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Abstract: Two low-cost (LC) monitoring networks, PurpleAir (instrumented by Plantower PMS5003
sensors) and AirQino (Novasense SDS011), were assessed in monitoring PM2.5 and PM10 daily
concentrations in the Padana Plain (Northern Italy). A total of 19 LC stations for PM2.5 and 20 for
PM10 concentrations were compared vs. regulatory-grade stations during a full “heating season”
(15 October 2022–15 April 2023). Both LC sensor networks showed higher accuracy in fitting the
magnitude of PM10 than PM2.5 reference observations, while lower accuracy was shown in terms of
RMSE, MAE and R2. AirQino stations under-estimated both PM2.5 and PM10 reference concentrations
(MB = −4.8 and −2.9 µg/m3, respectively), while PurpleAir stations over-estimated PM2.5 concen-
trations (MB = +5.4 µg/m3) and slightly under-estimated PM10 concentrations (MB = −0.4 µg/m3).
PurpleAir stations were finer than AirQino at capturing the time variation of both PM2.5 and PM10

daily concentrations (R2 = 0.68–0.75 vs. 0.59–0.61). LC sensors from both monitoring networks failed
to capture the magnitude and dynamics of the PM2.5/PM10 ratio, confirming their well-known issues
in correctly discriminating the size of individual particles. These findings suggest the need for further
efforts in the implementation of mass conversion algorithms within LC units to improve the tuning
of PM2.5 vs. PM10 outputs.

Keywords: air quality; low-cost sensor; PM2.5; PM10; PurpleAir; AirQino; Padana Plain

1. Introduction

According to the latest World Health Organization (WHO) statistics, 99% of the world’s
population is living in places where air pollution levels exceed the WHO guideline limits,
with 4.2 million premature deaths estimated worldwide [1]. In Europe, despite ongoing
air quality improvements, air pollution is the greatest environmental health risk, causing
cardiovascular and respiratory diseases, and preventable deaths [2]. Here, in 2021, 97%
(76%) of the urban population was exposed to concentrations of PM2.5 (PM10) above the
WHO limits [2]. The Padana Plain (Northern Italy) is one of the most polluted areas in
Europe, particularly in terms of PM concentrations [3]. In 2022, PM10 concentrations in the
Padana Plain were second only to those in the Balkan countries and in some industrial sites
in Spain [4]. The number of annual exceedances of the PM10 daily limit value (50 µg/m3),
stated by the EU Directive 2008/50/EC, reached up to 108 days, only being surpassed by
that in the former Yugoslavia countries. In 2022, an average of 39.4 annual exceedances per
station was recorded in the Padana Plain [4], which is higher than the maximum permitted
value of 35. In Italy, air quality monitoring is officially regulated by the environmental
protection agencies of each region (ARPAs), which measure PM2.5 and PM10 concentrations
at daily resolution. This results in a significant knowledge gap on particulate matter (PM)
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temporal dynamics occurring during the day, which is critical if considering the severe
PM conditions affecting the Padana Plain, particularly during the winter months [5]. This
knowledge gap can be effectively filled by using low-cost (LC) sensors.

LC sensor technology has shown dramatic advances in air quality monitoring since
the very first prototype developed by Bart et al. [6]. LC air pollution sensors have exhibited
across the years an increasing ability to collect accurate, real-time, high spatial and temporal
resolution measurements, which has favoured their development worldwide [7]. LC
air quality networks are able to detect information on air pollution, temporal trends,
hotspots and possibly source apportionment, that traditional (sparser) networks are unable
to detect [8]. This has led to a change in air quality monitoring paradigm, as it is no
longer exclusive to government organizations [9]. Current air quality legislation, on
the other hand, is very inclusive towards LC sensors. In Europe, for example, the EU
Directive 2008/50/EC officially incorporates LC monitors, assigning them a different
regime than reference monitors, so that a lower accuracy is required to their measurements
(called “indicative” rather than “regulatory”). Whereas in measuring PM concentrations,
regulatory instruments typically use the gravimetric method, and LC sensors use indirect
optical methods based on light scattering by particles [10]. Nephelometers and optical
particle counters are the most commonly used LC sensors. The latter directly count particles
according to their size, while nephelometers estimate particle density and convert it into
particle mass [11]. In any case, the light-scattering approach is sensitive to variations
in particle properties such as size distribution, shape and composition [12]. Increases
in ambient humidity can affect hygroscopic growth of particles, and thus their light-
scattering coefficient, so that the mass reported by optical sensors may be biased [13].
Therefore, the need to perform field calibration/validation of LC sensors by comparing
their measurements to those from co-located regulatory stations is recommended when
dealing with LC air sensor applications [7].

