

SEVENTH FRAMEWORK PROGRAMME:
PRIORITY 7.1B
LARGE SCALE INTEGRATING
PROJECT (IP)

IP project number 247950 Project duration: February 2010 – February 2014
Project coordinator: Joe Gorman Project Coordinator Organisation: SINTEF, Norway
Strategic Objective: 7.1.b website: www.universaal.org

Universal Open Architecture and Platform for Ambient
Assisted Living

Document

Type
Item Appearing in ”List of Deliverables in

DoW with delivery date shown in bold

“Deliverable:”

As “Deliverable”, but delivery date not
shown in bold. These documents are
formally internal to the consortium, but can
be delivered on request.

“Supplementary Report”

 Supplementary Report, with independent sub-parts.
Each sub-part forms a coherent whole in its own right, and has
been edited and reviewed independently. The sub-parts are
integrated in this document, to form the deliverable as a whole.

X
Supplementary Report (single document, no sub-parts).

 Sub-part of a Supplementary Report.

Document Identification

Deliverable
ID: D1.3-A Deliverable

title: universAAL Reference Architecture
Release number/date: V1.0 25.06.2010

Checked and released by: Sergio Guillén/ITACA

Key Information from "Description of Work" (from the Grant Agreement)
Deliverable Description Specification of the Reference Architecture. Text, reference figures, UML

diagrams. Rules about how to interpret the specification. Includes universAAL
protocol specifications, API specifications and ontology.

Dissemination Level PU=Public
Deliverable Type R = Report
Original due date
(month number/date)

Month 3 / 30.04.2010

Authorship& Reviewer Information

Editor (person/ partner): Gema Ibáñez/ITACA
Partners contributing Erlend Stav (SINTEF), Ståle Walderhaug (SINTEF), Saied Tazari (FhG),

Stefano Lenzi (CNR), Francesco Furfari (CNR), Peter Wolf (FZI), CERTH,
Laura Belenguer (ITACA), Juan Carlos Naranjo (ITACA), Gema Ibáñez
(ITACA), Patricia Abril (UPM), Sandeep Kumar (Philips), Venelin
Arnaudov(ProSyst), Oliver Höftberger (TUW), Miran Mosmondor (ENT)

Reviewed by (person/
partner)

Ivan Benc (ENT) – Sten Hanke (AIT)

http://www.universaal.org/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 2 of 85

Release History

Release

number

Date issued
Milestone*

eRoom

version

Release description /changes made

0.1 26.03.2010 TOC approved V1 ToC First internal release.

0.2 29.03.2010 ToC approved V2 Chapter sections extended.

0.3 29.03.2010 ToC proposed V3 ToC external review proposed.

0.4 30.03.2010 ToC proposed V4 Sections assigned to partners

0.5 30.03.2010 ToC approved V5 ToC external review approved

0.6 15.04.2010 Intermediate V5 Editor changed

0.7 28.04.2010 Intermediate V6 Added section 4.1

0.8 11.05.2010 Intermediate V7 Added section 6.2

0.9 12.05.2010 Intermediate V8 Added section 4.2

1.0 25.06.2010 Release V19 Technical manager release

1.0 22.09.2010 Release V20 Front cover, template and footer corrections

* The project uses a multi-stage internal review and release process, with defined milestones. Milestone names include
abbreviations/terms as follows:

• PCOS = ”Planned Content and Structure” (describes planned contents of different sections)

• Intermediate: Document is approximately 50% complete – review checkpoint

• External For release to commission and reviewers;

• proposed: Document authors submit for internal review

• revised: Document authors produce new version in response to internal reviewer comments

• approved: Internal project reviewers accept the document

• released: Project Technical Manager/Coordinator release to Commission Services

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 3 of 85

universAAL Consortium
universAAL (Contract No. 247950) is an Large Scale Integrating Project (IP) within the 7th Framework
Programme, Priority 7.1.b (ICT & Ageing). The consortium members are:

STIFTELSEN SINTEF (SINTEF, Project
Coordinator)
Contact persons: Joe Gorman
Email: joe.gorman@sintef.no

UNIVERSIDAD POLITECNICA DE
VALENCIA
(ITACA, Technical manager)
Contact person: Laura Belenguer Querol
Email: laubeque@upvnet.upv.es

AUSTRIAN INSTITUTE OF TECHNOLOGY (AIT)
Contact person: Sten Hanke
Email: sten.hanke@ait.ac.at

CONSIGLIO NAZIONALE DELLE RICERCHE
(CNR-ISTI)
Contact person: Francesco Furfari
Email: francesco.furfari@isti.cnr.it

CENTRE FOR RESEARCH AND TECHNOLOGY
GREECE (CERTH)
Contact person: Nicos Maglaveras
Email: nicmag@med.auth.gr

FRAUNHOFER-GESELLSCHAFT ZUR
FOERDERUNG DER ANGEWANDTEN
FORSCHUNG E.V (Fh-IGD)
Contact person: Saied Tazari
Email: saied.tazari@igd.fraunhofer.de

ERICSSON NIKOLA TESLA (ENT)
Contact person: Ivan Benc
Email: ivan.benc@ericsson.com

IBM ISRAEL – SCIENCE AND TECHNOLOGY
LTD. (IBM)
Contact person: Yardena Peres
Email: peres@il.ibm.com

FORSCHUNGSZENTRUM INFORMATIK AN
DER UNIVERSITAET KARLSRUHE (FZI)
Contact person: Andreas Schmidt
Email: Andreas.Schmidt@fzi.de

PHILIPS ELECTRONICS NEDERLAND B.V.
(PHILIPS)
Contact person: Milan Petkovic
Email: milan.petkovic@philips.com

IMPLEMENTAL SYSTEMS SL (IMPLEMENTAL)
Contact person: Jordi Valles
Email: jordi.valles@implementalsystems.com

REGION SYDDANMARK (RSD)
Contact person: Casper Dahl Marcussen
Email: cma@medcom.dk

PROSYST SOFTWARE GmbH (PROSYST)
Contact person: Kai Hackbarth
Email: k.hackbarth@prosyst.com

TECHNICSHE UNIVERSITATET WIEN
(TUW)
Contact person: Roman Obermeisser
Email: romano@vmars.tuwien.ac.at

TSB SOLUCIONES TECNOLOGICAS (TSB)
Contact person: Juan-Pablo Lázaro-Ramos
Email: jplazaro@tsbtecnologias.es

VDE VERBAND DER ELEKTROTECHNIK
ELEKTRONIK INFORMATIONTECHNIK EV
(DKE)
Contact person: Henriette Boos
Email: henriette.boos@vde.com

UNIVERSIDAD POLITECNICA DE MADRID
(UPM)
Contact person: cvera@lst.tfo.upm.es
Email: cvera@lst.tfo.upm.es

mailto:joe.gorman@sintef.no�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 4 of 85

Table of Contents

Release History ... 2
universAAL Consortium ... 3
Table of Contents .. 4
Table of Figures .. 5
List of Tables ... 5
Executive summary ... 6
1 About this Document ... 7

1.1 Role of the deliverable .. 7
1.2 Relationship to other versions of the deliverable .. 8
1.3 Structure of this Document .. 9

2 Roadmap to the universAAL Reference Architecture ... 10
2.1 From Reference Model to Reference Architecture .. 10
2.2 Rationale behind the Collection of Former Project Architectures .. 12
2.3 Methodology to Consolidate former Architectures: ARCADE .. 12

2.3.1 Views ... 13
2.3.2 Assets ... 13
2.3.3 Applying ARCADE to D1.3 .. 14

3 Input to reference model from other projects .. 15
3.1 Terminology model (or concepts and relationships) ... 15
3.2 Layer model ... 15

3.2.1 AMIGO Layer Model .. 16
3.2.2 GENESYS Layer Model ... 18
3.2.3 MPOWER Layer Model .. 20
3.2.4 OASIS Layer Model .. 23
3.2.5 PERSONA Layer Model ... 26
3.2.6 SOPRANO Layer Model ... 29

4 universAAL Reference Model .. 32
4.1 universAAL Terminology Model .. 32
4.2 universAAL Layer Model ... 36

4.2.1 Consolidation of the layer models from the input projects ... 36
4.2.2 The universAAL layer model .. 37

5 Future work ... 41
References ... 43
APPENDIX A ... 44

1. AMIGO Terminology Model .. 44
2. GENESYS Terminology Model .. 48
3. MPOWER Terminology Model .. 57
4. OASIS Terminology Model .. 61
5. PERSONA Terminology Model .. 64
6. SOPRANO Terminology Model ... 82

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 5 of 85

Table of Figures
Figure 1: ARCADE artifacts addressed in the different universAAL deliverables 8
Figure 2: A scheme of the development process in universAAL .. 10
Figure 3: Project results in the first iteration ... 10
Figure 4: The relationships between the main technical deliverables of universAAL 11
Figure 5: Amigo layer model .. 16
Figure 6: Waistline structure of GENESYS services .. 18
Figure 7: The MPOWER layer model ... 20
Figure 8: OASIS Conceptual Architecture .. 23
Figure 9: Using peer-to-peer connections to form a dynamic ensemble of networked nodes in
PERSONA ... 26
Figure 10: The PERSONA layer model .. 27
Figure 11: Example of communication ways in PERSONA when components from the application
layer need to access platform core services ... 27
Figure 12: The SOPRANO pyramid. The semantic hierarchy from top level abstract system behaviour
down to attached devices is depicted ... 29
Figure 13: Overview of universAAL terminology and relationships .. 33
Figure 14: Consolidation of layer models ... 37
Figure 15: universAAL layer model (simple, strict variant) ... 37
Figure 16: universAAL layer model (relaxed variant) .. 39
Figure 17: The process of architectural design in universAAL ... 41
Figure 18: Example concept map .. 41

List of Tables
Table 1: Term definitions relevant for architectural design .. 11
Table 2: Layers from Amigo project ... 16
Table 3: Layers from GENESYS project .. 19
Table 4: Layers from MPOWER project ... 20
Table 5: Layers from OASIS project ... 24
Table 6: Definition of the layers in PERSONA .. 28
Table 7: Layers from Soprano project ... 30
Table 8: universAAL Terminology Model .. 33
Table 9: Definition of the layers in universAAL ... 40

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 6 of 85

Executive summary

This deliverable D1.3 is related to Task 1.4 “Consolidated AAL Reference Architecture specification”
in work package 1 (WP1), and is connected with D1.1 “universAAL Reference Requirements” and
D1.2 “universAAL Reference Use Cases” deliverables, and several work packages. Both requirements
and use cases drive the architecture development. From the context and requirement view described in
D1.1 and D1.2, the component and distribution views will be defined in this deliverable. In WP2 will
be implemented the components defined in the reference architecture. Scope and boundaries of
services can be implemented with the platform, which are defined in WP3 and includes development
tools and services. The reference architecture is main result of the project, which is subject of
standardization in WP8.

Also, the deliverable acts as roadmap for the current and the future work concerned to this deliverable
and it captures initial work done at this first stage in the analysis and consolidation phase of the
development process in universAAL, giving a first look on a universAAL Reference Model.

Terminology and layered reference model, as component views, are presented and consolidated from
various input projects (SOPRANO, MPOWER, PERSONA, OASIS, AMIGO and GENESIS) in order
to establish a common understanding of the AAL domain. The AAL reference terminology captures
most important concepts used in documentation of the AAL Reference Architecture. The AAL layer
model presents a generic pattern for structuring AAL software components. Both terminology and
layered reference model correspond with the first version of the reference model that will be validated
in order to be used as base for the universAAL Reference Architecture in further deliverables. Later
versions of this deliverable will report next steps undertaken to arrive at the universal Reference
Architecture that will be used to define platform components and services and their relationships.
Further, the resulting Reference Architecture will be described according to the ARCADE
methodology.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 7 of 85

1 About this Document

1.1 Role of the deliverable
Deliverable 1.3 will report on work done in Task 1.4 “Consolidated AAL Reference Architecture
specification”. As a specification tailored to the AAL domain the reference architecture facilitates the
development of an AAL platform that subsequently enables provision of AAL services.

In general, software architecture comprises software components, the externally visible properties of
those components, and the relationships between them. The specification or documentation of a
system's software architecture facilitates communication between stakeholders, documents high-level
design, and enables reuse and maintainability of components and patterns between projects. The
specification of the universAAL reference architecture follows the ARCADE [1] architecture
description framework. The ARCADE framework was developed to assist the software architect by
providing documentation formats and structure, by handling important quality related concerns and by
ensuring successful reusability and maintainability of architectural components.

Furthermore, a consistent AAL terminology and AAL layered reference model is presented. This
deliverable describes the component and distribution views that can be considered follow ups to
context and requirement view described in D1.1 and D1.2, respectively. Both views consolidate input
coming from various projects including SOPRANO, MPOWER, PERSONA and OASIS. The AAL
reference terminology captures most important concepts used in documentation of the AAL Reference
Architecture. The AAL layered reference model presents a generic pattern for structuring AAL
software components. Both terminology and layered reference model have been derived from various
AAL-related and technical sources to ensure a complete and useful representation from a domain and
technical point of view.

The AAL Reference Architecture will define platform components and services and their
relationships. To some extent it will also outline possibilities of future platform extensions, scope and
design of applications providing services to the user, possibilities for the integration of tools and
maintainability and reusability of software components. Further, terminology and reference model will
outline the general scope the system and the domain that is taken into consideration.

In particular, this deliverable is related to the following universAAL deliverables and work packages:

D1.2 -- universAAL Reference Requirements and D1.1 – universAAL Reference Use Cases for
AAL: Both requirements and use cases drive the architecture development. They define scope and
boundaries that the system’s architecture has to comply with. Accordingly, the ARCADE framework
defines that component and distribution view as follow-ups to context and requirement view (see
Figure 1).

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 8 of 85

Figure 1: ARCADE artifacts addressed in the different universAAL deliverables

• WP2 – Open Source AAL Platform and Implementation: WP2 implements the components as
defined in this reference architecture. The process of implementation as well as the consideration
of runtime properties of the system contributes to the realization view of the system (see Figure 1)

• WP3 – Tools and Tutorial and WP4 – Innovative service concept implementation: As
explained above the platform architecture will to some extend define scope and boundaries of
services that can be implemented with the platform. This includes development tools and services
of the Developer Store as well as services stored within the uStore targeting at end users and
uAAL authorities.

• WP8 – Community building & standardization and WP9 -- Dissemination & Exploitation:
The AAL reference architecture will be a main result of universAAL project. Parts of it or the
whole architecture are subject of standardization in WP8. Due to its importance for the AAL
community and its stakeholders, the reference architecture is a major constituent of scientific and
community dissemination as well as exploitation.

Note that roles and actors are common in both deliverables, but are involved in different processes,
Appendix, or subdeliverable containing assets could be different information contained in each
deliverable.

1.2 Relationship to other versions of the deliverable
Later versions of this deliverable will report further steps undertaken to arrive at the universAAL
Reference Architecture. This includes a more detailed description of how distribution and
consolidation view have been achieved. Further, the resulting Reference Architecture will be described
according to the ARCADE approach. The layered reference model as well as the terminology may be
updated according to information gathered in the later stages of the project. For a broader overview on
future work regarding universAAL Reference Model and Architecture, please have a look at Section 6
“Future Work”.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 9 of 85

1.3 Structure of this Document
This deliverable captures initial work done on the universAAL Reference Architecture and provides a
first look on a universAAL Reference Model. Section 3 describes the relationship between and the
rationale behind the reference model and the reference architecture and acts as a roadmap for this and
further deliverables. Section 4 provides the input to the terminology as part of the reference model.
This input is structured according to the external projects that it has been extracted from. The next
section lists the similar information as input to the layered model. Section 5 closes the discussion on
the reference model by presenting the consolidated universAAL result. Finally, Section 6 outlines
future work in relation to the universAAL Reference Model and Architecture.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 10 of 85

2 Roadmap to the universAAL Reference Architecture

2.1 From Reference Model to Reference Architecture
Figure 2 shows a scheme of the development process as outlined in the Description of Work (DoW)
Annex of the project contract. At a first glance, this looks quite similar to common development
processes; however, there is at least this decisive difference when considering that the analysis phase
comprises also the consolidation of known and accessible results from earlier R&D. The rationale
behind this and the scope of the consolidation, however, is discussed in the next section.

Analisys and
consolidation

DesignEvaluation

Implementation
and

standaritation

Figure 2: A scheme of the development process in universAAL

If we map the project results from the first few months to the first iteration in the above process, the
scene will change as shown in Figure 3. This means that we see the version A of D1.3 (this report) as
the result of consolidating the design work done in the input projects in order to establish a common
understanding of the AAL domain. We call this common understanding of AAL systems the
universAAL reference model. Then the version B will introduce a first version of the universAAL
reference architecture based on this reference model.

Figure 3: Project results in the first iteration

Putting the above thoughts together, we end up with the relationships of the main technical
deliverables of the project as summarized in Figure 4. This is also conform with the common

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 11 of 85

definitions of the terms reference model, reference architecture, and realization architecture, for
instance, the definitions provided by the Organization for the Advancement of Structured Information
Standards1 Table 1 summarized in .

Figure 4: The relationships between the main technical deliverables of universAAL

Accordingly, the reference model defined in this report is supposed to enable the consistent
development of the reference architecture without any technological bias, while the universAAL
platform as the reference implementation of that architecture will have to make technological choices.

Table 1: Term definitions relevant for architectural design
Term Definition Source

Reference Model A reference model is an abstract framework for
understanding significant relationships among the
entities of some environment. It enables the
development of specific reference or concrete
architectures using consistent standards or specifications
supporting that environment. A reference model consists
of a minimal set of unifying concepts, axioms and
relationships within a particular problem domain, and is
independent of specific standards, technologies,
implementations, or other concrete details.

