager), decides with the	decoupling,	6/25
	help of a procedure database which	enables	0/23
	actions in form of workflows to be	independent	
	taken (in the Procedural Manager) and	contribution and	
	executes them through different	provides central	
	actuators in the house (in the	platform	
	Composer)	services	
Service Integration	An OSGi service middleware provides	Provides support	D2.1.1: Initial
Component	the technical basis for this system part.	for service	SOPRANO
component	All local services in the house as well	management,	Architecture
	as external services are registered in its	remote	p.25
	central service registry	management,	r · ·
		message	
		exchange etc.	
Administration	It contains the (graphical)		D2.1.1: Initial
Component	administration interfaces for the		SOPRANO
	different administrator roles in		Architecture
	SOPRANO: the healthcare consultant,		p.25
	the case manager as well as the carer.		
SOPRANO Ontology	This is not a functional component of		D2.1.1: Initial
	SOPRANO, but it is a very		SOPRANO
	fundamental part of the system. All		Architecture
	other modules rely on it as a common		p.25
	means of understanding. It defines		
	information that can be exchanges,		
	knowledge that can be stored and its		
	datatypes.	~	
SOPRANO Context	Part of SOPRANO ontology that	Context model	D2.2.1: User
Ontology	describes the context information that	whose principles	Context
	can be stored in the Context Manager.	can be reused in	(section 1-3)
	It acts also as the central data model.	universAAL	
		context	
		modelling	

UNIVERSAAL

Contant Manager	The task of the Content Mensoon is to	F	D0 1 1. L. 1.
Context Manager	The task of the Context Manager is to	Enables	D2.1.1: Initial
	host SOPRANO's user context	complex	SOPRANO
	database which stores context	situation	Architecture
	information as well as the user's	detection,	p.29 & D2.2.3:
	profile data. It receives events of all	captures and	First version of
	installed sensors and updates the	deals with	Context
	database accordingly. Other	history data and	Manager
	components can register with the	error-prone	
	context manager using state patterns to	sensor	
	be notified about specific status	information.	
	changes.	~	
Procedural Manager	The procedural manager processes the	Can be used to	D2.1.1: Initial
	SOPRANO high-level rules, called	store and	SOPRANO
	procedures, as well as the procedure	execute abstract,	Architecture
	templates. The procedural manager	reusable, easy-	p.29f & D2.3.1:
	provides interfaces for storing,	to-define system	Initial version
	deletion, and retrieval of procedures	behavior in form	of SOPRANO
	and procedure templates.	of BPEL	procedural
	Furthermore, the procedural manager	workflows.	Manager
	executes the procedures as reactions to		
	status changes with the help of Context		
	Manager and Composer		
Composer	The composer queries the service	Provides	D2.1.1: Initial
	integration component for suitable	semantic	SOPRANO
	concrete services, matches them	services	Architecture
	against the abstract goal descriptions in	matchmaking.	p.30 & D2.4.1:
	a context-aware manner and invoke the		Initial version
	best-fitting service. Semantic service		of SOPRANO
	description languages as well as		Composer
	appropriate matchmaking algorithms		
	are used for this task.		
Sensor Services	Services that typically represent		D2.1.1: Initial
	individual sensors or sensor systems.		SOPRANO
	In general, every service that delivers		Architecture
	information to the context manager.		p.16 & D 1.3.1
			Abstract
			description of
			entities
			involved in the
			identified
			application
			scenarios

UNIVERSAAL

Actuator Service	Services that typically represent	D2.1.1: Initial
	actuators. In general, every service that	SOPRANO
	takes information and puts it out in the	Architecture
	real world	p.16 & D 1.3.1
		Abstract
		description of
		entities
		involved in the
		identified
		application
		scenarios
Analytical Services	Services that process the raw data of	D2.1.1: Initial
	sensors and actuators to make them	SOPRANO
	"SOPRANO-compliant". They are	Architecture
	typically part of sensor services.	p.25
Complex or	More complex services that can	D2.1.1: Initial
Interactive Services	provide more complex behavior.	SOPRANO
	Typically they act as both Sensor and	Architecture
	Actuator Service and can, for example,	p.18
	provide complex user interaction.	
Procedures	Procedures are stored in the Procedural	D2.1.1: Initial
	Manager and define specific situations	SOPRANO
	and the system's reaction to those	Architecture
	situations.	p.19/25f
Service Matchmaker	Matches service requests and offers by	D2.4.1: Initial
and Invocator	means of Diane Service Description	version of
	framework and executes the best	SOPRANO
	fitting service.	Composer
		(section 1-3)
Workflow Engine	Executes Procedures with help (by	D2.4.1: Initial
_	invocating) Composer and Context	version of
	Manager in a context-aware manner	SOPRANO
	(by invocating the Context Manager)	Composer
		(section 1-3)
Ambient System	Systems that works primarily in the	D2.1.1: Initial
-	background by understanding the	SOPRANO
	current situation in the house via the	Architecture
	connected sensors and influencing it	p.17f
	via the connected actuators.	

UNIVERSAAL

Architecture	Architecture is viewed from 5 different	D2.1.1: Initial
	perspectives:	SOPRANO
	In the Logical View, the functional	Architecture
	decomposition of the system is regarded.	p.24ff
	In the Use-Case View, application	
	scenarios of the system are defined	
	from a user's point of view.	
	In the Development View, the	
	implementation of the software as well	
	as its packaging is defined.	
	In the Deployment View, the mapping	
	of the software components to the	
	underlying hardware is defined.	
	In the Process View the aspects of the	
	system at run-time such as tasks,	
	threads, or processes as well as their	
	interactions are defined.	