Over the last few years, PM measurements from several LC monitoring networks
worldwide were made publicly available [14]. These networks provide geographic coverage
extending from country-(e.g., Village Green, OpenSense) to continent (e.g., Citi-Sense,
Smartcitizen) up to a global level (e.g., AirVisual, PurpleAir) [9]. Since most of such LC
sensors only rely on calibration performed at manufacturer level (factory calibration),
their pre/post-deployment evaluation vs. regulatory monitors is imperative [15]. Several
worldwide performance evaluations of PM monitoring LC sensors under different real-
world field conditions were performed over the years (e.g., [16]). Typically, LC units were
tested vs. co-located (or at most, 1 km away) at reference stations, whereas in many practical
applications, they were deployed in areas without a nearby reference system [17]. This is a
serious issue, particularly in heavily PM-polluted areas, where it is instrumental to know
the spatial representativeness of LC measurements and related citizen exposure.

The present study aims to bridge this gap by assessing the performance of LC sensors
in monitoring PM2.5 and PM10 concentrations over a crucial hotspot such as the Padana
Plain. LC sensors were assessed against various ARPA reference stations located nearby.
Using reference PM2.5 and PM10 daily concentrations during the “heating season” that
concurs with the most acute PM pollution episodes, two LC monitoring networks have been
assessed and compared: (i) the well-established PurpleAir (https://www.purpleair.com,
accessed on 16 April 2024); (ii) the newly emerging AirQino (https://www.airqino.it/en,
accessed on 16 April 2024). The meaningfulness of this comparison is enhanced by the
fact that these two networks are equipped with sensors built by different manufacturers.
Finally, the advantages and the limitations of using LC sensor network data to improve the
spatial and temporal scale of reference stations are discussed.

https://www.purpleair.com
https://www.airqino.it/en
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2. Materials and Methods
2.1. Study Area

Located in northern Italy, the Padana Plain is a morphologically and hydrographically
unitary region, largely made up by the Po river valley, and limited to the N by the Alps
and to the S by the Northern Apennines (Figure 1).
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Figure 1. Map of the Padana Plain (green shaded area) in Italy, also showing the full operating LC
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The Padana Plain includes five regions: Piedmont, Lombardy, Emilia-Romagna,
Veneto, and Friuli-Venezia Giulia. Providing an overall share of the gross domestic product
(GDP) of 50.8% [18], the Padana Plain represents a fundamental economical asset to the
country. With a surface area of 49,835 m2 (16.5% of the national territory), it is home
to 19,208 million inhabitants, approximately one third (32.6%) of the entire countrywide
population [19]. The urbanized surface area (6885 km2) is equal to 33.9% of the national
one, while population density (385.43 inhab./m2) is almost double the Italian average.