SOA-RM [2]

Reference Architecture A reference architecture models the abstract
architectural elements (building blocks) in the domain
independent of the technologies, protocols, and products
that are used to implement the domain. It differs from a
reference model in that a reference model describes the
important concepts and relationships in the domain
focusing on what distinguishes the elements of the
domain; a reference architecture elaborates further on
the model to show a more complete picture that includes
showing what is involved in realizing the modelled
entities.

SOA-RA [3]

Realization Architecture By increasing the level of detail in a reference
architecture, we can end up with a concrete architecture

universAAL
(derived from

1 Actually, by a technical committee at this standardization body that is working on the topic of Service-Oriented
Architectures. OASIS – not to be mixed up with the EU-FP7 project OASIS that is one of the input projects to
universAAL

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 12 of 85

that specifies all the technologies, components and their
relationships in sufficient detail to enable direct
implementation. We refer to such a concrete architecture
as the realization architecture.

SOA_RA)

2.2 Rationale behind the Collection of Former Project Architectures
The number of research projects and industrial labs dedicated to the area of Ambient Assisted Living
(AAL) is constantly increasing. It becomes more and more crucial to identify reusable results in
different areas of architecture, technologies, protocols, and standard building blocks. Apart from those
domain-specific solutions for rather constrained scenarios, there have also been general-purpose
results coming from several research projects in the field of AAL. It seems to be high time for an
evaluation of significant existing solutions in order to foster the identification and re-usability of
domain-independent units in an AAL environment and avoid re-inventing the wheel over and over.

Hence, universAAL decided to be a pioneer in reusing existing AAL technology by identifying and
utilizing available solutions in a consolidation process. These include the results from the projects
Amigo, GENESYS, MPOWER, OASIS, PERSONA, and SOPRANO.

To force reuse, we chose to break the normal software engineering sequence of use case and
requirement analysis, design and implementation, and evaluation and feedback and rely on parallel
work in several threads, each collecting, categorizing, comparing, harmonizing, merging, and
prioritizing one of the engineering results from the input projects. We basically believe that well-
founded work based on software engineering techniques has already been done in those input projects
and we should benefit from it.

One of those parallel threads is dedicated to the architectural design of AAL systems. Taking the
roadmap from the previous section into account, it should be obvious now that the collection of the
basic concepts from the input projects is an essential step towards the provision of the universAAL
reference model for AAL. The question of further steps in this process is discussed in the next section.

2.3 Methodology to Consolidate former Architectures: ARCADE
The ARCADE methodology for developing architectural descriptions is being used in universAAL as
the overall methodology with local customizations to meet the needs of the various tasks. ARCADE
defines a small set of high-level artefacts that constitute the software architecture (For a description of
these artefacts please consult ARCADE handbook [4]). Central artefacts for this deliverable are the
views that will be defined as the result of the work done in Task 1.4 “Consolidated AAL Reference
Architecture Specification”. In addition, a number of assets2

 have been imported from the input
projects and constitute the basis for the architecture work in Task 1.4.

It is important to note that this version of the deliverable does not yet contain all the necessary views.
Views will be defined gradually and will be available in later versions of this deliverable. For this
version of the deliverable the main focus has been the collection, analysis and structuring of some of

2 System assets are sources of information that can be used when developing the architecture descriptions.
System assets can be considered as implicit requirements, which are not necessary to include in the requirement
view, however assets may be included in component, deployment and realisation views. Examples of assets that
are available are: a dictionary as a reference list of important concepts, standards that is a formalised model or
example developed by a standardisation organisation or established by general consent and patterns, which are
descriptions of a recurring, well-known problem and a suggested solution.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 13 of 85

the assets that are central to Task 1.4. This chapter describes how ARCADE will be used throughout
the task, and how end results will look like in terms of artefacts and deliverables.

2.3.1 Views
Views in ARCADE define ways of looking at the software architecture. ARCADE proposes a set of
standard views, and allows the definition of new views or customization of existing views. For the
purpose of universAAL a new Reference model view has been defined, while two of the standard
views are used in this deliverable. Figure 1 in section 2.2 gives an overview of which deliverables that
address the other ARCADE views.

2.3.1.1 Reference model view
Reference model view is defined specifically for universAAL. universAAL aims at defining a
reference architecture that can be instantiated in various forms. The reference model view is
constituted by two parts:

• Terminology model: A set of terms and concepts, and the relationships among them, which
are defined by the universAAL reference model.

• Layered model: A set of architectural layers with the corresponding service areas and
responsibilities. The collection of these layers will cover the areas of responsibility for the
entire universAAL platform.

In the context of universAAL the reference model will be used to:

• Compare and consolidate concepts from the different input platforms

• Compare and consolidate the architectural layers of the input platforms (using the layered
model)

• Guide the development of the reference architecture (use both terminology and layers)

2.3.1.2 Component view
The component view defines the logical/functional components of the reference architecture, the
interfaces among the components, and the interfaces to the external world. Component view is a
standard view defined by ARCADE. UML and similar formalisms will be used to define the
component view. This view will be added and further described in the next version of this deliverable.

2.3.1.3 Distribution view
The distribution view defines the logical distribution of the components from the component view.
The distribution view will define which components logically belong together and which don’t, and
how communication among the different groups of components will be realized.. This view will be
added and further described in the next version of this deliverable.

2.3.2 Assets
In the current version of this deliverable, the type of asset most relevant for universAAL architecture
are the ones provided by the input projects. For each of the views above there is a large body of
knowledge residing in the input projects. The following assets have been identified to be of
importance to current work:

• Terminology models: The terminology models from input projects are collected and are
presented in this version of the deliverable. See Section 4.1.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 14 of 85

• Layered models: An analysis of layering in input projects is done compared to the initial
layered model in the universAAL description of work. For each input project attempt is done
to find a mapping to the universAAL layered model. This is documented in Section 4.2.

• Component models: An analysis of existing components from input projects will be done in
the next version of D1.3. The goal is to identify existing components and overlaps in
functionality in these components.

• Distribution models: Similar to component models, distribution models from input projects
will be analyzed in the next version of the deliverable and be used as input to constructing the
universAAL reference architecture.

2.3.3 Applying ARCADE to D1.3
Although ARCADE will be deployed in universAAL using various tools such as modelling and design
tools, the resulting artefacts will be documented in the contractual deliverables. The set of deliverables
in WP1 (D1.1, D1.2 and D1.3) together with design and realization deliverables from WPs 2, 3 and 4
will document all the resulting artefacts as described in ARCADE. Figure 1 in Section 2.2 illustrate
what each deliverable will contain. For D1.3, the content of the final D1.3 will consist of the following
main parts:

• Assets overview: A list of references to input material, including material from input projects
but also input from e.g. standardization bodies, other methodologies, dictionaries, and other
reference material.

• Reference model view: will document the reference model for universAAL. Will consist of
section for universAAL terminology and layered model. UML class diagrams, entity-
relationship diagrams and similar will be used.

• Component view: will document universAAL component model. UML class diagrams,
component diagrams and similar will be used.

• Distribution view: will document universAAL distribution view. UML distribution diagrams
and similar will be used.

• Appendices: will document assets used in Task 1.4 as described in Assets overview chapter.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 15 of 85

3 Input to reference model from other projects

3.1 Terminology model (or concepts and relationships)
This subchapter presents a collection of relevant terminology, concepts and ideas from each of the
following input projects: AMIGO, GENESYS, MPOWER, OASIS, PERSONA, and SOPRANO.

The terminology from the input projects is an important input to creating a consolidated terminology
which is part of the initial reference model of universAAL. The terminology from each project is
summarized in a table with the following columns:

• Concept: This is the concept in question. These are concepts which can be central to the
universAAL reference model and the reference model’s purpose (see 3.3.1.1 for a definition of
what the reference model will be used for)

• Definition: This is a textual definition of the term, explained in a way that makes sense to a
person not knowing the platform in detail. It can also identify relation to other terms in the list.

• Relevance to universAAL: This gives a brief and concrete explanation for why the term is
relevant to the universAAL reference model and why it should be in the reference model.

• Reference: When possible, references are provided to the original resource in which the term
is explained. A summary of the reference documents with URLs are provided before the table
of each project.

Due to the large extension of the tables where the terminology from each project is summarized, they
have been moved and can be found in the Appendix A at the end of this deliverable.

3.2 Layer model
This subchapter presents the layer models of the following input projects: AMIGO, GENESYS,
MPOWER, OASIS, PERSONA, and SOPRANO. In cases where the input project does not define an
explicit layer model, a description has been provided of the “de-facto” layer model used.

The description of the layer models consists of an introduction, one (or more) figure(s), and a table
with the following columns:

• Layer/sidecar: This name used for the layer.

• Description: A description of what the layer does and/or contains.

• Project use: An explanation of how this layer was used in the input project

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 16 of 85

3.2.1 AMIGO Layer Model
The Amigo Open Source Software follows the paradigm of Service Orientation, which allows
developing software as services that are delivered and consumed on demand. The benefit of this
approach lies in the loose coupling of the software components that make up an application. Discovery
mechanisms can be used for finding and selecting the functionality that a client is looking for. Many
protocols already exist in the area of Service Orientation. The Amigo project supports a number of
these important protocols for discovery and communication in an interoperable way. This makes it
possible for programmers to select the protocol of their choice while they can still access the
functionality of services that are using different methods.

Figure 5: Amigo layer model

Table 2: Layers from Amigo project

Layer/sidecar Description Amigo use
Applications
& Services

Both functional and non-functional properties
of services are specified, both syntactically and
semantically.

In the application layer of the
Amigo abstract reference service
architecture, Amigo services enjoy
an enriched service description.

Base
Middleware

The Base Middleware contains the
functionality that is needed to facilitate a
networked environment. It provides the
semantics to communicate and discover
available services and devices in the network,
including the ones that are based on existing
communication and discovery standards, such
as UPNP, WS, or SLP. This implies that
independence is accomplished for existing
hardward- and software, and new services can
be discovered and composed. In addition,
security mechanisms for authentication,
authorisation, and encryption are provided.

Amigo project develops
middleware that dynamically
integrates heterogeneous systems
to achieve interoperability between
services and devices.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 17 of 85

Intelligent
User Services

The Intelligent User Services broker between
users and service providers, and provide
context information, combine multiple sources
of information and make pattern-based
predictions. Information is tailored to user
profiles and adapts to the user's situation and
changes in the context.

The Intelligent User Services in
Amigo contain the functionality
that is needed to facilitate an
ambient in-home network.

Programming
and
Deployment
Framework

The Programming and Deployment
Framework contains modules that facilitate the
development of services in by providing
support for interoperability, security and
service description to service developers.
Amigo supports and abstracts over several
important protocols used for discovery and
communication. Therefore, heterogeneous
services can be integrated into the networked
home independently of their underlying
software and hardware technologies.

Facilitates the development of
Amigo-aware services in .NET or
Java.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 18 of 85

3.2.2 GENESYS Layer Model
In GENESYS services are structured forming a waistline, as depicted in Figure 6. This layer model is
inspired by the Internet, where the Internet Protocol (IP) forms a waist between underlying
communication technologies (e.g., Ethernet networks, wireless protocols) and higher level protocols
on top of the IP (e.g., UDP, TCP). These higher level protocols can further be refined to more
application specific protocols, like HTTP, FTP, etc.

Similarly to this, GENESYS defines core services that represent the waist. These core services (i.e.,
global time, communication, configuration and execution control) are required in all instantiations of
GENESYS. For each of the core services different underlying implementation options exist. As an
example, the communication service can be based on a switched Network-on-a-Chip (NoC), Ethernet
or wireless protocol.

Towards the top of the waistline, platform services can be successively refined and extended. This
way, more powerful and specialized platform services can be obtained. At first, domain-independent
optional services are built above the core services. These services can further be refined to construct
domain-specific services, where central and optional services can be distinguished. Actual application
services, that use domain-specific services of underlying layers, are situated at the top of the waistline.
In the subsequent table the rationale of each layer will be explained.

Figure 6: Waistline structure of GENESYS services

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 19 of 85

Table 3: Layers from GENESYS project
Layer/sidecar Description GENESYS use
Core Services Provide capabilities which are required

in every target application domain (e.g.,
Home Automation, Health care, etc.).
These services are at the waist of the
layer model. The actual implementation
of core services depends on the choice of
underlying implementation technologies.

In the GENESYS architecture core
services comprise global time services,
communication services, configuration
services and execution control services.

Domain-
Independent
Optional Services

Are built on top of the core services and
provide functionalities that can be used
for different application domains.

Domain-independent optional services
are not required for every instantiation of
GENESYS, but extend the capabilities of
the core services.

Exemplary services are security services,
gateway services, robustness services,
etc.

Domain-Specific
Services

These services are focused towards a
specific application domain. Domain-
independent optional services and core
services below the domain-specific
services are further enhanced.

GENESYS distinguishes domain-specific
central services, which are considered
essential for the specific application
domain, and domain-specific optional
services, that supplement the service set
provided to the layer above.

An example of a domain-specific service
would be the implementation of a KNX-
interface for the home automation
domain.

Application
Services

Application services are situated at the
top of the waistline structure. Services of
all underlying layers can be used. This
layer provides services that represent the
actual value for the user of the platform.

At the application service layer of the
GENESYS architecture services are
implemented which the user of the
platform actually requires.

For example an emergency service, that
can locate the assisted person, perceive its
heart rate and in case of need trigger an
alarm, may be such an application
service.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 20 of 85

3.2.3 MPOWER Layer Model
The MPOWER layered model is an adaption of the layer model from the IBM SOA Reference
Architecture [11]. As shown in the figure, it consists of five main layers – each layer comprising a set
of “components” that conforms to the rules and requirements specified for the layer. In addition, three
“sidecars” and their relations to the layers are included in the model. Each layer and “sidecar”, and
their application in MPOWER is briefly described in the table. The figure also indicates how the
different groups of MPOWER services map to the reference architecture.

Figure 7: The MPOWER layer model

Table 4: Layers from MPOWER project
Layer/sidecar Description MPOWER use
Application
layer

Provides user interface and application
specific components, decoupling these
from the underlying (business) services
on which they build.

Applications built using MPOWER,
including the pilots, belong to this layer.
These provide the access point through
which the users of applications access the
services.

Business
processes

Defines the business rules and process of
the applications. Services are bundled
into a flow through orchestration or
choreography, and thus act together in
supporting use cases and business
process of the application.

Used to define business rules of the
MPOWER pilot applications. An
example of an assistive care business
process is management of a shared
calendar where calendar, patient and
caregiver information, and medical plans
are accessed through a set of services and
service components.

Business
Processes
Composition,
choreography

Application
Layer

(Consumers)

Physical
Layer

Service
Components

Services
atomic and
composite

S
ecurity

Logging
M

anagem
ent

M
onitoring

Integration Service B
us

Service D
iscovery

Context middleware
Social middleware
Medical middleware

3rd
Party

3rd
Party

3rd party O
rchestration S

erver

Smart home middleware

Poc Application Poc Application Poc Application

QoS middleware (inc. security)
Interoperability middleware

HIS
Other

External
system

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 21 of 85

Services Provides services available for
invocation. Service implementations
may use service components in their
realization, and expose their
functionality through service interface
descriptions. Services can be made
available for service discovery through a
registry.

The main functionality of the MPOWER
platform is provided as services.
Examples of services from MPOWER are
Authentication, Calendar Management,
Medication Management, External
Notification, Door Control Management,
and iCal Calendar Export.

Service
components

Exposes the functionality of the
components and databases in the
resource layer. The Service components
provide a high-level access to their
information and control functions.

A typical service component in
MPOWER is a smart house sensor driver
that encapsulates and implements the
sensor communication logic for the
higher layer services.

Physical
layer

Consists of databases, existing custom
built applications, and low level resource
such as physical sensors and actuators.

In MPOWER, examples are databases
storing medication and administrative
information, and (smart) sensors for e.g.
physiological monitoring and door
control.

Service
discovery

Service discovery is referring to finding
a suitable service for given task. It could
be described as “the automatic
identifying of a software-based service
which allows processing functions to be
offered and then executed after they
have been located. Also includes design
time notification”.

In MPOWER, a service discovery
implementation is based on the UDDI.
(Universal Description, Discovery and
Integration). The UDDI is a platform-
independent, XML-based registry for
businesses worldwide to list themselves
on the Internet. The UDDI specification
defines a way to publish and discover
information about web services. The
service requestor or web service client
locates entries in the broker registry using
a service discovery component (which
uses various find operations) and then
invokes the requested web service.

QoS layer This layer provides the capabilities
required to monitor, manage, and
maintain QoS such as security,
performance, and availability. This is a
background process through sense-and-
respond mechanisms and tools that
monitor the health of SOA applications,
including all important standards
implementations of WS-Management
and other relevant protocols and
standards that implement quality of
service for a SOA.

In MPOWER, QoS layer includes
security. The objective of the MPOWER
security middleware is to ensure
sufficient protection (i.e. security level)
for any of the MPOWER enabled
services when they are used. This implies
that security middleware is orthogonal to
the other services in a way that it is an
implicit part of each service, ensuring a
satisfactory security level of any
combination of services in the MPOWER
platform.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 22 of 85

Integration
Service Bus

This layer enables the integration of
services through the introduction of a
reliable set of capabilities, such as
intelligent routing, protocol mediation,
and other transformation mechanisms,
often described as the Enterprise Service
Bus (ESB). Web Services Description
Language (WSDL) specifies a binding,
which implies a location where the
service is provided. On the other hand,
an ESB provides a location independent
mechanism for integration.

MPOWER project uses OpenESB which
is SUN’s implementation of ESB. The
ESB is the piece of software that lies
between the business applications and
enables communication among them. It
works as distributed infrastructure for
enterprise integration and consists of
service containers and provides services
for transforming and routing messages.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 23 of 85

3.2.4 OASIS Layer Model
Although OASIS has not been explicitly designed having a layer-based approach in mind, its
architecture can be described from a layer-based point of view. Figure 8 provides an overall picture of
the major components that participate in the OASIS architecture and how these inter-operate with each
other.

Figure 8: OASIS Conceptual Architecture

All the components involved in the OASIS architecture may be arranged on different architectural
layers that are derived from a top level conceptualization of the OASIS architecture. The specific
concepts that are involved in the OASIS architecture are explained in what follows and the
corresponding layer to which each component belongs is indicated in parenthesis.

• Services and devices. Multiple services will be part of OASIS in order to provide all the
desirable functionality to the rest of the OASIS components. In OASIS there are two types
of services: local services that will reside inside the platform and remote services provided
by all the external application providers (Service Layer).

• AMI Framework. The Ambient intelligence framework that provides seamless interactivity
between OASIS services, applications and the hyper-ontology. It is comprised of the multi-
agent platform (Middleware Layer).

• Common Ontological Framework (COF). The COF defines a formal specification of
ontology modules, and how they relate. The COF defines a methodology and best practice
for ontology construction. It makes possible to define a hyper-ontology and also facilitates
the integration of new emerging ontologies (Middleware Layer).

• Content Anchoring and Alignment Tool (CAAT). This tool aligns the functionality of the
provided WS to the ontologies stored in the Ontology Repository. The concepts of the same
or different application areas, after being aligned with other ontological concepts, will be
able to anchor in the hyper ontology framework, thus being ready to be used seamlessly
through the CCM (Support Application Layer).

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 24 of 85

• Content Connector Module (CCM). The role of the CCM is twofold: it supports automatic
integration of WS and devices, which takes place when new service providers or hardware
developers are willing to register their assets in OASIS, and it receives a request for service
by the end-user (client) application via the AmI and invokes the appropriate service that
returns the required content to the client (Middleware Layer).

• Ontology Repository (OR). It is the physical infrastructure that supports ontologies storage
and management. The COF provides one specific repository for OASIS, the ORATE
(Support Application Layer).

• Trust & Security Framework (TSF). The TSF is a module responsible for identification,
authentication, authorization, including delegation, federation between domains and the
integration of the identity services (Trust & Security Layer).

• User Profile. It contains all the context information related to a specific user. If one OASIS
components needs to retrieve some information related to the user context but out of its own
scope, it should make a query to this user profile (Trust & Security Layer).

• UI Framework. Allows automatic user interface self-creation for new connected services
and self adaptation to the device used, the context of use and the user needs and preferences
(End-user Application Layer).

The various layers are presented in more detail in the following table.

Table 5: Layers from OASIS project
Layer/sidecar Description OASIS use
Service
Layer

This layer includes all external and
internal services that are provided to the
system. On one hand external services
can be seen as the various resources
provided by external service providers
who register themselves in the system
and semantically align their services to
the system ontologies. It also supports
hardware developers that aim at aligning
the functionality of a new device with
respect to the ontologies.

In OASIS this layer is used to encompass
all assets that are registered in the system
including WS and hardware devices that
are interconnected and invocable. Service
layer is used to integrate all available
service in a seamless and semantics-
aware way in order to make them visible
to the other architectural layers and
implement SOA functionalities.

Middleware
Layer

Provides a reference implementation of
the reference architecture and OASIS
platform. This layer includes the
technical infrastructure required for the
semantic search and integration of
services and devices with respect to the
ontologies, as well as the invocation of
services, consumption of the available
resources that are provided in a service-
oriented way and the deliverable of
requested resources to the end-user
applications.

It includes all major OASIS middleware
elements and components, such as the
AMI, COF and CCM.

Support
Application
Layer

This is a support layer that provides all
appropriate tools that are required by
various operations related to elements of
the middleware layer.

This layer consists of all necessary
concepts and frameworks for ontology
storage / management, service alignment
and integration. Specifically it includes
the CAAT, as well as various ontology
support tools such as the ontology
backup, update and maintenance tool,
mappings visualisation tools, etc.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 25 of 85

Trust and
Security
Layer

The trust and security layer is
responsible for identification,
authentication, authorization, including
delegation, federation between domains
(local/remote and OASIS/third party
providers), user profiles and the
integration of the identity services.

The Trust and security layer is the core
subsystem for performing user
registration, authentication and profile
management, including privacy
management through the security module,
using central and/or federated identity
management functionality.

End-user
Application
Layer

This layer encompasses the end-user
applications that run on the user’s
device. It covers issues and concepts
also related to the user interface
adaptation mechanisms.

It is used to support the functionality and
design aspects of the end-user
applications.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 26 of 85

3.2.5 PERSONA Layer Model
The aim of PERSONA architecture was not necessarily focused in following a traditional 3-layered
model nor the IBM SOA layered Reference Architecture. However, looking backward it is possible to
find many similarities with any of those layered models or even others.

PERSONA is not a unique monolithic system that runs in a unique runtime environment. PERSONA
is based on a model where several nodes that can be located in a unique runtime environment or in
different runtime environments (in different machines, in different instances of Java Virtual
Machines…) can communicate one to the other thanks to the transparent communication mechanisms
offered by the middleware. It is in fact a dynamic ensemble of networked nodes, where the
middleware helps that this ensemble takes form by supporting seamless connectivity and facilitating
communication based on goal-based interoperability3

.

Figure 9: Using peer-to-peer connections to form a dynamic ensemble of networked nodes in PERSONA

From the logical perspective of a layered model, PERSONA can be divided into layers shown in
Figure 10, namely the middleware layer, the platform core layer, the platform plug-ins layer, and the
AAL services layer. The middleware is responsible for resolving the challenges of seamless
connectivity (e.g. node discovery) and goal-based interoperability (e.g. providing a message brokering
mechanism) while hiding the distribution and possible heterogeneity of underlying operating systems
and networking protocols. After having guaranteed integration and interoperability by the middleware,
the question that had to be answered was about shared functionality needed by AAL applications and
services. PERSONA divides such functionality into two parts: the mandatory part and the plug-in part.
Components that provide the platform core / general-purpose services are mandatory, and hence an
integral part of every installation of a PERSONA-based system. The plug-in part, which is represented
by the Platform Pluggable (special-purpose) Services layer, consists of all components that provide
installation-specific shared functionality.

3 For further explanations, please refer to the definition of the PERSONA concepts in PERSONA
Terminology Model of APPENDIX A especially the terms Seamless connectivity, Goal-based
interoperability, Message brokering, Self-organizing system, Middleware and its distributed realization,
Sodapop Model, and Virtual communication bus.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 27 of 85

Figure 10: The PERSONA layer model

All components residing on the top three layers, no matter on which of the three logical layers above
the middleware, are supposed to perform their communications through the middleware; in other
words, “outsourced” functionality from a layer below or from the same layer should be requested by
sending a request to the middleware. The middleware is then responsible to (1) find out which
concrete component on which layer is providing the requested functionality, (2) send the request in an
appropriate form to that component, (3) get its response, and (4) return it in an appropriate form to the
original requester. That is, direct component-to-component communication is forbidden in
PERSONA. In this way, the only syntactical interface on which the components are dependent is the
one of the middleware (cf. Figure 11).

The relevant or visible middleware components that provide these interfaces are the PERSONA buses:
Service Bus, Context Bus, Input Bus and Output Bus. As indicated by Figure 9, local instances of
these buses in the different nodes cooperate to provide the components using them with a virtually
global view on them, this way hiding the distribution of the system.

Figure 11: Example of communication ways in PERSONA when components from the application layer

need to access platform core services

The above discussion reveals that a layer model as shown in Figure 10 is not reflecting the reality of
interfacing between the different layers because there is no API of the pluggable or core components!
Getting back to Figure 9, we can see that at a physical level, all the components from the three top

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 28 of 85

layers can be distributed on the nodes of an ensemble freely and from the viewpoint of the middleware
all of them are its “users” with “equal rights”. Despite the fact that the set of components residing on
the application and the plug-ins layers is undetermined, such a hierarchical view like in Figure 10,
however, can indeed be derived for each concrete configuration / installation based on the real
dependencies between the components, although it is likely that the result would differ from
installation to installation.

It is worth to mention that the internal architecture of the middleware itself was originally described
using a layer model due to strict hierarchical dependencies that were defined during the conceptual
design of the middleware. However, the details of the implementation of the middleware are not so
relevant at the level of Reference Model or Reference Architecture though it has a lot of interesting
features from a requirements perspective or implementation point of view.

Table 6: Definition of the layers in PERSONA
Layer/sidecar Description Persona use
Middleware The “middleware” is the intermediate

piece of software allowing the ensemble
to take form by defining high-level
protocols and providing uniform
interfaces for

● integrating components into the
system

● enabling the communication
between them

It hides:

● distribution of components

● heterogeneity of the various
hardware components and their
operating systems and networking
protocols

The integration of components from all
the other layers into the system is done
through the visible interfaces of the
middleware that are the PERSONA
buses: Context Bus, Service Bus, Input
Bus and Output Bus…

In PERSONA, middleware also provides
a level of security mechanisms that
ensure that components are allowed to
call other components’ services.

PERSONA middleware also ensures that
communications between nodes are
encrypted.

Platform
core services

The logical grouping of components that
provide shared funtionality that is
mandatory and application-independent.
It is also possible that they publish and
consume services among themselves.
They attach to the middleware using the
visible interfaces of the middleware
provided by the PERSONA Buses.

Components that belong to this logical
layer: Service Orchestrator, Context
History Entrepôt, Profiling component,
Dialog Manager, IOHandlers, Situation
reasoner, Activity Monitor, Sensor
Abstraction and integration layer…

Platform
plug-ins

Components that enhance the platform
toward a certain configuration by
providing shared functionality beyond
the functionality provided by the
mandatory components, without
realizing any use case for the human
users of the system, belong to this
logical layer.

By defining a placeholder for platform
plug-ins, PERSONA has made its
platform extensible with high potential
for customizing it based on real needs and
preferences.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 29 of 85

AAL
applications
and Services

Those components in charge of
executing the business logic of the AAL
Services and realizing use cases for the
human users of the system belong to this
layer. They might use platform services
to accomplish this task as well as
provide services to their siblings on the
same layer.

This layer is used to symbolize the
relation between AAL applications and
the PERSONA platform.

3.2.6 SOPRANO Layer Model
In the following, the different layers of abstraction, their planned manifestation in the system
architecture and their role for the SOPRANO [5] system are explained in more detail. For a better
understanding, a scheme is introduced that depicts the layers and illustrates the information flow
within the proposed system architecture. The system behaviour will be determined by rules and
assumptions processed at each level of the scheme, the SOPRANO pyramid. Therefore, the pyramid is
a representation of the logical data processing in SOPRANO, and corresponds to the actual system
architecture with its different hardware and software components.

In the sequel, the layers of the pyramid and their respective concepts are explained in more detail,
starting from the bottom. The pyramid is meant as a reference model for a partition of the different
components of the SOPRANO system.

Figure 12: The SOPRANO pyramid. The semantic hierarchy from top level abstract system behaviour

down to attached devices is depicted

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 30 of 85

Table 7: Layers from Soprano project
Layer/sidecar Description Soprano use
Hardware
Level

The lowest level of the SOPRANO
pyramid is the level of the actual
hardware devices. There are two
types of hardware devices: sensors
and actuators.

The logical entities introduced on this level are
the providers of raw data on the sensoric side,
and the consumers of low-level commands on
the actuator's side.
The Hardware Level exposes its interface to the
above-lying service level. The corresponding
interface in the system architecture will be the
hardware drivers that expose the sensor’s
functions to the service level.

Service Level The Service Level provides the
first abstraction and aggregation of
raw data, yielding semantic data.
The creation of meaningful
semantic data can be achieved by
temporal aggregation (“is still in
bed”) or by means of semantic
interpretation of raw data, e.g. by
crossing thresholds (“has fever”).

The Service Level makes use of the underlying
Hardware Level for the triggering actuators or
receiving sensor data. It offers its services to
the above-lying Context Level. In the proposed
system architecture, this will be done via OSGi
Service Bundles. Hereby, the interface
definition evolves out of the concepts
introduced by the SOPRANO ontology.
The Service Level (and likewise the Hardware
Level) is individual to a single SOPRANO
installation in a household, depending on the
actual sensors and actuators installed. The
levels on top of the Service Levels are common
for the entire SOPRANO system, hence for the
entirety of SOPRANO installations. This
entails the necessity of a service registration
with the upper level components of the
proposed system architecture.

Context
Level

The Context Level aggregates
Services to high-level sensory
events and offers aggregated
functionality to the upper planning
level.

The Context Level offers high-level semantic
events to the planning component above and is
ready to take goal-oriented instructions. While
at the lower Service Level, a dedicated device
is triggered, actions on the Context Level refer
to the desired impact only, e.g.: “The AP needs
to be notified” instead of “display message on
interactive TV”. The Context Level delivers the
context conditions that are processed at the
Planning Level.
At the Context Level, the desired system
behaviour is describes regardless of the actual
devices attached to a local SOPRANO
installation. Hence, the context level modelling
is valid for all local installations; modifications
of the procedures concern all local installations.
The corresponding system components that
implement the system behaviour on the context
level are the context manager (for the sensory
branch) and the composer (for the actuatory
branch). Their common set of concepts is the
context ontology.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 31 of 85

Planning
Level

At the Planning Level, the stack of
sensory aggregation is evaluated,
and appropriate action is triggered.

This level contains and applies the rules for
taking decisions. The events are evaluated in
the current context and the result could be the
triggering of a workflow of high-level
procedures. The responsible SOPRANO
component is the procedural manager. The
procedures described in the workflow are
passed for realisation to the composer.

Abstract
Level

The top level of the SOPRANO
pyramid as a representation of the
semantic hierarchy is meant as the
theoretical superstructure only.

The SOPRANO allows abstraction at several
levels of both knowledge and functionality. The
reasoning engine allows uplifting of the
collected knowledge (from low-level sensor
bound statements to high-level statements
events handled by the system can lead to
creation of new logical statements). The
Composer is capable to select the best matching
low-level services that realise the high-level
procedures.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 32 of 85

4 universAAL Reference Model
This chapter defines the first version of the reference model. As mentioned in Chapter 4, in this
version of the deliverable we present only the terminology and layer model. The component and
distribution models will be defined in the future version. The terminology comprises the definition of a
set of basic concepts and their interrelationships. The layer model specifies a set of very high-level and
abstract architectural layers along with a generic representation of entities that can reside on each
layer. The first version of the universAAL reference model is based on the alignment of the
terminology and layer models from the previous projects as described in previous chapter. More
details about the consolidation of terminology and layer model are given in the sub-sections of this
chapter.

4.1 universAAL Terminology Model
The terminology model for universAAL was done by consolidating the terminology used in the
various projects. For the purpose of consolidation, the terminology from the previous projects were
categorised into terminology groups. The terminology groups that emerged from the process were the
following: Architecture, Behaviour, Bus, Components, Content, Devices, Domotic Infrastructure,
Frameworks, Infrastructure, Messages, Ontology, Participant, Quality of Service, Reasoner, Service,
and System. This grouping of terminology was determined from the overlap in the concepts from the
different projects and also using terminology from the existing standards. SoaML [6], AALIANCE
[7] and Continua [8] were used as existing standards and external projects to guide the grouping of
terminology and identify missing terminology. This grouping is preliminary and will be refined or
extended with other groups in the future version of the terminology model.

Once the grouping of the terminology was done, the important terms from each group were identified
that were considered to be the most relevant concepts for the universAAL reference model. For certain
terms that required a broader definition than the ones provided by existing projects or standards, a
universAAL specific definition has been provided. Figure 12 below shows the reference model terms
and the relationships between them. The types of relations used here are specialize (solid line with
filled arrow), realize (dotted line with filled arrow) and use (dotted line with unfilled arrow with
<<use>> stereotype). Here, the use relation should be regarded as a generic relationship.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 33 of 85

Figure 13: Overview of universAAL terminology and relationships

For certain terminology multiple definitions are listed from the previous projects. All the term
definitions listed in the table below are taken directly from their source. In this first version of the
Reference Architecture Terminology they are not adapted to universAAL. However, this will be done
in the next version of the deliverable. In a future version of the deliverable we aim to consolidate these
definitions into a single definition. Some terms are also still to be defined – these are generally the
more generic terms that were added to represent a group of terms from the input projects. When the
source is listed as OASIS_Std this refers to the terminology from the OASIS Standard SOA reference
model, and not to the OASIS project.

Table 8: universAAL Terminology Model
Term Source(s) Definition
AAL System «PERSONA» A system consisting of networked physical and virtual resources

that are set up to collectively provide intelligent assistance towards
wellbeing in preferred living environments.

Actuator «PERSONA» A device that is able to cause certain changes in the physical realm
upon receipt of related requests through an interface provided in the
virtual realm.

AMI System «PERSONA» A highly distributed system that uses different facilities for bridging
between the virtual and physical realms (e.g., I/O channels, sensors,
and actuators), in addition to utilizing pure virtual resources and
services, in order to provide human users with ambient assistance in
performing their tasks and reaching their goals. The provision of
assistance in AmI systems happens normally in a personalized and

Component

Device

SensorActuator

Middleware

Quality of
service

ServiceAmI SystemAAL System

Discovery

Reasoning

Participant ServiceContract

Context

Ontology

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»«use»

«use»

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 34 of 85

multimodal way. Usually AmI systems also provide automatic
assistance in terms of automatic reactions to environmental changes
and / or detected intentions, referred to as context-awareness.

Component «GENESYS,
Continua»

To be consolidated in next version of reference model.

Continua:
A Component is an entity in the Continua architecture. In general,
for any Interface, there is a Service Component, with a well-defined
set of functions depending on its type, on one side of the interface
and one (or more) Client Components on the other side. Each
Component is contained within a Device

Genesys:
A component is regarded as a self-contained composite
hardware/software subsystem that can be used as a building block
in the design of a larger system. The component can have a
complex internal structure that is neither visible, nor of concern, to
the user of the component. The behavior of a component, which is
visible at the component's LIF, has to be specified in the value and
time domain

Context «universAAL» To be specified in next version of this reference model
Device «Continua» A Device is a physical entity (box) and contains one or more

Components (functionality)
Discovery «universAAL» To be specified in next version of this reference model
Middleware «PERSONA» To be consolidated in next version of reference model.