The Padana Plain is a macro-region characterized by strong (often 2 or more times
higher than national average) rates of the following: (i) anthropization; (ii) industrializa-
tion; (iii) road traffic; (iv) use of biomass heating systems; (v) agricultural and livestock
activities. All these drivers result in large emissions of both primary PM and secondary
PM precursors such as NOx and NH3. The area is also characterized by strongly adverse
meteorological conditions [20]. Particularly during colder months, the Alps and Apennines
chains surrounding the region act as natural obstacles to winds and convective motions.
This results in frequent wind calms and thermal inversion both at nighttime and daytime
that cause the buildup and ageing of the intense emissions affecting the area [21].
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2.2. Data
2.2.1. PurpleAir Low-Cost Sensors

PurpleAir (https://www.purpleair.com, accessed on 16 April 2024) is an LC sensor-
based PM monitoring network started in 2015 [22], which to date has more than
10,000 monitors deployed worldwide [23]. PurpleAir is based on the PA-II unit, which
contains two Plantower PMS5003 sensors (Plantower, Beijing, China) providing real-time
PM measurements, units’ inner pressure, temperature, humidity and a microcontroller
to communicate with the two PMS5003 sensors and with the PurpleAir server [17]. The
two PMS5003 sensors provide two sets of PM readings: (i) particle number, and (ii) mass
concentration [14]. These sensors are based on the light-scattering principle, with a photo-
diode detector converting the scattered light to a voltage pulse. The number of pulses is
then converted to the number of particles in sizes of 0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm [17]. A
complex mass conversion algorithm—not available to the public—is applied to convert
the particle counts to PM1.0, PM2.5 and PM10 mass concentrations [23]. Noteworthy, Plan-
tower PMS5003 sensors are factory calibrated using ambient aerosol across several cities in
China [13].

Over the last few years, several studies have assessed the performance of PurpleAir
PA-II sensors, particularly in the US, such as in Utah [24], Pennsylvania [13,25], Col-
orado [10,17], Washington [14] and California [22,23,26]. Further works have also been
carried out in Canada [12], China [27], Greece [28] and Africa [29].

In the present study, PM2.5 and PM10 observations from PurpleAir PA-II sensors
have been downloaded from OpenAQ (https://openaq.org, accessed on 16 April 2024).
OpenAQ is an open-source platform that integrates air quality data publicly released by
ground-based monitors around the world as divided into reference-grade stations and LC
sensors [30]. Overall, PurpleAir includes 32 LC PM2.5 and PM10 monitoring stations in
the Padana Plain (Figure 1). A subset of these PurpleAir stations have been used in the
present study; their location is shown in Figure 2, while their characteristics are presented
in Table 1.
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Table 1. Characteristics of LC air quality stations sorted by monitoring network and ARPA reference
stations available for assessment 1.

Network ID Type 2 Latitude (Deg N) Longitude (Deg E) Elevation (m a.s.l.)
Assessment vs. ARPA

Stations 3

PM2.5 PM10

AirQino

34 RB 44.5336 11.2736 38 x x
42 SB 45.4220 10.9343 75 x x
96 RB 44.3929 11.7959 19 x x

132 SB 45.5562 9.1422 158 x x
135 RT 45.5575 9.1520 159 x x
158 RT 45.4129 11.1315 42 x x
171 UB 45.0194 7.6285 246 x x
172 RB 44.9651 7.5732 245 x x
184 SB 45.9523 12.6914 23 x

PurpleAir

64303 UB 45.5271 10.2230 131 x x
65684 SB 45.0039 9.6196 86 x x
66626 RB 45.5902 8.1347 383 x x
71131 UT 44.6351 10.9208 36 x x
73781 SB 45.5482 12.0797 14 x

218818 SB 45.3252 8.8417 112 x
229086 UB 45.4095 11.8895 12 x x
230713 UT 45.1827 9.1460 65 x x
230729 RB 45.1803 9.1913 73 x x
230732 RB 45.1994 9.1814 81 x x
292327 SB 45.0375 7.7728 455 x x
299967 SB 45.2945 11.8166 7 x x

1 Geographic location of LC air quality stations is presented in Figure 2. 2 Station type: UB Urban background;
RB, Rural background; SB, Suburban background; UT, Urban traffic; RT, Rural traffic. 3 Assessment of PM2.5 and
PM10 LC sensors is subject to availability of complying ARPA stations.