PERSONA:
A piece of software that glues the distributed components of a
self-organizing system to each other, thus allowing the system to
emerge. It resolves the challenges of seamless connectivity (e.g.
node discovery) and goal-based interoperability (e.g. providing a
brokering mechanism) while hiding the distribution and
possible heterogeneity of underlying operating systems and
networking protocols - no architectural layer but a piece of
software!

Other sources:
“Middleware Architecture with Patterns and Frameworks” [9]
states that “intermediate software layers have come to be known
under the generic name of middleware”. More specifically, it states
that this intermediate software “resides on top of the operating
systems and communication protocols to perform the following
functions.
1. Hiding distribution, i.e. the fact that an application is
usually made up of many interconnected parts running in
distributed locations.
2. Hiding the heterogeneity of the various hardware
components, operating systems and communication protocols that
are used by the different parts of an application.
3. Providing uniform, standard, high-level interfaces to the
application developers and integrators, so that applications can

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 35 of 85

easily interoperate and be reused, ported, and composed.
4. Supplying a set of common services to perform various
general purpose functions, in order to avoid duplicating efforts and
to facilitate collaboration between applications.”

Ontology «SOPRANO» To be refined in next version of reference model.

This is not a functional component of SOPRANO, but it is a very
fundamental part of the system. All other modules rely on it as a
common means of understanding. It defines information that can
be exchanges, knowledge that can be stored and its datatypes.

Participant «SOAML» A participant is the type of a provider and/or consumer of services.
In the business domain a participant may be a person, organization
or system. In the systems domain a participant may be a system,
application or component.

Quality of
service

«Continua» Quality of service is the collection of properties that define
characteristics of an interface connection. This set of properties
includes aspects of the communication link such as reliability,
latency, bandwidth, and etc.

Reasoning «universAAL» To be specified in next version of this reference model
Sensor «PERSONA,

Continua»
To be consolidated in next version of reference model.

Continua:
A Sensor Service Component allows access to digital
representations of external conditions and events. This includes
measurements of temperature, motion, or electrical conditions.

Persona:
A device that can measure something in the physical realm and
represent the related info in terms of data in the virtual realm.

Service «universAAL,
SOAML,
PERSONA,
GENESYS»

To be consolidated in next version of reference model.

GENESYS:
The service delivered by a system is its intended behaviour as it is
perceived by its users. The behaviour is the sequence of observable
outputs of a system.

PERSONA:
The provision of something of value, in the context of some domain
of application, by one party (service provider) to another (service
consumer); more precisely: the actual value provided to achieve a
consumer's goal. In the virtual realm, provision of value has
traditionally been called functionality; hence, service can be seen as
a general abstract way of talking about accessible functionality that
can be utilized using pull mechanisms. Services accessible in the
virtual realm can be utilized by activating a related service utility
(e.g., using the terminology of Web Services, an "operation" of a
"Web Service"), which in turn will start a provision process
realized by the corresponding service providing component (e.g. the
Web Service component). In such a process, human participants as
well as other service components may be involved. The process
may also incorporate access to several physical or virtual resources,

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 36 of 85

such a printer or a database. However, the process is encapsulated
by the

SOAML:
A service is value delivered to another through a well-defined
interface and available to a community (which may be the general
public). A service results in work provided to one by another.

ServiceContract «SOAML» A ServiceContract is the formalization of a binding exchange of
information, goods, or obligations between parties defining a
service.

4.2 universAAL Layer Model
This section describes the consolidation of the layer models, and the initial definition of a layer model
for universAAL.

When describing the layer model of universAAL, we have some main usages in mind:

• Comparing and relating other architectures to the universAAL architecture

• Guidance during positioning attempts for components which are being considered for
integration with the universAAL platform

• Guidance for the design of the more detailed reference architecture of universAAL and for
universAAL compliant components

The approach taken here to describing the layered model is inspired by the “layered style” introduced
by Clements [10] in addition to the layer view of ARCADE described in chapter 3.3.

4.2.1 Consolidation of the layer models from the input projects
As a first step towards consolidation of the layer models of the input projects, we arranged the layer
models of the input projects along with the description of the universAAL platform from the
universAAL Description of Work (DoW) in a common diagram (see Figure 1613). This work revealed
that the model used in universAAL DoW and the models introduced by GENESYS and PERSONA
are very similar. Further, most of the other layer models have a good mapping to these models. The
alignment lines in the figures were added to help visualize this mapping.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 37 of 85

Figure 14: Consolidation of layer models

4.2.2 The universAAL layer model
Based on the mapping between the layer models of the input projects, we have designed a first version
of the universAAL layer model. As most of the input models mapped well to the model in the DoW,
GENESYS, and PERSONA, our initial layer model is close to these. A first variant of a simple (strict)
layer model is presented in Figure 15. Note that the layer view is a logical view of the system, and
does not include aspects such as distribution.

Figure 15: universAAL layer model (simple, strict variant)

Example
AAL

Services

Applications
& Services

Application
Services

Application
Layer

E
nd U

ser
applications

AAL
Applications
& Services

AAL Platform
Services

Generic
Platform
Services

E.E. API

Execution
Environment

OS & hardware
specific

Base
Middleware

Intelligent
User

Services

Interoperable
Service

Discovery and
Interaction
Middleware

Platform
(System and

Network)

Domain
Specific
Services

Domain
Independent

Optional
Services

Core
Services

Business
Processes

S
ervices

Physical
layer

Service
Layer

Middleware
Layer

Trust and
Security

Platform
Core

(general-
purpose)
Services

Middleware
(connectivity

&
messaging)

Planning
level

Context level

Service level

Hardware
level

DoW
overview

AMIGO GENESYS MPOWER OASIS PERSONA SOPRANO

S
ervice C

om
ponents

Q
oS

 (S
ecturity, ...), S

ervice discovery, Integration service bus

S
upport

applications

Platform
Pluggable
(special-
purpose)
Services

Execution Platform

Generic Platform Services

AAL Platform Services

AAL Applications

Services Service
Components

Business
Processes

Services Service
Components

Business
Processes

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 38 of 85

In the model, the universAAL platform is divided into three layers, namely the Execution Platform,
the Generic Platform Services, and the AAL Platform Services. As a result, the application layer
resides on top of the AAL Platform Services.

The execution platform is assumed to extend the native system layer of the different physical nodes
participating in an AAL system and hence hide the distribution of these nodes as well as the possible
heterogeneity of their native system layers. In addition to that, this layer is supposed to act as a
container for integration of all components from the above layers and facilitate the communication
among them.

We distinguish between domain specific services (AAL platform services) and domain independent
services (generic platform services) because the generic services are common to all AmI-based
systems and facilitate the construction of all kinds of smart environments. To this end, we are
emphasizing that the AAL platform services tend to be higher level services which depend on generic
services for their realization.

Compared to the DoW model, the universAAL layer model does not represent the API of Execution
Environment as a separate layer. Rather, this API defines the interface to the Execution Environment
layer, and the layer interfaces are not shown explicitly in the figure.

In the figure, we have also mapped the layers from the IBM SOA model (used also in MPOWER) into
the proposed model as the types of entities that can reside on each of the layers, as they can present a
different dimension of decomposition. The notion of Service is taken from the terminology introduced
in the previous section and is meant as an abstract unit for referring to functionality. Service
Components are software components that bring with themselves a possible realization for such
services. And, last but not least, the business processes emphasize the need for composability at a meta
level, based on a workflow involving services.

In a layered model the main elements are layers, and the main relations expressed are “allowed to use”
relations between the layers. The simple layer model of Figure 15 can be interpreted as a strict model
where usage between layers are restricted to only allow usage of the layer directly below. A more
relaxed variant is presented in Figure 1616. While the strict model can be seen as the ideal to fully
profit from a layered system, the relaxed model can map more easily to real-life situations. For
example, with the above understanding of the execution platform, if this layer is going to be
responsible for dealing with the distribution of functionality and heterogeneity of the networked nodes,
then it would be more convenient to assign the brokerage task for realizing the communication
between all components to the execution platform and hence allow all layers to directly use this
functionality.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 39 of 85

Figure 16: universAAL layer model (relaxed variant)

Since a well-defined layer model should also describe the intra- and inter-layer usage rules, we close
the description of the universAAL layer model with the following rules:

1. The inter-layer rules

• components belonging to one layer can freely use the services provided by the layer below
through its interface

• components belonging to one layer can, when necessary, use the services of other layers
below (in addition to the one directly below it) through their interfaces, but this usage should
be avoided when possible because it weakens the layering. The rules for such usage is subject
to further detailing in the reference architecture

• components of one layer are not allowed to make direct calls on or to have any other
dependencies on layers above unless such a call involves the realization of an interface that is
defined by the lower layer itself; in such a case, layers above are allowed to register the related
realizations for receiving notifications / callbacks

2. The intra-layer rules

• components of a layer are allowed to interact with other components defined in the same layer
using well-defined interfaces, subject to rules that will be further defined in the reference
architecture

• more specifically, for business processes, services, and service components in a layer, the
following rules apply: service components may utilize services realized by other components
on the same layer and business processes can use services. Other uses are not allowed.

Execution Platform

Generic Platform Services

Services Service
Components

AAL Platform Services

AAL Applications

Services Service
Components

Business
Processes

Business
Processes

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 40 of 85

Table 9: Definition of the layers in universAAL
Layer/sidecar Description Interface
AAL
Applications

Ambient Assisted Living applications
using the platform for their realization.

AAL
Platform
Services

Reusable services for the AAL domain The interface of this layer to layers above
consists of selected services and business
processes. Service components are not
visible outside this layer, but are the only
parts that use the layers below directly.

Generic
Platform
Services

This layer provides ambient intelligence
functionality and other domain
independent services to the layers above.

The interface of this layer to layers above
is a selected set of services. Service
components are not visible outside the
layer. Service components depend on the
Execution platform, while the services do
not use this directly.

Execution
platform

This layer extends the native system
layer of the different physical nodes
participating in an AAL system, hiding
distribution and heterogeneity issues for
the layers above.

The interface of this layer to layers above
is a platform-independent API.

The layered reference model does not indicate which layers contain component frameworks or other
means for extensibility. This will be covered in the reference architecture. Also, the layer model does
not define the set of components that will be mapped to the layer. The reference architecture will cover
this, and will also consider whether any particular subset of components will be mandatory for the
platform, and/or whether we will have different “profile” versions of the platform (i.e. for mobile /
desktop / server).

The current layer model does not cover any aspects of communication enforced by the platform (e.g.
should all communication go through the execution platform?). Such aspects will be defined in the
reference architecture.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 41 of 85

5 Future work
Based on the methodology described in Section 3, we can summarize the role of the achievements
presented in Section 5 in the process of architectural design of the universAAL platform as shown in
Figure 171916.

Reference Model

Realization
Architecture

Reference
Architecture

Developer

Architect

Terminology model

Layer model

Validation

Concrete architectures

Amigo
Genesys
mPower

Oasis
Persona
Soprano

Figure 17: The process of architectural design in universAAL

The first version of the universAAL reference model is based on the alignment of the terminology and
layer models from the previous projects. The terminology model requires further refinement to
consolidate multiple definitions used for certain terms. Additionally universAAL specific terminology
needs to be defined in the future versions of the reference model.

In the next version of the document, we also intend to include concept maps, similar to the one
provided in Figure 1817 below. Note that the current content of the concept map in the figure should
currently only be regarded just as an example.

Figure 18: Example concept map

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 42 of 85

For the layer model, further detailing is needed for the services, service components and business
processes and how these are mapped into the reference model. Also, the inter- and intra-layer rules
will be defined in more detail.

The main work in the next version of this deliverable, however, will be to define the first version of
our reference architecture based on our reference model through a validation step. As part of this
initial step, we plan to map the main components of each input project to the reference model, and to
group these components based on the functionality they provide. Further, the initial reference
architecture will be derived covering the initial selected groups of functionality.

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 43 of 85

References
[1] ARCADE, An Open Architectural Description Framework [online at: http://www.arcade-
framework.org/], accessed on: 09.06.2010

[2] Reference Model for Service Oriented Architecture 1.0, [online at: http://docs.oasis-open.org/soa-
rm/v1.0/soa-rm.pdf], accessed on: 09.06.2010

[3] Boston, MA, Reference Architecture Foundation for Service Oriented Architecture, Committee
Draft 02, [online at: http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf], accessed on:
09.06.2010

[4] Stav E., Walderhaug S., Johansen U., ARCADE - An Open Architectural Description Framework,
SINTEF

[5] Content taken from SOPRANO Deliverable: Analysis and abstraction of the identified needs and
requirements

[6] Beta 2 version from OMG at the time of writing, Service oriented architecture Modeling Language
(SoaML), [online at: http://www.omg.org/spec/SoaML/], accessed on: 09.06.2010

[7] AALIANCE Ambient Assisted Living Roadmap [online at: http://www.aaliance.eu/], accessed on:
09.06.2010

[8] Continua Health Alliance, [online at: http://www.continuaalliance.org/], accessed on: 09.06.2010

[9] Krakowiak, S., Middleware Architecture with Patterns and Frameworks [online at:
http://sardes.inrialpes.fr/~krakowia/MW-Book/], accessed on: 09.06.2010

[10] Clements P., et. al., Documenting Software Architectures: Views and Beyond

[11] Arsanjani A., Service-oriented modeling and architecture: How to identify, specify, and realize
services for your SOA, vol. 2007: IBM developerWorks, 2004

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf�
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf�
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf�
http://www.omg.org/spec/SoaML/�
http://www.aaliance.eu/�
http://www.continuaalliance.org/�
http://sardes.inrialpes.fr/~krakowia/MW-Book/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 44 of 85

APPENDIX A

1. AMIGO Terminology Model
The AMIGO terminology is extracted from the AMIGO project deliverables, which can be found at:

http://www.hitech-projects.com/euprojects/amigo/deliverables.htm

Concept Definition Relevance to
universAAL

Reference

Programming
and
Deployment
Framework

The .NET / OSGi programming framework
is an essential part of the Amigo Software
which is used as a basis by nearly all
application/component developers. The goal
of the framework is to support developers to
write their application or component
software in a short timeframe by relieving
them of time consuming and complex tasks,
such as protocol-specific details for remote
communication and discovery.

universAAL
requires a
programming
and deployment
framework for
developers

Deliverable
D3.1b
Detailed Design
of the Amigo
Middleware
Core

Section 4.3
P77-87

Context
Management
Service

The Amigo Context Management Service
(CMS) is an open infrastructure for
managing context information. The role of
the CMS is to acquire information coming
from various sources, such as physical
sensors, user activities, and applications in
process or internet applications and to
subsequently combine or abstract these
pieces of information into "context
information" to be provided to context
aware services.

universAAL will
require some
form of context
management

Deliverable D4.7
Intelligent User
Services
2 - Context
Management
Service
Software
Developer’s
Guide

Awareness
and
Notification

The Awareness and Notification Service
(ANS) provides the basic functionality
required to develop applications allowing
people and other applications to stay aware
of any significant change in context with
minimal effort. ANS is able to keep track of
changes in various types of context, for
example activities and presence of people.
ANS makes application layer services aware
of context changes by notifying them.
Applications register monitoring rules that
specify what changes in context should be
notified to them. From the user perspective,
the Awareness and Notification Service
provides notifications with appropriate
rendering of intensity, based on the user's
preferences and current context.

universAAL
requires a
mechanism to
notify or make
aware other
people or
components of
the system to
major changes to
other parts of the
system

Deliverable D4.7
Intelligent User
Services
4 - Awareness
and Notification
Service
Software
Developer’s
Guide

http://www.hitech-projects.com/euprojects/amigo/deliverables.htm�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 45 of 85

Privacy and
Security

This component provides access to the
Amigo authentication and authorization
service. It encapsulates the communication
and cryptographic primitives that are used
for device/user registration, authentication,
and authorization with the centralized
Amigo security service.

universAAL
with 24x
surveillance
requires a good
privacy and
security
component

Deliverable D4.7
7 - Intelligent
User
Services
Privacy and
Personal
Security

User
Modeling and
Profiling

User modeling and profiling provides the
methodology to enhance the effectiveness
and usability of services and interfaces in
order to (a) tailor information presentation
to user and context, (b) reason about user's
future behavior, (c) help the user to find
relevant information, (d) adapt interface
features to the user and the context in which
it is used, (e) indicate interface features and
information presentation features for their
adaptation to a multi-user environment.
These goals are achieved by constructing,
maintaining and exploiting user models and
profiles, which are explicit representations
of individual user preferences.

universAAL
caters to various
categories of
users with
different needs
which requires
user
personalization
using profiles

Deliverable D4.7
Intelligent User
Services
3 - User
Modeling and
Profiling
Service
Software
Developer’s
Guide

Interoperable
Service
Discovery &
Interaction
Middleware

The role of the interoperable service
discovery & interaction (SD&I) middleware
is to identify the discovery and interaction
middleware protocols that execute on the
network and to translate the
incoming/outgoing messages of one
protocol into messages of another, target
protocol. The system parses the
incoming/outgoing message and, after
having interpreted the semantics of the
message, it generates a list of semantic
events and uses this list to reconstruct a
message for the target protocol, matching
the semantics of the original message. The
interoperable SD&I middleware acts in a
transparent way with regard to discovery
and interaction middleware protocols and
with regard to services running on top of
them. The supported service discovery
protocols are UPnP, SLP and WS-
Discovery, while the supported service
interaction protocols are SOAP and RMI.

universAAL
needs to work in
a very
heterogenous
environment and
requires good
interoperability
and discovery
mechanisms

Deliverable
D3.1b
Detailed Design
of the Amigo
Middleware
Core

Section 4.1 and
4.2
P44-77

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 46 of 85

Domotic
Infrastructure

The Amigo Domotic Infrastructure aims at
presenting heterogeneous physical hardware
devices as unified software services using
standard service technologies. Nowadays,
there is a great diversity of physical device
technologies and protocols. Further, there
are a number of service technologies that
should be supported within the Amigo
system. Therefore, the purpose of the
Amigo Domotic Infrastructure is to enable
the integration of different device
technologies presenting them by means of
software services, but isolating the final
users (service clients) from the specific base
technologies.

universAAL
needs to connect
to various
sensors with
different
interfaces and
therefore
requires
abstraction at the
physical layer.

Deliverable
D3.1b
Detailed Design
of the Amigo
Middleware
Core

Section 4.4
P87-97

Content
Distribution

The Content Distribution service provides
available content in the Amigo home to
Amigo services and applications according
to the DLNA standard. This is done by
gathering available content descriptions (not
the actual content to avoid time-consuming
and unnecessary copying of content) from
UPnP Digital Media Servers (like Windows
Media Connect, etc.). Moreover, it has the
ability to provide content in a format which
suits the renderer's capabilities in the best
possible way.

universAAL
requires various
kinds of content
(related to
educational
material for an
illness etc) to be
distributed in a
secure and
copyright
protected way.

Deliverable
D3.1c
Detailed Design
of the Amigo
Middleware
Core Security &
Privacy, Content
Distribution,
Data Storage

Section 3
P15-29

Content
Storage

This component offers a generic storage
service to other components and
applications inside an Amigo system. There
is no restriction on the kind of content that
can be stored, and each component or
application can open and control access to a
sub-store inside the Data Store. It supports
also notifications on changes in a sub-store.
Data is automatically backed up and
restored when necessary.

universAAL
needs to consider
how to store the
huge amount of
data that will be
generated from
sensors and
consumed by the
end-user

Deliverable
D3.1c
Detailed Design
of the Amigo
Middleware
Core Security &
Privacy, Content
Distribution,
Data Storage

Section 4
P29-33

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 47 of 85

Accounting
and Billing

The Accounting and Billing component of
the Amigo middleware offers a basic
service for managing IPDR documents.
Authorized applications will be able to
introduce, search for and filter and share
IPDR documents via the Accounting and
Billing Service. This component offers
validation of IPDR documents as well as
service specific IPDR schema caching.
Furthermore it enables advanced searches
with criteria based on IPDR creation time,
service type and service specific element
matching.

universAAL
needs good
business models
to be adopted by
industry and
accounting and
billing is the first
step in that.

Deliverable D3.3
Amigo
Middleware
Core
Enhanced:
Prototype
Implementation
&
Documentation

Section 10
P110-112

User Interface
Services

Encompasses several interface related
services, such as a multimodal dialogue
manager and services supporting interaction
via specific modalities (e.g., speech, GUI,
gesture).

universAAL
needs an good
UI customized to
the target end-
users.

Deliverable D2.3
Specification of
the Amigo
Abstract System
Architecture

Also: D4.7 series

Semantic
Service
Description

This component offers a comprehensive
approach to semantic service description,
discovery, composition, adaptation and
execution in the Amigo home, collectively
called SD-SDCAE, using the Amigo-S
language, thereby enabling integration of
heterogeneous services into complex
services based on their abstract
specification.

 Deliverable D3.3
Amigo
Middleware
Core
Enhanced:
Prototype
Implementation
&
Documentation

Section 4
P55-88

VantagePoint The VantagePoint component is a Java
application that can visualize, query and edit
OWL ontologies that model a user-specified
physical environment.

 Deliverable D3.5
Amigo overall
middleware:
Final prototype
implementation
& documentation

Section 6
P70-96

Management
Console

The management console provides a single
point of control and diagnostics for the
whole connected home. It is able to connect
(remotely) to the different deployment
platforms on the devices for control
(software update) and diagnostic purposes.

universAAL
needs to be
managed in an
easy way and
allow easy
diagnosis of
problems.

Deliverable D3.5
Amigo overall
middleware:
Final prototype
implementation
& documentation

Section 10
P126-130

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 48 of 85

2. GENESYS Terminology Model
The GENESYS terminology is defined in the GENESYS book, which is available from:

http://www.genesys-platform.eu/genesys_book

or internally for the universAAL project from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-
%20requirements%2C%20architecture%2C%20implementation.pdf

Concept Definition Relevance to
universAAL

Reference

Application
Service

The application service is the intended
sequence of messages produced by a job via
output ports at the LIF and the controlled
object interface in response to the
progression of time, inputs and state.

Conceptual basis for
component-based
design

GENESYS
book
(Glossary,
page 175)

Architectural
Style

The architectural style consists of rules and
guidelines for the partitioning of a system
into subsystems and for the design of the
interactions among subsystems. Subsystems
must comply with the architectural style to
avoid a property mismatch at the interfaces
between subsystems.

Architectural principles
facilitate significant
properties (e.g.,
robustness,
composability, etc.)

GENESYS
book
(Glossary,
page 175)

Architecture
Model

A set of descriptions that define an
architecture or a configuration or a
combination of an architecture and a
compatible configuration (that obeys the
rules defined by the architecture).

An architecture model
is also basis of
universAAL.

GENESYS
book
(Glossary,
page 175)

Architecture The architecture is a framework for the
construction of a system for a chosen
application domain. It provides generic
platform services and imposes an
architectural style for constraining an
implementation in such a way that the
ensuing system is understandable,
maintainable, and extensible and can be
built cost-effectively.

It is the goal of
universAAL to develop
an architecture.

GENESYS
book
(Glossary,
page 175)

Behavior The sequence of messages (i.e., intended
and unintended) produced by a subsystem at
its LIF.

When different
components are
integrated to an
universAAL
implementation, their
behavior (as
perceptible from
outside the component)
is important, but not
the internal structure.

GENESYS
book
(Glossary,
page 175)

Behavioral
Model

A model that describes the dynamic internal
evolution (operation) of the object of
reference (system, subsystem, component)
and its response to external stimuli.

(see behavior) GENESYS
book
(Glossary,
page 175)

http://www.genesys-platform.eu/genesys_book�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 49 of 85

Channel A channel serves for the exchange of
messages between ports. It is associated
with a communication topology, a data-
direction (e.g., unidirectional or
bidirectional), temporal properties and
dependability properties.

Necessary for
interaction of
universAAL
components.

GENESYS
book
(Glossary,
page 175)

Cluster A cluster is a physically distributed
computer system that consists of a set of
nodes interconnected by a physical network.

Facilitates description
of physical structure of
a universAAL system.

GENESYS
book
(Glossary,
page 176)

Component A component is regarded as a self-contained
composite hardware/software subsystem
that can be used as a building block in the
design of a larger system. The component
can have a complex internal structure that is
neither visible, nor of concern, to the user of
the component. The behavior of a
component, which is visible at the
component’s LIF, has to be specified in the
value and time domain.

universAAL systems
will be composed of
self-contained
hardware/software
subsystems which
internal structure is not
of concern to the user.

GENESYS
book
(Glossary,
page 176)

Composability Composability is a concept that relates to
the ease of building systems out of
subsystems. A system, i.e., a composition of
subsystems, is considered composable with
respect to a certain property (e.g.,
timeliness, certification) if this property,
given that it has been established at the
subsystem level, is not invalidated by the
integration.

A universAAL
implementation will be
composed of multiple
subsystems which are
individually developed
and tested.

GENESYS
book
(Glossary,
page 176)

Constrained
Access

The access of the platform services through
the application is temporally constrained in
order to ensure consistency in read/write
operations without explicit synchronization.
This depends on clock synchronization
between application and platform for
temporal access coordination.

In order to constrain
access to shared
resources (e.g., shared
memory) the instant
and duration of the
access to this resource
should be temporally
constrained.

GENESYS
book
(Glossary,
page 177)

Controlled
Object

The controlled object is the home
environment, sensors and actuators that are
to be controlled by the computer system.

The universAAL
platform controls
several devices
(controlled objects) in
the environment of the
assisted person.

GENESYS
book
(Glossary,
page 177)

Core Platform
Services (Core
Services)

Core platform services are mandatory in
every instantiation of the reference
architecture template (e.g., networking
service, robustness service, etc.). The core
platform services provide the foundation for
higher-level, optional services.

The universAAL
platform needs to
provide a set of
services that are a
stable foundation for
each instantiation.

GENESYS
book
(Glossary,
page 177)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 50 of 85

Cross-Domain
Architectural
Style

The cross-domain architectural style
consists of views, concepts, and design
principles that have been consolidated from
the different application domains. This
includes the description of fundamental
architectural principles, the identification of
commonalities between application domains
and the identification of different
integration levels required in each
application domain.

universAAL may profit
from cross-domain
architectures as the
development cost of
devices and
applications can be
amortized to multiple
domains (e.g.,
including automotive).
“Economics-of-scale”

GENESYS
book
(Glossary,
page 177)

Cross-Domain
Development
Methodology

The cross-domain methodology framework
consists of a set of methods, techniques and
tools for diverse development processes that
are applicable across multiple application
domains.

(see Cross-Domain
Architectural Style)

GENESYS
book
(Glossary,
page 177)

Declared State The declared state is the state of a
subsystem, which is considered as relevant
by the system designer for future behavior
of the subsystem.

Necessary for
robustness w.r.t.
transient faults.

GENESYS
book
(Glossary,
page 177)

Determinism A model behaves deterministically if and
only if, given a full set of initial conditions
(the initial state) at time t0, and a sequence
of future timed inputs, the outputs at any
future instant t are entailed.

Foundation of
robustness by active
redundancy, and of
certification

GENESYS
book
(Glossary,
page 177)

Distributed
Application
Subsystem
(DAS)

A Distributed Application Subsystem is a
nearly independent distributed subsystem of
a large distributed real-time system that
provides a well-specified application
service.
For example the multimedia system in an
AAL system can be such a DAS. Since
DASs may be of different criticality, the
probability of error propagation across DAS
boundaries must be sufficiently low to meet
the dependability requirements. A DAS is
further decomposed into smaller units called
jobs.

Logical structuring of
universAAL systems.

GENESYS
book
(Glossary,
page 178)

Error An error is that part of the system state
which is liable to lead to a subsequent
failure. A failure occurs when the error
reaches the service interface.

Conceptualization of
dependability issues.

GENESYS
book
(Glossary,
page 178)

Error
Containment

Although a fault containment region can
demarcate the immediate impact of a fault,
fault effects manifested as erroneous data
can propagate across the boundaries of fault
containment regions. Therefore the system
must also provide error containment for
avoiding error propagation by the flow of
erroneous messages.

One universAAL
component cannot
affect other
universAAL
components.

GENESYS
book
(Glossary,
page 178)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 51 of 85

Error
Containment
Region (ECR)

The set of fault containment regions that
performs error containment is denoted as an
error containment region. An ECR consists
of at least to independent fault containment
regions. The error detection mechanism
must be part of a different FCR than the
message sender, otherwise the error
detection service can be affected by the
same fault that caused the message failure.

Errors in one
subsystem of the
universAAL
implementation may
not propagate to affect
other subsystems. Thus
ECRs have to be
defined to detect errors
within subsystems.

GENESYS
book
(Glossary,
page 178)

Event
Message

An event message is a message that contains
event observations. An event observation
contains the difference between the “old
state” and the “new state”. The time of the
event observation denotes the point in time
of the state change. In order to maintain
state synchronization, the handling of event
messages requires exactly-once semantics.

To notify distinct
components of the
system of the
occurrence of an event,
this type of messages is
necessary (e.g., when
the doorbell is ringing).

GENESYS
book
(Glossary,
page 178)

Fail-
operational
System

A fail-operational system is able to tolerate
one or several faults. Fail-operational
systems send correct messages despite the
failure of their subsystems.

The universAAL
platform will contain
services which are
essential to the life of
the assisted person
(e.g., fire alarm, fall
detection,…). These
services must also
operate correctly
despite the failure of
subsystems.

GENESYS
book
(Glossary,
page 179)

Fail-safe
System

In a fail-safe system all failures, to an
acceptable extend, only minor ones. In case
of a failure, the system responds in a way
that harm to persons and things is reduced
as much as possible (e.g., if the fire
detection system fails, an automatic alarm is
triggered as maybe the failure was caused
by the fire itself).

Subsystems of
universAAL may
require being fail-save.

GENESYS
book
(Glossary,
page 179)

Failure A failure occurs when the delivered service
deviates from fulfilling its specification.

(see Error) GENESYS
book
(Glossary,
page 179)

Fault A fault is the adjudged or hypothesized
cause of an error. Faults can be internal
(e.g., a design fault) or external (e.g., a
malicious attack) of the system.
A fault can remain in a system without
having any effect (e.g., a design fault). It
needs to be activated to become an error.

(see Error) GENESYS
book
(Glossary,
page 179)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 52 of 85

Fault-
Containment
Region (FCR)

A Fault-Containment Region is a collection
of components that operates correctly
regardless of any arbitrary logical or
electrical fault outside the region.

Appropriate design of
fault containment
regions in the
universAAL
architecture ensures
that one faulty
subsystem cannot
influence computations
of other FCRs.

GENESYS
book
(Glossary,
page 179)

Fault
Hypothesis

The fault hypothesis is the specification of
the faults that must be tolerated without any
impact on the essential system services. The
fault hypothesis states the assumptions
about units of failure (i.e., Fault-
Containment Region), failure modes, failure
frequencies, failure detection, and state
recovery.

In the universAAL
architecture it needs to
be defined which kind
of faults the system is
able to tolerate without
the failure of the whole
system. For example, if
a new application,
which contains design
faults, is installed on
the universAAL
system, it should be
able to tolerate this
fault without requiring
explicit repair action.

GENESYS
book
(Glossary,
page 179)

Host The host is the unit used to execute jobs. Physical structuring of
a universAAL system.

GENESYS
book
(Glossary,
page 180)

Integrated
Resource
Management

Integrated resource management is the
simultaneous management of multiple
resources (e.g., bandwidth, power, energy,
memory) in order to globally optimize
different resources.

In universAAL most
services depend on the
actual context, thus
also resource
requirements vary in
different situations.

GENESYS
book
(Glossary,
page 180)

Integration
Level

The integration level denotes the layer in a
system-of-systems at which it is composed
out of its components. Different integration
levels can be distinguished, e.g., chip level,
device level, system level.

Physical structuring of
universAAL systems.

GENESYS
book
(Glossary,
page 180)

Job A job is a constituting element of a DAS and
forms the basic unit of work. It interacts
with other jobs through the exchange of
messages in order to work towards a
common goal and provide the application
services.

Logical structuring of
universAAL systems.

GENESYS
book
(Glossary,
page 180)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 53 of 85

Linking
Interface
(LIF)

A job provides its real-time services, and
accesses the real-time services of other jobs
by the exchange of messages across its
Linking Interface. These messages have to
be fully specified in a LIF specification
which consists of an operational
specification and a LIF service model
specification.

The universAAL
platform needs to
provide precisely
specified interfaces for
services provided as
well as to provide
services to other
components. This
improves
composability.

GENESYS
book
(Glossary,
page 181)

Linking
Interface
Specification

The linking interface specification is the
mediating middle between a service supplier
and the service user. It comprises a syntactic
specification, a temporal specification, and a
LIF service model specification. The
syntactic specification forms out of the
sequence of bits in a message larger chunks
(e.g., a number, a string, a method call, etc.)
and assigns a name to each chunk. The
temporal specification of the messages
defines their send and receive instants, e.g.,
at what instants the messages are sent and
received, how the messages are ordered, and
the rate of message arrival.

An exact specification
of the interfaces in the
value and temporal
domain of services
provided helps to
reduce the potential of
mismatch between
service suppliers and
service users.
Furthermore, erroneous
components can be
detected by means of
assertions at these
interfaces.
This improves
composability.

GENESYS
book
(Glossary,
page 181)

Message A message is any data structure that is
formed for the purpose of inter-job
communication. In order that errors in a
message may be detected, an output guard
and an input guard can be associated with a
message. Such a guard is a predicate on
values of the message, and relevant state
variables that define an application-specific
acceptance criterion. Using such assertions,
it is possible to classify messages as: valid,
checked, permitted, timely, value-correct
correct, or insidious.

Concept for interaction
between universAAL
components.

GENESYS
book
(Glossary,
page 181)

Optional
Platform
Services
(Optional
Services)

The optional platform services which are
built upon the core platform service can be
generic in the sense that they can be used in
multiple application domains or specific for
a focused domain. These are not required in
every instantiation of the architecture, but
extend the provided services of the core
platform services.

universAAL will
provide services which
are not required in
every instantiation of
the architecture, but
available for optional
use.

GENESYS
book
(Glossary,
page 182)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 54 of 85

Platform A platform is the hardware/software
foundation for the execution of applications.
The platform comprises generic services for
the development of applications, which are
denoted as platform services (see Core
Platform Services and Optional Platform
Services).

Foundation for
universAAL services.

GENESYS
book
(Glossary,
page 183)

Platform
Services

Platform services facilitate the development
of distributed applications and separate the
application functionality from the
underlying platform technology to reduce
design complexity and to enable design
reuse. Platform services can be
distinguished into Core Platform Services
and Optional Platform Services.

universAAL should
provide a set of
platform services
which can be selected
for a specific
universAAL
instantiation.

GENESYS
book
(Glossary,
page 183)

Reference
Architecture
Template

The reference architecture template is a
template for building concrete architectures.
The reference architecture template
provides specifications for a comprehensive
set of platform services, including domain-
independent services that can be used across
application domains. In a specific
application, a subset of these platform
services can be selected and implemented.
The selection and implementation of the
platform services is part of the instantiation
of the template used to arrive at a concrete
architecture.

To facilitate building
of concrete
architectures,
universAAL should
provide an appropriate
template.

GENESYS
book
(Glossary,
page 183)

Reliability Reliability is the ability of a system or
component to perform its required functions
under stated conditions for a specific period
of time.