2.2.2. AirQino Low-Cost Sensors

AirQino (https://www.airqino.it/en, accessed on 16 April 2024) is an LC sensor-based
air quality monitoring platform developed by CNR IBE [31]. The unit was conceived,
created and implemented within national and international smart cities projects and device
development started in 2014 [32,33]. The AirQino network currently consists of about
400 monitors mainly deployed in North and Central Italy (https://map.airqino.it, accessed
on 16 April 2024). The unit is equipped with a modular set of industrial LC and high-
resolution sensors aimed to collect gaseous pollutants (CO, NO2, O3), particulate matter
(PM2.5 and PM10), CO2 and environmental parameters (noise, air temperature and relative
humidity). The PM2.5 and PM10 sensors are based on the Novasense SDS011 detector (Nova
Fitness, Jinan, China), based on the laser-scattering principle. The AirQino waterproof case
was designed to minimize interference with reactive gases such as NO2 and O3; a small
brushless fan creates a depression inside the box that attracts air from the inlet window. All
sensors are placed beside the inlet window to reduce the contamination of fresh air inside
the box (Figure S1). A microcontroller was designed and integrated into the sensor board
to acquire, analyze and transmit all data through a GPRS 475G modem unit. Each device
transmits geolocalized data to a central web server collecting records at high temporal and
spatial resolution. Through a GIS engine and a web application, the data can be displayed,
queried and analyzed in real time. The web platform integrates an SQL database and a web
interface, while several APIs were developed to download data, either raw or calibrated, in
Json or .csv format.

As detailed in the Supplementary Material of [34], the AirQino-integrated PM sensors
were subject to various calibration and validation processes in recent years in central
Italy [35,36]. The units were also tested in opposite extreme environments such as the
Arctic region [37] and the Sub-Saharan Africa [34], thus proving capable of covering a full
spectrum of climatic conditions and PM concentrations. Overall, a total of 14 LC PM2.5

https://www.airqino.it/en
https://map.airqino.it
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and PM10 monitoring stations are operating in the Padana Plain (Figure 1). The location of
AirQino stations used in the present study is shown in Figure 2, while their characteristics
are reported in Table 1.

2.2.3. ARPA Reference Stations

PM2.5 and PM10 reference observations have been retrieved from the ARPAs operating
for each region. Data have been directly downloaded from the following websites (all
accessed on 16 April 2024): https://aria.ambiente.piemonte.it/qualita-aria/dati (Pied-
mont region); https://www.arpalombardia.it/temi-ambientali/aria/form-richiesta-dati-
stazioni-fisse (Lombardy); https://www.arpa.fvg.it/temi/temi/aria/sezioni-principali/
download-indicatori-e-dati-aria/indicatori-giornalieri-qualita-aria/ (Friuli Venezia Giu-
lia); https://sdati-test.datamb.it/arex (Emilia-Romagna). As for the Veneto region, PM
data have been received upon request from local ARPA. PM monitoring was performed by
each regional ARPA using a dual-channel filter-based gravimetric sampling method. The
location of the ARPA stations used for assessing the LC stations is shown in Figure 2. Their
detailed characteristics, along with the pairing with each LC station, are presented in Table
S1 (PM2.5) and Table S2 (PM10 concentrations).

2.3. Methods

PM2.5 and PM10 concentrations were collected at hourly resolution by the LC stations
and then averaged to daily values to match the resolution of ARPA data. Pairing of LC
stations with ARPA stations was based on the following criteria: (i) availability of PM2.5
and/or PM10 data; (ii) geographic proximity (at most within 15 km); (iii) similarity in type;
(iv) a minimum of 50% concurrently available data. This resulted in the LC vs. ARPA
pairing reported in Table 1 and detailed in Table S1 (PM2.5) and Table S2 (PM10 sensors).
To ensure robustness of the assessment process, the monitoring campaign—consistently
with [38]—focused on the colder months, i.e., the “heating season” when biomass and wood
combustion for heating contributed as an additional emission source to PM concentrations.
According to the Italian regulations (DPR no. 412 of 26 August 1993), in the Padana Plain, a
maximum 14 h of heating usage is allowed per day during the period from 15 October to
15 April Therefore, the 15 October 2022–15 April 2023 period was selected for the current
study. It was also chosen because the climatic conditions in the region trigger the maximum
PM levels. An outlier removal procedure based on the interquartile (IQR) range method
was applied to all datasets, i.e., removing values below (above) the first (third) quartile
minus (plus) 1.5 times the IQR range.

A descriptive statistical analysis of LC and ARPA time series, including 95% confi-
dence interval of the mean, was performed. The following statistical scores were used to
assess the LC observations: mean bias (MB), linear regression’s slope and intercept, mean
absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2)
and correlation coefficient (r). An F test was also performed to calculate the significance
level of LC observations variance with respect to ARPA observations. To evaluate perfor-
mance of LC sensors in monitoring PM2.5 daily concentrations vs. regulatory monitors, the
target values recommended by the United States Environmental Protection Agency (US
EPA) for the “base” testing [39] were considered. Indeed, comparison with these target
values was intended as indicative rather than stringent. Since the regulatory stations were
not co-located, a field assessment—rather than a proper field validation—was performed
in the study. The target values for PM2.5 sensors are detailed in Table S3.

The “R-stat” environment vs. 4.3.1 [40] was used to perform all computations. The
following packages integrated in “R-stat” (and functions implemented therein) were used:
“pastecs” [41] for the descriptive statistical analysis (function “stat.desc”); “Metrics” [42] to
calculate the statistical scores (functions “bias”, “mae”, “rmse”); the R Stats Package [43] to
calculate other metrics (“sd”, “cor”), the linear regression (“lm”) and F test (“var.test”); the R
Graphics Package [44] to plot boxplots (“boxplot”) and time series (“plot”); “ggplot2” [45]
to draw the scatter plots (“ggplot”); “OpenAir” [46] to plot the Taylor diagrams [47]

https://aria.ambiente.piemonte.it/qualita-aria/dati
https://www.arpalombardia.it/temi-ambientali/aria/form-richiesta-dati-stazioni-fisse
https://www.arpalombardia.it/temi-ambientali/aria/form-richiesta-dati-stazioni-fisse
https://www.arpa.fvg.it/temi/temi/aria/sezioni-principali/download-indicatori-e-dati-aria/indicatori-giornalieri-qualita-aria/
https://www.arpa.fvg.it/temi/temi/aria/sezioni-principali/download-indicatori-e-dati-aria/indicatori-giornalieri-qualita-aria/
https://sdati-test.datamb.it/arex
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(“TaylorDiagram”). Other functions included in the R Base Package such as “mean”,
“summary” and “apply” were used.

3. Results
3.1. PM2.5 and PM10 Observed Concentrations

Depending on availability of ARPA stations complying with the pairing criteria set
in Section 2.3, a total of 19 LC stations (9 AirQino and 10 PurpleAir) were assessed for
PM2.5 monitoring, while 20 LC stations (8 AirQino and 12 PurpleAir) were assessed for
PM10 monitoring. Overall, ARPA stations were located at an average distance of about
6 km from LC stations, in the range of 1.340 ÷ 13.500 km for PM2.5 concentrations (Table
S1), and 0.330 ÷ 13.650 km for PM10 concentrations (Table S2). The basic statistics of PM2.5
and PM10 daily concentrations measured by all LC stations compared to the corresponding
ARPA stations are summarized, respectively, in Tables 2 and 3.

Table 2. Statistics of PM2.5 daily concentrations measured by LC stations and corresponding paired
ARPA reference stations (15 October 2022–15 April 2023).

LC Stations ARPA Stations

Network ID Type 1 Valid Data
(%) 2

PM2.5 Concentrations
(µg/m3)

PM2.5 Concentrations
(µg/m3)

Mean St.dev. 4 Mean St.dev.