For several
universAAL services it
will be essential that
the user can rely on the
correct operation over
a long period of time.
For example, high
reliability of the fire
detection system means
that the probability of a
malfunction within a
specified period of
time is very low.

GENESYS
book
(Glossary,
page 183)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 55 of 85

Replica
Determinism

Replica determinism is a desired property
between replicated systems. A set of
replicated subsystems is replica determinate
if all subsystems in this set produce exactly
the same output messages that are at most
an interval of d time units apart, as seen by
an omniscient outside observer.

In case of replicated
computation in the
universAAL
architecture for fault
tolerance reasons (e.g.,
for live critical
applications), the
replicated subsystems
need to be replica
determinate in order to
come to the same
result.

GENESYS
book
(Glossary,
page 183)

Robustness Robustness is the capability of a system to
deliver an acceptable level of service
despite the occurrence of transient and
permanent hardware faults, design faults,
imprecise specifications, and accidental
operational faults. A system must be
resilient with respect to unanticipated
behavior from the environment of the
system or of subsystems. In case such
unanticipated behavior occurs, the system
should still exhibit some sensible behavior,
and not be completely unpredictable.

The universAAL
architecture can
comprise several
subsystems that need to
operate even in the
presence of faults (e.g.,
the fire alarm
subsystem). Thus, the
universAAL must
follow the concept of
robustness.

GENESYS
book
(Glossary,
page 184)

Service The service delivered by a system is its
intended behavior as it is perceived by its
users. The behavior is the sequence of
observable outputs of a system.

Conceptual foundation
of component-based
design.

GENESYS
book
(Glossary,
page 184)

Sparse Time
Base

If the time base of the global time in a
distributed system is dense (i.e., the events
are allowed to occur at any instant of the
timeline), then it is in general not possible to
generate a consistent temporal order of
events on the basis of the time-stamps. Due
to the impossibility of synchronizing clocks
perfectly and the denseness property of real
time, there is always the possibility that a
single event is timestamped by two clocks
with a difference of one tick.
By introducing the concept of a sparse time
base this problem can be solved. In the
sparse time model the continuum of time is
partitioned into an infinite sequence of
alternating durations of activity and silence.
Thereby, the occurrence of significant
events is restricted to the activity intervals
of a globally synchronized action lattice. In
this time model, the costly execution of
agreement protocols can be avoided, since
every action is delayed until the next lattice
point of the action lattice.

Enables the consistent
ordering of events
without agreement
protocols.

GENESYS
book
(Glossary,
page 184)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 56 of 85

State The state enables the determination of a
future output solely on the basis of the
future input and the state the system is in. In
other word, the state enables a “decoupling”
of the past from the present and future. The
state embodies all past history of the given
system. Apparently, for this role to be
meaningful, the notation of the past and
future must be relevant for the system
considered.

Important concept for
robustness.

GENESYS
book
(Glossary,
page 184)

State Message A state message is a periodic message that
contains state observations. An observation
is a state observation, if the value of the
observation contains the state of a real-time
entity. The time of the state observation
denotes the point in time when the real-time
entity was sampled. The handling of state
messages occurs through an update in place
and non-consuming read.

Many applications
need periodic update of
the state. This
information is
transported by the state
messages (e.g., the
actual heart rate of the
assisted person is
checked several times
per minute).

GENESYS
book
(Glossary,
page 184)

State
Recovery

State recovery is the action of (re-)
establishing a valid state in a subsystem
after a failure of that subsystem.

After the failure of a
subsystem in an
universAAL
implementation a valid
state needs to be
established, e.g., after
rebooting the faulty
component.

GENESYS
book
(Glossary,
page 185)

Unconstrained
Access

Unconstrained access does not restrict the
points in time of access operations
performed by the application. In order to
support consistency, asynchronous
handshake protocols are employed that do
not require clock synchronization between
application and platform.

(antonym to
Constrained Access)

GENESYS
book
(Glossary,
page 185)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b12/Genesys%20book%20-%20requirements%2C%20architecture%2C%20implementation.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 57 of 85

3. MPOWER Terminology Model
The MPOWER terminology is extracted from the two sources. The first source is the MPOWER
project deliverable “MPOWER D1.1 Overall architecture”. This deliverable is available from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-
ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf

The second source is the presentation “MPOWER - Basic architectural concepts” created for a training
session in the universAAL project. It is available from:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt

Concept Definition Relevance to
universAAL

Reference

Service
Platform

A set of software services and
components offering secure
interfaces to access local and central
communication and information
services.

universAAL must define
platform (some ideas
already defined in
DoW).

MPOWER D1.1
Overall
architecture
(section 3.1, page
14)

Common
Services

A set of reusable information and
communication services enabling the
development and deployment of
smart home care solutions.
- Is part of service platform.

universAAL must define
what a service is.

MPOWER D1.1
Overall
architecture
(section 3.1, page
14)

Applications Two Proof-of-Concept applications
have been developed using the
MPOWER Middleware services as
the core artefacts; one demonstrates
information access and sharing
aspects, while other demonstrates
MPOWER smart home environment.
Applications provide functionality to
end users. Applications use
(common) services.

universAAL must define
what we name what the
end users/seniors see
and use.

MPOWER - Basic
architectural
concepts
(slide 31)

Architecture The MPOWER Architecture package
consists of the:
(1) Reference Architecture, (2)
MPOWER HL7 Information models,
and (3) UML models that specify
reusable services and components.
Using UML Patterns defined in the
MDSD Healthcare Framework, and
Profiles defined in the MPOWER
UML Extensions, domain-specific
and technology independent UML
models are described as Platform
Independent Models (PIMs). The
PIMs can be transformed into PSMs
adding platform specific mappings
using the transformation scripts
described in the framework.

universAAL must define
the role of the reference
architecture. An
architecture could be an
instance of a reference
architecture?

MPOWER D1.1
Overall
architecture
(section 6, page
25.)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 58 of 85

Reference
architecture

The MPOWER project uses IBM
Service Oriented Architecture (SOA)
as reference architecture.

This example shows how MPOWER
used a reference architecture.

The universAAL
reference architecture
must justify itself, that
is, how it should be
used.

MPOWER D1.1
Overall
architecture
(section 6.1, page
25., and Appendix
A, page 56.)

MPOWER - Basic
architectural
concepts
(Slide 10)

SOA
Architect-
ural style

IBM defines SOA architectural style
as: “A set of patterns and guidelines
for creating loosely coupled,
business-aligned services that,
because of the separation of concerns
between description,
implementation, and binding,
provide unprecedented flexibility in
responsiveness to new business
threats and opportunities.”

universAAL should
define what it means
with service orientation.

http://www.ibm.co
m/developerworks/
library/ar-
archtemp/

OR

MPOWER D1.1
Overall
architecture
(section 6.2, page
26.)

Middleware The MPOWER Middleware holds
reusable and compiled (runnable)
services and components that can be
easily utilized by application
developers. The MPOWER
middleware consists of five
categories of services: Sensor
services, Contextual services,
Information (Medical and Social)
services, Security services, and
Interoperability services.

In MPOWER
middleware is the same
as service platform.
universAAL should
choose one (my
suggestion is that
platform is better).

MPOWER D1.1
Overall
architecture
(section 7, page
32.)

OR

MPOWER - Basic
architectural
concepts
(Slide 12)

Sensor
system

Systems that provides measured
information through a defined
interface. A sensor can be both
physiological and non-physiological.
Automation
services rely on sensor information
from e.g. door sensors, water-
temperature
sensors, light sensors and movement
sensors. A sensor system can be
composed of
several sensor-s/systems).

universAAL must define
what a sensor is (and
probably actuator).

MPOWER - Basic
architectural
concepts
(Slide 13)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
http://www.ibm.com/developerworks/library/ar-archtemp/�
http://www.ibm.com/developerworks/library/ar-archtemp/�
http://www.ibm.com/developerworks/library/ar-archtemp/�
http://www.ibm.com/developerworks/library/ar-archtemp/�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 59 of 85

Frame
Sensor
Adapter
(FSA)

Sensor/Actuator network abstract
architecture model which solves
problem of communication among
services and different sensor
protocols
It defines a framework providing
unified access to sensors and
actuators that use different
communication channels and
different data formats.

universAAL must to
define a layer/service
towards the physical
world of sensors and
actuators. Suggest other
name than FSA, but
something similar in
nature.

MPOWER - Basic
architectural
concepts
(Slide 14)

Context
information
model

The context understood as a current
state of the MPOWER environment
describes the environment state at a
certain moment.
Two spaces have been defined to
manage context within MPOWER:
first one – “user personal profile”
and second - “the Inward
environment info”.

universAAL could
define context.

MPOWER - Basic
architectural
concepts
 (Slide 18-21)

Service
components

In order to be interoperable, the
MPOWER platform implements a
set of service components that
contain the functionality needed to
interoperate with external system
(1. Health information systems –e.g.
information exchange with Google
Health,
2. SMS messaging, external calendar
services, voice and video over IP)

 MPOWER - Basic
architectural
concepts
 (Slide 11- figure)

Service
discovery

A reference implementation of a
service discovery implementation
based on the standards UDDI. The
UDDI allows for lookup of services
that is important in cases when loose
coupling of services is needed.

 MPOWER - Basic
architectural
concepts
(Slide 11- figure)

Service
provider

Is the implementation of a service. MPOWER D1.1
Overall
architecture
(page 25)

Service
description

Describes the services. MPOWER D1.1
Overall
architecture
(page 25)

Service
consumer

can either use the uniform resource
identifier (URI) for the service
description directly or can find the
service description in a service
registry and bind and invoke the
service

 MPOWER D1.1
Overall
architecture
(page 25)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 60 of 85

Service
broker

provides and maintains the service
registry. The next diagram shows the
main interaction between the above
mentioned parties.

 MPOWER D1.1
Overall
architecture
(page 25)

Integration
service bus

A reference implementation of an
Enterprise Service Bus. ESB works
as distributed infrastructure for
enterprise integration and consists of
service containers and provides
services for transforming and routing
messages.

 MPOWER - Basic
architectural
concepts
(Slide 19)

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_30b1e/Mpower%20Overall%20architecture.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_35458/universAAL_MPOWER_ENT.ppt�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 61 of 85

4. OASIS Terminology Model
The OASIS terminology is extracted from the following OASIS project deliverables.

OASIS D1.6.1, which is available at:

http://www.oasis-
project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf

OASIS D1.3.1 (after peer-review), which is available internally at the universAAL eRoom:

https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-
ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf

Concept Definition Relevance to
universAAL

Reference

Adaptive
Multiagent
Integration
framework
(AMI)

Agent-based framework that provides
seamless interactivity between OASIS
services, OASIS applications and the
hyper-ontology

Can provide
interactivity between
universAAL
applications and
ontologies. Provision
of personalization
services.

OASIS D1.6.1
p.55

Common
Ontological
Framework
(COF)

The COF defines a formal specification
of ontology modules, and how they
relate. The COF defines a methodology
and best practice for ontology
construction. It makes possible to define
a Hyper-Ontology and will also facilitate
and optimize the integration of new
emerging ontologies. This Hyper-
Ontology will reside in the OOR (OASIS
Ontology Repository) also provided by
the COF.

This framework can
be used for ontology
support in conjunction
with Ontology
Repository (OR).

OASIS D1.6.1
p.33

Content
Anchoring
and
Alignment
Tool (CAAT)

This tool aligns the functionality of
SOAP-compatible web services as well
as hardware devices with the ontologies
stored in the OASIS Ontology
Repository. The concepts of the same or
different application areas, after being
aligned with other ontological concepts,
will be able to anchor in the hyper
ontology framework, thus being ready to
be used seamlessly through the CCM.

Can be used for the
alignment of external
web services without
significant effort.

OASIS D1.3.1
(after peer-
review)
p.31

http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf�
https://project.sintef.no/eRoomReq/Files/ikt/ICT-20097-ICTAgeing/0_33866/OASIS%20Deliverable%20D1_3_1_version_1.0_after_peer-review.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 62 of 85

Content
Connector
Module
(CCM)

The role of the Content Connector
Module (CCM) is twofold: it supports
automatic integration of Web services,
which takes place when new service
providers are willing to register their
Web services in OASIS, and it receives a
request for service by the end-user
(client) application via the AMI and
invokes the appropriate service that
returns the required content to the client.

Middleware for
invocation of web
services and delivery
of appropriate content
to any requesting
party.

OASIS D1.6.1
p.35

OASIS
Application

A wide range of connected applications,
all integrated within the OASIS System,
and interoperating in integrated Use
Cases defined, covering the needs of the
elderly and their caregivers in terms of
Independent Living, Socialisation,
Autonomous Mobility and Smart
Workplaces.

The OASIS paradigm
for application
integration could be
useful in universAAL.

OASIS D1.6.1
p.106

OASIS
Platform

Defines the logical platform, on which
resources from different providers can be
shared in an integrated way.

A variation of this
platform can be used
for services
integration.

OASIS D1.6.1
p.43

OASIS
Reference
Architecture

Defines the content that can be shared on
the OASIS Platform by means of
ontologies. It is composed of the COF,
the ontologies and the support tools
(Content Connector Module and other
ontology management modules), both
available as open source, that allow the
automatic or semi-automatic connection
of existing and emerging ontologies and
services to the OASIS Architectural
Framework

Part of the reference
architecture can be re-
used.

OASIS D1.6.1
p.25

OASIS
Service

Multiple services will be part of OASIS
in order to provide all the desirable
functionality to the rest of the OASIS
components. In OASIS there are two
types of services: local services that will
reside inside the platform and remote
(web) services provided by all the
external application providers.

OASIS services may
be used also as
universAAL services.

Ontology
Repository
(OR)

It is the technological layer that supports
the Ontologies storage and management.
The COF (Common Ontological
Framework) provides one specific
repository for OASIS, the OOR.

Can be used as
ontology storage and
management for
universAAL
ontologies.

http://ontologies
.informatik.uni-
bremen.de/

http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://ontologies.informatik.uni-bremen.de/�
http://ontologies.informatik.uni-bremen.de/�
http://ontologies.informatik.uni-bremen.de/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 63 of 85

Trust &
Security
Framework
(TSF)

The TSF will be implemented inside an
OASIS module which will be responsible
for identification, authentication,
authorization, including delegation,
federation between domains
(local/remote and OASIS/third party
providers) and the integration of the
identity services.

Framework for
universAAL user
identification,
authentication and
authorization.

OASIS D1.6.1
p.70

UI
Framework

Allows automatic UI self-creation for
new connected services and self
adaptation to the device used, the context
of use and the user needs and preferences.
All the UI`s that comprises this
framework have followed a specific user-
centric methodology for its development
called OPAF, so we can ensure that all
the user requirements will be
accomplished.

Adaptive UI
principles may be
adopted for the end
user applications.

User Profile It contains all the context information
related to a specific user. If any OASIS
component needs to retrieve some
information related to the user context
but out of its own scope, it should make a
query to this user profile.

Can be used as a basis
for universAAL user
profile.

OASIS D1.6.1
p.60

http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.6.1/OASISDeliverableD1_6_1_v1_1.pdf�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 64 of 85

5. PERSONA Terminology Model

Concept Definition Relevance to
universAAL

Reference

I/O channel Channels between the virtual realm and the
physical realm for capturing user input that
was intended to be used by the virtual
system (then talking about an input
channel) or making info prepared by the
system perceivable for human users (then
talking about an output channel). Displays,
keyboards, loudspeakers, and microphones
are examples of devices that realize I/O
channels.

I/O channels
belong to the
reality of AAL
systems and
must be utilized
in an intelligent
way in the
course of
providing
assistance.

PERSONA
internal reports
IR3.1.1 &
IR3.1.2 &
deliverable
D3.1.1

Sensor A device that can measure something in the
physical realm and represent the related
info in terms of data in the virtual realm.

ditto ditto

Actuator A device that is able to cause certain
changes in the physical realm upon receipt
of related requests through an interface
provided in the virtual realm.

Ditto ditto

AAL System A system consisting of networked physical
and virtual resources that are set up to
collectively provide intelligent assistance
towards wellbeing in preferred living
environments.

Obvious ditto

AAL Space A physical space equipped with a concrete
setup of an AAL system, thus able to
effectively contribute to the provision of
intelligent assistance. Two important
characteristics of AAL spaces are
awareness and reactivity; that is, they are
always gathering info about certain changes
in the space and may be able to
automatically react upon recognition of
certain situations. Example AAL spaces are
the near-body AAL space, the home, the
neighbourhood (with its shopping centers,
local authorities, etc.), and the village or
town.

Defines some
locality, a
physical
boundary,that
helps to decide
about security
policies of
concrete setups
of AAL systems.
Provides an
abstraction for
discussing
certain
situations, such
as relationships
between users
and spaces (e.g.,
ownership or
interaction while
being inside or
outside the
space) and
interoperability
between AAL

PERSONA
DoW

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 65 of 85

spaces.
Service The provision of something of value, in the

context of some domain of application, by
one party (service provider) to another
(service consumer); more precisely: the
actual value provided to achieve a
consumer’s goal. In the virtual realm,
provision of value has traditionally been
called functionality; hence, service can be
seen as a general abstract way of talking
about accessible functionality that can be
utilized using pull mechanisms. Services
accessible in the virtual realm can be
utilized by activating a related service
utility (e.g., using the terminology of Web
Services, an “operation” of a “Web
Service”), which in turn will start a
provision process

Nowadays, the
most frequently
used concept that
provides an
abstract unit for
sharable
functionality.

 realized by the
corresponding service providing component
(e.g. the Web Service component). In such
a process, human participants as well as
other service components may be involved.
The process may also incorporate access to
several physical or virtual resources, such a
printer or a database. However, the process
is encapsulated by the service utility and
hence hidden to the service consumers.

see the eRoom
doc ”WP1
Terminology”
for several
references

Open
distributed
system

A system with several communicating
physical nodes, each possibly hosting
several logical units, that allows to
dynamically add and remove components –
physical as well as logical – and
nevertheless guarantees a certain level of
operation without having to recompile,
reinstall or restart any part of the existing
and running system. The components of an
open distributed system may be redundant,
competing with some existing components,
or bring new functionality with them. In
order to join to such a system, a component
must follow the provided specifications and
be somehow authorized. The WWW is the
largest known open distributed system
constantly in dynamic evolution. As
components are removed and added, the
WWW continues to work without essential
affection even if some end-points and users
may experience difficulties with certain
changes.

The concept of
open distributed
systems is
conform with the
reality of AAL
systems as it
respects the two
most important
characteristics of
them, namely
distribution of
resources and
evolvability.
Especially
relevant for
universAAL,
because the
platform should
be open for
dynamic
configurability
and hosting new
components.

see AmI-08
paper on
PERSONA
CASF
(Framework
Supporting
Context-
Awareness)

AmI system A highly distributed system that uses one of the major See, for instance,

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 66 of 85

different facilities for bridging between the
virtual and physical realms (e.g., I/O
channels, sensors, and actuators), in
addition to utilizing pure virtual resources
and services, in order to provide human
users with ambient assistance in performing
their tasks and reaching their goals. The
provision of assistance in AmI systems
happens normally in a personalized and
multimodal way. Usually AmI systems also
provide automatic assistance in terms of
automatic reactions to environmental
changes and / or detected intentions,
referred to as context-awareness. However,
they are bound to a certain locality and
hence physically limited. Therefore, it is
crucial for such systems to possess
enormous potential for sharing functionality
in an evolvable process. As a result, AmI
systems realized as open distributed
systems fit their circumstances best as they
allow for dynamic configurability and
respect the reality of distribution as well as
the physical limitations adequately.

input disciplines
for realizing
AAL systems
and spaces.

Emile Aarts and
José Encarnação,
True Visions:
The Emergence
of Ambient
Intelligence,
Springer, 2006

Seamless
connectivity

Seamless connectivity is given if nodes
participating in an open distributed system
find each other and connect in a dynamic
way and can use the connections to
communicate in an appropriate way.
Seamless connectivity is especially
appropriate for AmI systems because they
provide a boundary for such automatism
per se due to being bound to a certain
locality.

Contributes
towards
openness and
dynamic
configurability
of AAL spaces

See the strategic
research agenda
of ARTEMIS

Goal-based
interoperability

Utilization of functionality (also known as
service utilization) takes place in a goal-
based way if requests simply express the
meaning of what is requested to be
achieved and hence both addressing
concrete target components and using
syntactical artifacts, such as interfaces, can
be avoided. That is, goal-based
interoperability can be achieved when in
communication there is no dependency
on technical details of the "how"s, but
participants just focus on the "what"s.
To realize goal-based interoperability,
usually a brokering mechanism takes over
the responsibility of finding an appropriate
responder, mapping the request to a related
“call”, routing the “call” to that responder,

Goal-based
interoperability
is particularly
useful in open
distributed
systems because
the
independence
from physical
addresses and
syntactical
artifacts leads to
more openness
of such systems.

See “Goal-based
Service
Utilization Using
SPARQL and
OWL-S” in the
latest OWL-S
site

http://www.ai.sri.com/daml/services/owl-s/extensions.html�
http://www.ai.sri.com/daml/services/owl-s/extensions.html�
http://www.ai.sri.com/daml/services/owl-s/extensions.html�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 67 of 85

getting the response, and forwarding it back
to the requester, thus hiding all the
technical details of the “how”s.
SQL-like query languages generally
provide a suitable formalism for goal-based
communication as they just rely on a data
model and per se pose no technological or
methodical requirements on query
handling. In such queries, the goal can be
formulated starting with simple "speech
acts", such as DELETE, INSERT,
SELECT, and UPDATE, while the
remaining of the query allows to
unambiguously interpret what the query is
supposed to achieve.

Message
brokering

In PERSONA used as opposed to object
brokering. Object brokers can find objects
based on their interface specification and
return a reference to them so that their
methods can be called on a syntactical
basis. PERSONA chose a message
brokering approach to realize the brokering
mechanism defined under goal-based
interoperability to increase the chances for
avoiding syntactical dependencies. In this
approach, the broker takes over all the tasks
of (1) matchmaking between requests and
offers as well as between subscriptions and
notifications, and (2) handing over
messages between the endpoints without
need for direct connection between the
endpoints, thus avoiding endpoint-specific
interfaces.

Contributes
towards more
independence in
the development
of pluggable
components

Cf. WebSphere
Message Broker
& wikipedia
message broker
versus wikipedia
object broker

Self-organizing
system

An open distributed system that builds on
seamless connectivity and realizes goal-
based interoperability. Important
characteristics of such a system are:
1) It is usually based on the provision of
certain connection points (CPs) with related
interfaces, protocols, and roles possibly at
different levels of detail.
2) Each component respecting those
interfaces and protocols that is plugged into
the system must initially announce its roles
with related offers and subscriptions on
each CP. Similarly, it must announce its
requests on related CPs whenever it needs
functionality that it assumed to be available
in the system.
3) As a consequence of plugging a new
component into the system, its offers will

Obvious PERSONA
IR3.1.1, IR3.1.2
& D3.1.1 +
several
publications of
the German
research projects
EMBASSI and
DynAMITE, the
SODAPOP spec,
the strategic
research agenda
of ARTEMIS,
and wikipedia

http://www-01.ibm.com/software/integration/wbimessagebroker/�
http://www-01.ibm.com/software/integration/wbimessagebroker/�
http://en.wikipedia.org/wiki/Message_broker�
http://en.wikipedia.org/wiki/Message_broker�
http://en.wikipedia.org/wiki/Object_request_broker�
http://en.wikipedia.org/wiki/Object_request_broker�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 68 of 85

immediately be available to the system. All
the consequent communication will be
performed through the CPs to which it has
connected, no matter if it is on the sender
side or on the receiver side. Being a part of
an open distributed system, the component
must however come with a high level of
fault tolerance as there is no guarantee
about the constant availability of sources
that can fulfil its needs.
4) In addition to abstraction over messaging
routes, the dependency between the
endpoints (of requests, responses, and
notifications) is limited to shared
vocabularies used in constructing messages,
thus avoiding the definition of additional
interfaces and protocols beyond those of the
system CPs.
5) Such a system must provide facilities for
aggregating over available values so that
effort needed for composing new offers
(services) out of other available offers
(services) is minimized. The same applies
also to generating high-level notifications
that are derived from previous relatively
low-level notifications.
The above conditions imply that there is a
good level of automatism in the
organization of the system even if the
selection and authorization of components
may need human intervention.

Middleware

A piece of software that glues the
distributed components of a self-organizing
system to each other, thus allowing the
system to emerge. It resolves the challenges
of seamless connectivity (e.g. node
discovery) and goal-based interoperability
(e.g. providing a brokering mechanism)
while hiding the distribution and possible
heterogeneity of underlying operating
systems and networking protocols  no
architectural layer but a piece of software!

Obvious see INRIA book,
several
publications of
the German
research projects
EMBASSI and
DynAMITE, the
SODAPOP spec,
the strategic
research agenda
of ARTEMIS,
and PERSONA
publications

Distributed
realization of
the middleware

In self-organizing systems, the realization
of the middleware in a distributed way
simplifies the physical architecture of the
system just as an ensemble of networked
nodes in which each instance of the
middleware represents a node in the
system. Seamless connectivity will become

Obvious see several
publication of
the German
research project
DynAMITE

http://sardes.inrialpes.fr/~krakowia/MW-Book/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 69 of 85

an issue to be solved at the level of
middleware instances, i.e. it will be
sufficient when middleware instances are
able to discover each other and form the
ensemble in this way. The middleware can
then provide two types of CPs. The first
type would be the CPs between instances of
the middleware: nodes discovering each
other join to each other at these CPs and
organize themselves in this way into an
ensemble. The cooperation between the
instances of the middleware can then solve
the two important challenges of self-
organizing systems, namely distribution
and heterogeneity of nodes in a transparent
way without involving components running
on each node. The second type of CPs is
provided to the local components of each
node to facilitate their hookup to the
system. From the point of view of such a
component, the problem is reduced to using
the runtime facilities of its platform to find
the relevant CPs of the shared instance of
the middleware and connect to them. In this
way, each component integrates itself into
the system independently from any other
local or remote component participating in
the emerging system.

Sodapop Model

SODAPOP (Self-Organizing Data-flow
Architectures suPporting Onotology-based
problem decomPosition) is a conceptual
model based on which the distributed
middleware solution of PERSONA has
been realized. It introduces two important
concepts, namely transducers and channels.
Each pluggable component joins to the
system through its transducers (one
transducer per middleware CP and role).
Each of the transducers is a specialist in
exchanging certain types of messages with
the rest of the system and takes over the
responsibility of mapping internal
representation of those messages onto an
appropriate external representation and vice
versa (a kind of adapter for CPs).
A channel is a medium for message
brokering between connected transducers.
Channels may be seen as the “cutting
points” for distributing a system: several
instances of the same channel distributed
across multiple physical nodes cooperate in

A reliable
conceptual work
for the
distributed
realization of the
middleware that
provides a basis
for modular
brokering
mechanisms, one
per SODAPOP
channel.

the SODAPOP
spec

http://www.igd.fhg.de/igd-a1/projects/sodapop/sodapop.zip�
http://www.igd.fhg.de/igd-a1/projects/sodapop/sodapop.zip�
http://www.igd.fhg.de/igd-a1/projects/sodapop/sodapop.zip�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 70 of 85

order to virtually form a single global
channel. Each piece of the channel on each
node provides an API to transducers and
defines the possible roles with which
transducers can connect to it along with
protocols based on which they can put
messages on the channel or are expected to
process a message given to them. On the
other hand, such pieces of the same channel
cooperate with each other based on the
channel strategy to hide the distribution of
the system from the transducers connected.
A middleware based on Sodapop model
realizes the channels as the CPs of a self-
organizing system towards transducers and
all other components of the system realize
transducers that connect to channels.
Hence, the essentials of a Sodapop-based
system are defined by identifying its set of
channels and for each of them specifying
the channel strategy and API.
There are two types of channels: event-
based channels, on which messages are
posted without expecting any reply, and
call-based channels, on which posted
messages will be replied with an
appropriate response. Possible roles on an
event-based channel are publisher and
subscriber, on a call-based channel,
however, caller and callee. A publisher
transducer expects that for each published
event, the corresponding event-based
channel will find (an) appropriate
subscriber transducer(s) that know(s) how
to continue with the event. In case of call-
based channels, the calling transducer
determines the further processing of the
result after the channel arbitrates a call and
returns the response.

Virtual
communication
bus, or simply
“bus”

The term used in PERSONA to refer to a
Sodapop channel. Reasons for using
another name: (1) the term I/O channel was
already used in PERSONA with another
meaning, (2) in order to benefit from the
analogy with hardware notion of a bus, and
(3) a PERSONA bus does not respect the
Sodapop constraint of being “memory-
less”.
The communication buses reflect the loose
connections needed in a dynamic
environment and represent, in a modular

obvious Cf. Enterprise
Service Bus

http://de.wikipedia.org/wiki/Enterprise_Service_Bus�
http://de.wikipedia.org/wiki/Enterprise_Service_Bus�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 71 of 85

way, the need for interface/ontology
definitions, protocol specifications for
communication, and strategies for
“dispatching incoming messages” to an
appropriate (set of) receiver(s).
The PERSONA middleware provides four
buses: an input and an output bus for
covering interoperability needs related to
handling explicit interaction with human
users and a context and a service bus for
realizing push and pull mechanisms for all
other interoperability needs between
components attending a self-organizing
system.
PERSONA also avoids using the term
transducer and uses more specific per
combination of the bus to which a
transducer connects and the role played by
that transducer on that bus, this way
inventing different names for different
transducer types.

The PERSONA
input bus

An event-based bus for sharing explicit
input provided by a human user.

obvious PERSONA
IR3.1.2 &
D3.1.1

Input event The type of messages brokered by the input
bus. Such messages encapsulate explicit
user input captured through channels to the
physical realm. Explicit user input may be
provided to a PERSONA system in the
context of a dialog (see below) or in a
context-free way. For each input event not
encapsulating a context-free input, the
publisher of the event must enrich the input
event with the ID of the dialog in whose
context the input is provided. If such a
dialog ID is specified in an output event,
only an input subscriber (See below) that
has subscribed for input related to that
dialog will be notified to handle the input
event, whereas all context-free input is
forwarded to a default handler.

obvious PERSONA
IR3.1.2 &
D3.1.1

Input publisher The type of transducers that publish input
events onto the input bus. Important
metadata to be provided by an input
publisher: (1) the identity of the user
providing the input, and (2) if the input is
provided in the context of a dialog, the ID
of that dialog.

obvious PERSONA
IR3.1.2 &
D3.1.1

Input
subscriber

The type of transducers that subscribe to
the input bus for certain input events. A
specific input subscriber is assumed to exist

obvious PERSONA
IR3.1.2 &
D3.1.1

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 72 of 85

that is subscribed forever for all context-
free input. Otherwise, subscriptions to the
input bus are made very dynamically by
specifying the dialog ID in the context of
which the subscriber is willing to wait for
input, just before publishing the
corresponding output event (see below) that
starts the dialog. The subscriber is then
automatically unsubscribed as soon as the
cycle of the dialog is closed. Applications
must normally have such a transducer.

The PERSONA
output bus

An event-based bus for handing over info
prepared for being presented to (a) certain
human user(s). This brokerage is supposed
to be done in a personalized and context-
aware way so that the info is eventually
presented to the user using output channels
that are most appropriate for the current
situation of the addressed user and are the
best match for his / her possible
impairments, capabilities and preferences.

obvious PERSONA
IR3.1.2 &
D3.1.1

Output event The type of messages brokered by the
output bus. Such messages encapsulate a
modality- and layout-neutral representation
of info prepared for being presented to (a)
certain human user(s) through channels to
the physical realm. It is assumed that an
output event already contains content-
specific metadata, such as content language
and privacy level, and addressed user. The
output bus first enriches the output event
with adaptation parameters (location of the
user, possible impairments, proposed
modality for the current situation, modality-
specific parameters derived from his / her
possible impairments, capabilities and
preferences, etc.) and then for all output
subscribers (see below), it checks (using
ontological matchmaking) if the enriched
output event can be validated as an instance
of the class of output events in which the
output subscriber is interested. If yes, that
output subscriber is notified to handle the
enriched output event.

obvious PERSONA
IR3.1.2 &
D3.1.1

Output
publisher

The type of transducers that publish output
events onto the output bus. Output
publishers are supposed to already include
content-related metadata (e.g., content
language and privacy level, addressed user)
to each published output event.
Applications must normally have such a

obvious PERSONA
IR3.1.2 &
D3.1.1

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 73 of 85

transducer.
Output
subscriber

The type of transducers that subscribe to
the output bus for certain output events.
The subscription is supposed to be rather
static and occur once at the registration
time with the output bus. The subscription
provides criteria for output events that can
be handled by the subscriber depending on
output channels controlled, e.g. how
privately the channels can be used, related
modalities and locations, set of users (e.g.,
because of the limitations of the used user
identification mechanisms). An output
subscriber selected by the output bus for
handling an enriched output event, looks
for metadata that provide instructions
regarding the addressed user, his / her
location, the modality to use, and modality-
specific parameters derived from his / her
possible impairments, capabilities and
preferences.

obvious PERSONA
IR3.1.2 &
D3.1.1

Dialog A cycle of publishing an output event and
receiving a related input event.

obvious PERSONA
IR3.1.2 &
D3.1.1

The PERSONA
context bus

An event-based bus providing a general-
purpose push mechanism that can be used if
the info to be shared is neither addressing a
human user nor the representation of
captured user input. It is called the context
bus, because it is used for the exchange of
sharable info about changes in the system
and its environment, and for an interested
subscriber the event has happened in the
context of its runtime environment.

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF
(Framework
Supporting
Context-
Awareness)

Context
element

A distinct characteristic or feature of a
distinct resource. Using the RDF
representation techniques, a context
element in this sense can be identified
uniquely by a pair of URIs, namely the URI
of the resource and the URI of the
corresponding property.

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF

Context event A statement reporting the state of a context
element at a specific time where the state
was changed into the reported value. In
terms of RDF, this could be as simple as an
RDF statement – the two URIs identifying
the underlying context element would form
the subject and predicate of the RDF
statement and the state value would be the
object of the statement; however, as a
reporting statement bound to a specific

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 74 of 85

time, a context event should be treated as a
reified statement in order to be able to
specify the associated time, too.
Additionally, listeners to such events may
need to also know who is reporting this
value with which level of confidence and /
or temporal validity. For each pair of
received context event and context
subscriber (see below), the context bus
checks (using ontological matchmaking) if
the context event can be validated as an
instance of the class of context events in
which the context subscriber is interested.
If yes, that context subscriber is notified to
handle the context event.

Context
publisher

The type of transducers that publish context
events onto the context bus. Important
metadata to be provided by a context
publisher consists of the provider info (see
below), a timestamp, confidence level, and
temporal validity.

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF

Context
subscriber

The type of transducers that subscribe to
the context bus for certain context events.
Subscriptions to the context bus can be
made very dynamically and / or at the
registration time with the context bus. The
subscription provides criteria for context
events that can be handled by the subscriber
depending on their subjects and subject
types, properties, reported value, temporal
validity, confidence value, and / or
provider.

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF

Context
provider

A component that has a transducer for
publishing context events onto the context
bus. Major subgroups of context providers
are: (1) Controllers that have the states of
some context elements under their control,
like an actuator controlling the lights in a
place that can also provide info about the
state of the controlled light sources, (2)
Gauges that wrap a sensor, and (3)
Reasoners that estimate the state of some
context elements by combining different
known information and applying certain
methods of aggregation, statistical analysis
and / or logical deduction. The values
reported by gauges could be measured
dimensions. If so, the concepts
DimensionMeasure or
MultiDimensionMeasure (or subclasses of
them) are used for building the object part

obvious PERSONA
IR3.1.2 &
D3.1.1 + AmI-
08 paper on
PERSONA
CASF

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 75 of 85

of the reified statements. Such “measure”s
provide info about the unit and accuracy of
measurement in addition to the measured
value.

The PERSONA
service bus

A call-based bus providing a general-
purpose pull mechanism that can be used
for utilizing accessible functionality. As
explained earlier, “service” can be used as a
general abstract term for talking about
accessible functionality that can be utilized
in the virtual realm using pull mechanisms.
The bus API, communication protocol, and
strategy altogether realize a brokering
mechanism that is providing for goal-based
interoperability. Obviously, the most
important of message types exchanged on
the service bus correspond to service
requests, service calls (forwarding a request
to matching callees), and service responses.

obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

Service Profile For each service made available to the
service bus, a service callee (see below)
must register a service profile that describes
both the “what”s (what is the service for)
and the “how”s (how it can be utilized).
The bus uses the “what”s in the course of
matchmaking and the “how”s when the
match was successful and the service is
going to be utilized. The structure of such a
profile is taken from OWL-S specification
for service profiles. For more info &
examples, please refer to “Goal-based
Service Utilization Using SPARQL and
OWL-S” in the latest OWL-S site.

obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

Service
Request

The type of messages used by a service
caller (see below) to request a service. They
are modeled as SPARQL-like queries in the
following form:

Each variable (VAR) used in the CALL
clause represents a service to be called. It

obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

 ‘CALL’ [(‘ALL’ | ‘ONE’ | ‘BEST’)
‘(‘ VAR ‘)’]+
[‘DELETE {’ <statements possibly
using variables> ‘}’]
[‘INSERT {’ <statements possibly
using variables> ‘}’]
[‘SELECT’ <list of constants or
variables (with/without aggregation)>]
‘WHERE {‘
 <statements & filters clarifying the
context of the variables used>
‘}’

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 76 of 85

must be bound to a specific class of
services (e.g., the class of lighting services)
in the WHERE clause. In this way, the
query is basically stating that one or more
services are requested. The combined or
standalone usage of DELETE and INSERT
altogether specifies the expected effects
either in the virtual realm or in the physical
realm or both. SELECT specifies the list of
expected return values. Only one of
DELETE, INSERT, and SELECT is
mandatory. Combined usage of DELETE
and INSERT is SPARQL-equivalent of
UPDATE in SQL. For more info &
examples, please refer to “Goal-based
Service Utilization Using SPARQL and
OWL-S” in the latest OWL-S site.
Upon receipt of such a query, the service
bus checks the set of service profiles that
describe services from the same class (e.g.,
the class of lighting services) to see which
one of them has the same effect and output
as required by the query while fulfilling all
conditions specified in the WHERE clause.
In this way, a set of matching services will
be found by the service bus. Then, the
directives ALL, ONE, and BEST are
considered to respectively determine if all
matched services should be called, just one
in a random way, or even just the one that
is the best match. Besides that, the WHERE
clause may provide QoS or other non-
functional criteria (e.g., a related entity
being the nearest to a specific location) that
already restrict the number of matched
services to one so that the above directives
may make no difference.

Service Call The type of messages sent by the service
bus to a concrete service callee (see below)
in order to instruct the addressed
component to start the process of providing
a concrete service registered with the bus.
Before sending such a message, the bus
must derive the needed input parameters
from the query (actually, the input
parameters are determined already during
the matchmaking as some services will
match only if a certain constant value from
the query is used as a certain input
parameter). Hence, a service call specifies
which process should be started with which

obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

http://www.ai.sri.com/daml/services/owl-s/extensions.html�
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 77 of 85

concrete input parameters.
Service
Response

Both messages in reply to a service call
returned by a service callee (see below) to
the service bus and those in reply of a
service request returned by the service bus
to a service caller (see below) are called
service response. In both cases, it consists
of a call status (e..g., succeeded, no
matching service found, service-specific
failure, or timed out) and a set of return
values, however, a response sent by a
service callee to the service bus
distinguishes the output values in terms of
IDs already used in the service profile
whereas in case of a response sent by the
service bus to a service caller, the returned
values are distinguished in terms of
variables specified in the original query
(service request). That is, the job of the
service bus is not limited to forwarding
original responses from callees to callers,
but it must first perform a backward
mapping. This is possible because, similar
to the case of determining the set of input
values in case of service calls, also the
mapping between output IDs used in
service profiles and output variables used in
service requests had certainly belonged to
the conditions of the match. In addition to
such a backward mapping, the service bus
may have to also combine several responses
received from different callees into one
single response if more than one callee was
called as a result of service brokering.

Obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

Service Caller The type of transducers that attach to the
service bus and are allowed to send service
requests to the bus and will receive service
responses in return.

Obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

Service Callee The type of transducers that register service
profiles with the service bus and might be
addressed by the bus to perform a specific
service provision process. They are
expected to send service responses in reply
to each such “address” (call).

obvious PERSONA
IR3.1.2 &
D3.1.1 + SMR2
paper on
PERSONA
Semantic RPC

I/O Handler Each I/O handler manages a set of I/O
channels and subscribes to the output bus
by specifying its capabilities, which is used
by the output bus in the course of match-
making with adaptation parameters

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-525/�
http://www.springer.com/computer/ai/book/978-0-387-93807-3�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 78 of 85

associated with each output event. That is,
using the adaptation parameters, the output
bus tries to find a best-match I/O handler
that receives the content to be presented to
the user along with instructions in regard to
modality and layout derived from the
adaptation parameters. The selected I/O
handler is then responsible for converting
the application output to the format
appropriate for the channel selected in
accordance with received instructions. It
then monitors its input channels to catch the
related user input. Upon recognized input, it
must convert it to the appropriate format in
accordance to the previously handled
application output and publishes it as an
event to the input bus. I/O handlers are
application-independent, pluggable
technological solutions that manage their
respective I/O channels to concrete devices
using one or more of the following
alternatives: A tight connection using low-
level protocols, a loose connection using
device services on the service bus, and / or
a loose connection using contextual events
on the context bus.

platform

Dialog
Manager

The Dialog Manager is an application-
independent component that handles the
system-wide dialogs and hides the
complexity of utilizing the application
services from the user. Another important
task for the Dialog Manager is the
provision of a mechanism for associating
service calls with situations as means for
providing a configurable management of
the reactivity of an AmI environment. For
this purpose, the Dialog Manager relies on
a configurable repository of rules
schematically in the form of “situation 
action” (abbreviated as “s[i]a[j]”). Then,
it must subscribe to the context bus for all
situations s[i], for which it has an
associated action a[j] in its repository. The
association “s[i][j]” is the heart of
controlling system behavior and hence it
will be very advantageous to store it in a
central configurable repository. Concrete
tasks of the DM in PERSONA are:
Providing system dialogs, such as
navigation through available services,
providing standard and common dialogs,

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

http://www.springer.com/computer/ai/book/978-0-387-93807-3�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 79 of 85

such as “login” or “notify”, handling
system reactivity using rules that associate
situational events with actions (service
requests), handling context-free user input
in terms of service search (if an I/O handler
detects user input that has no relation to any
previous output, the Dialog Manager
receives the input and tries to interpret it as
search for services).

Context
History
Entrepôt

The Context History Entrepôt (CHE)
gathers the history of all context events in a
central repository not only to fill the gap
caused by context publishers that provide
no query interface, but also to provide a
fallback solution for those that cannot
maintain the whole history of data provided
by them. Additionally, it guarantees the
essential support to reasoners that perform
statistical analysis and need context stored
over time. As a singleton component, the
CHE takes care of logging every context
event that is published in the context bus by
specifying a “pass-all” filter when
subscribing to the bus. In order to have the
growth of the repository under control, the
CHE also implements a deletion policy
based on the likeliness of the data to be
needed further on.

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

Situation
Reasoner

A general-purpose context reasoner that
uses the database of the CHE and infers
new contextual info using the logical power
of the RDF query language SPARQL. It
stores “situation queries” persistently and
indexes them based on context events that
must trigger its evaluation. It provides two
services on the service bus, one for
accepting new situation queries and the
other for dropping them. These services are
also used by a graphically interactive tool
for administrators in order to facilitate the
introduction of new relevant situations to
the system by providing an overview of
existing context providers, allowing drag-
and-drop interaction using artifacts for
accessible context elements, catching
logical errors made by the user, and
generating the appropriate SPARQL query
string, to name a few of its features.

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

Profiling In order to guarantee the adaptability of an
AAL space to the wishes and preferences of
its users, it is essential that a special-

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter

http://www.springer.com/computer/ai/book/978-0-387-93807-3�
http://www.springer.com/computer/ai/book/978-0-387-93807-3�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 80 of 85

purpose component is foreseen for the
management of the profiles and the
provision of needed shared mechanisms.
We call this component the Profiling
Component.

in AISE book on
PERSONA
platform

Service
Orchestrator

Services may exist only at a meta-level in
terms of “composite” services made from
combining really-existing “atomic”
services. The Service Orchestrator (SO) is
the component in charge of interpreting the
metadata describing a composite service
and performing the instructions within it.
These descriptions are added / removed /
modified by a GUI for system
administrators. The SO registers the
composite services to the bus like any other
service callee would do so for its atomic
services. This way, whenever a composite
service is called on the service bus, the bus
will find the SO as the only object that
“implements” that service; hence the SO
implements the callee interface for handling
service requests. At this stage, the SO starts
to execute the corresponding composite
service by calling the sub-services through
its capabilities as a caller until it finishes
and then returns the results to the bus that
will forward them to the original caller.
Summarizing the admin tool aspect so far,
it is worth to mention that three repositories
must be kept configurable for
administrators of AAL spaces: a) the
database of the Situation Reasoner
regarding “conditionssituation” rules, b)
the database of the Dialog Manager
regarding “s[i][j]” associations, and c)
the database of the SO regarding composite
services.

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

AAL Space
Gateway

In order to facilitate remote access to AAL
spaces and, the other way around, to
support AAL spaces in notifying an absent
native user, as well as to enable the
bridging between AAL spaces and,
furthermore, to provide a possibility for
external service providers to advertise their
services to the occupants of AAL spaces,
we suggest to employ a special-purpose
component called the AALSpace Gateway.
The gateway provides access to the hosted
services in the AAL space under a fixed
URL. For this purpose, it must act within

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

http://www.springer.com/computer/ai/book/978-0-387-93807-3�
http://www.springer.com/computer/ai/book/978-0-387-93807-3�
http://www.springer.com/computer/ai/book/978-0-387-93807-3�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 81 of 85

the AAL space as input publisher and
output subscriber so that in case of
incoming remote access and after
authentication, the remote user can start a
dialog with the smart home to access info
and services for which he or she has the
required access rights.

PISM The middleware must control the access to
services with the help of a component that
we call the Privacy-aware Identity &
Security Manager (PISM) that is also
supposed to act as a service provider. The
main responsibilities of the PISM are: a)
management of the entities’ identities and
credentials, b) management of permissions
for accessing “hosted” services, c)
providing authentication services, and d)
providing a tunable mechanism for
deciding on the disclosure of private data.

obvious PERSONA
IR3.1.2 &
D3.1.1 + chapter
in AISE book on
PERSONA
platform

http://www.springer.com/computer/ai/book/978-0-387-93807-3�

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 82 of 85

6. SOPRANO Terminology Model

Concept Definition Relevance to
universAAL

Reference

SOPRANO Ambient
Middleware/platform
or openAAL

Provides the intelligence of the system.
SAM collects incoming sensor
information, analyses them (in the
Context Manager), decides with the
help of a procedure database which
actions in form of workflows to be
taken (in the Procedural Manager) and
executes them through different
actuators in the house (in the
Composer)

Middleware
platform that
provides
decoupling,
enables
independent
contribution and
provides central
platform
services

D2.1.1: Initial
SOPRANO
Architecture p.
6/25

Service Integration
Component

An OSGi service middleware provides
the technical basis for this system part.
All local services in the house as well
as external services are registered in its
central service registry

Provides support
for service
management,
remote
management,
message
exchange etc.

D2.1.1: Initial
SOPRANO
Architecture
p.25

Administration
Component

It contains the (graphical)
administration interfaces for the
different administrator roles in
SOPRANO: the healthcare consultant,
the case manager as well as the carer.

 D2.1.1: Initial
SOPRANO
Architecture
p.25

SOPRANO Ontology This is not a functional component of
SOPRANO, but it is a very
fundamental part of the system. All
other modules rely on it as a common
means of understanding. It defines
information that can be exchanges,
knowledge that can be stored and its
datatypes.

 D2.1.1: Initial
SOPRANO
Architecture
p.25

SOPRANO Context
Ontology

Part of SOPRANO ontology that
describes the context information that
can be stored in the Context Manager.
It acts also as the central data model.

Context model
whose principles
can be reused in
universAAL
context
modelling

D2.2.1: User
Context
(section 1-3)

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 83 of 85

Context Manager The task of the Context Manager is to
host SOPRANO’s user context
database which stores context
information as well as the user’s
profile data. It receives events of all
installed sensors and updates the
database accordingly. Other
components can register with the
context manager using state patterns to
be notified about specific status
changes.

Enables
complex
situation
detection,
captures and
deals with
history data and
error-prone
sensor
information.

D2.1.1: Initial
SOPRANO
Architecture
p.29 & D2.2.3:
First version of
Context
Manager

Procedural Manager The procedural manager processes the
SOPRANO high-level rules, called
procedures, as well as the procedure
templates. The procedural manager
provides interfaces for storing,
deletion, and retrieval of procedures
and procedure templates.
Furthermore, the procedural manager
executes the procedures as reactions to
status changes with the help of Context
Manager and Composer

Can be used to
store and
execute abstract,
reusable, easy-
to-define system
behavior in form
of BPEL
workflows.

D2.1.1: Initial
SOPRANO
Architecture
p.29f & D2.3.1:
Initial version
of SOPRANO
procedural
Manager

Composer The composer queries the service
integration component for suitable
concrete services, matches them
against the abstract goal descriptions in
a context-aware manner and invoke the
best-fitting service. Semantic service
description languages as well as
appropriate matchmaking algorithms
are used for this task.

Provides
semantic
services
matchmaking.

D2.1.1: Initial
SOPRANO
Architecture
p.30 & D2.4.1:
Initial version
of SOPRANO
Composer

Sensor Services Services that typically represent
individual sensors or sensor systems.
In general, every service that delivers
information to the context manager.

 D2.1.1: Initial
SOPRANO
Architecture
p.16 & D 1.3.1
Abstract
description of
entities
involved in the
identified
application
scenarios

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 84 of 85

Actuator Service Services that typically represent
actuators. In general, every service that
takes information and puts it out in the
real world

 D2.1.1: Initial
SOPRANO
Architecture
p.16 & D 1.3.1
Abstract
description of
entities
involved in the
identified
application
scenarios

Analytical Services Services that process the raw data of
sensors and actuators to make them
“SOPRANO-compliant”. They are
typically part of sensor services.

 D2.1.1: Initial
SOPRANO
Architecture
p.25

Complex or
Interactive Services

More complex services that can
provide more complex behavior.
Typically they act as both Sensor and
Actuator Service and can, for example,
provide complex user interaction.

 D2.1.1: Initial
SOPRANO
Architecture
p.18

Procedures Procedures are stored in the Procedural
Manager and define specific situations
and the system’s reaction to those
situations.

 D2.1.1: Initial
SOPRANO
Architecture
p.19/25f

Service Matchmaker
and Invocator

Matches service requests and offers by
means of Diane Service Description
framework and executes the best
fitting service.

 D2.4.1: Initial
version of
SOPRANO
Composer
(section 1-3)

Workflow Engine Executes Procedures with help (by
invocating) Composer and Context
Manager in a context-aware manner
(by invocating the Context Manager)

 D2.4.1: Initial
version of
SOPRANO
Composer
(section 1-3)

Ambient System Systems that works primarily in the
background by understanding the
current situation in the house via the
connected sensors and influencing it
via the connected actuators.

 D2.1.1: Initial
SOPRANO
Architecture
p.17f

D1.3-A universAAL Reference Architecture

Last printed 9/22/2010 11:17:00 AM Page 85 of 85

Architecture Architecture is viewed from 5 different
perspectives:
In the Logical View, the functional
decomposition of the system is
regarded.
In the Use-Case View, application
scenarios of the system are defined
from a user’s point of view.
In the Development View, the
implementation of the software as well
as its packaging is defined.
In the Deployment View, the mapping
of the software components to the
underlying hardware is defined.
In the Process View the aspects of the
system at run-time such as tasks,
threads, or processes as well as their
interactions are defined.

 D2.1.1: Initial
SOPRANO
Architecture
p.24ff

	Table of Contents
	Table of Figures
	List of Tables
	Executive summary
	About this Document
	Role of the deliverable
	Relationship to other versions of the deliverable
	Structure of this Document

	Roadmap to the universAAL Reference Architecture
	From Reference Model to Reference Architecture
	Rationale behind the Collection of Former Project Architectures
	Methodology to Consolidate former Architectures: ARCADE
	Views
	Reference model view
	Component view
	Distribution view

	Assets
	Applying ARCADE to D1.3

	Input to reference model from other projects
	Terminology model (or concepts and relationships)
	Layer model
	AMIGO Layer Model
	GENESYS Layer Model
	MPOWER Layer Model
	OASIS Layer Model
	PERSONA Layer Model
	SOPRANO Layer Model

	universAAL Reference Model
	universAAL Terminology Model
	universAAL Layer Model
	Consolidation of the layer models from the input projects
	The universAAL layer model

	Future work
	References
	APPENDIX A
	AMIGO Terminology Model
	GENESYS Terminology Model
	MPOWER Terminology Model
	OASIS Terminology Model
	PERSONA Terminology Model
	SOPRANO Terminology Model