AirQino

34 RB 92.4 20.2 14.1 17.6 10.7
42 SB 75.4 21.2 13.7 20.8 15.0
96 RB 60.7 9.1 5.5 15.2 9.9
132 SB 91.8 18.7 11.3 26.8 13.0
135 RT 92.9 25.6 16.3 22.8 11.1
158 RT 78.7 16.3 11.5 25.1 18.5
171 UB 91.3 20.1 9.0 25.5 12.1
172 RB 89.6 15.0 7.2 25.2 11.5
184 SB 65.6 6.0 3.2 16.4 9.0

Overall 3 17.8 9.5 22.5 11.5

PurpleAir

64303 UB 65.0 35.3 16.3 28.4 12.8
65684 SB 66.7 40.0 18.9 25.5 12.2
66626 RB 65.0 27.8 14.1 13.8 7.0
71131 UT 69.4 39.3 15.0 23.7 11.6

229086 UB 66.7 33.7 16.4 29.2 17.2
230713 UT 58.5 16.0 11.2 27.0 11.9
230729 RB 61.2 34.5 14.9 26.2 12.3
230732 RB 58.5 17.5 8.6 26.1 12.2
292327 SB 66.1 27.6 12.0 26.6 13.0
299967 SB 65.0 37.6 18.3 29.0 16.2

Overall 3 30.5 12.1 26.4 12.1
1 Station type: UB, urban background; RB, rural background; SB, suburban background; UT, urban traffic; RT,
rural traffic. 2 For each LC station and pollutant, valid data refer to the sample of concurrently available LC and
ARPA observations. 3 Overall values by monitoring network of mean concentrations averaged across the full
period are based on day-by-day values averaged across all LC or ARPA stations. 4 Values in bold for standard
deviation denote LC stations meeting US EPA target values recommended for PM2.5 air sensors (Table S3).
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Table 3. Statistics of PM10 daily concentrations measured by LC stations and corresponding paired
ARPA reference stations (15 October 2022–15 April 2023).

LC Stations ARPA Stations

Network ID Type 1 Valid Data
(%) 2

PM10 Concentrations (µg/m3) PM10 Concentrations (µg/m3)

Mean St.dev. Mean St.dev.

AirQino

34 RB 96.7 23.2 16.4 26.9 13.5
42 SB 79.2 31.0 18.1 34.5 17.8
96 RB 63.4 17.5 9.5 24.3 12.0
132 SB 85.8 31.3 19.5 32.8 17.0
135 RT 97.3 38.2 23.1 38.8 17.3
158 RT 92.4 28.1 19.5 36.2 17.0
171 UB 90.7 36.8 19.8 33.7 16.1
172 RB 92.4 31.5 16.2 33.3 14.7

Overall 3 31.2 15.9 34.3 14.5

PurpleAir

64303 UB 66.1 41.9 19.8 39.5 15.7
65684 SB 67.8 51.0 26.3 33.9 15.7
66626 RB 68.9 32.7 17.5 25.3 10.5
71131 UT 70.5 47.7 19.7 41.2 18.9
73781 SB 71.0 33.8 19.0 38.0 25.2

218818 SB 62.3 12.4 7.0 33.0 17.6
229086 UB 68.9 41.4 22.1 36.5 20.1
230713 UT 66.7 17.6 13.7 35.8 17.0
230729 RB 67.8 41.3 18.6 33.8 15.4
230732 RB 65.0 20.3 10.5 33.7 15.2
292327 SB 65.6 32.7 15.6 35.8 16.4
299967 SB 68.3 44.4 22.9 35.9 19.1

Overall 3 34.5 14.8 36.8 15.8
1 Station type: UB, urban background; RB, rural background; SB, suburban background; UT, urban traffic; RT,
rural traffic. 2 For each LC station and pollutant, valid data refer to the sample of concurrently available LC and
ARPA observations. 3 Overall values by monitoring network of mean concentrations averaged across the full
period are based on day-by-day values averaged across all LC or ARPA stations.

ARPA reference stations paired to the AirQino stations return a lower overall mean
value of PM2.5 daily concentrations than those paired to the PurpleAir stations (22.5 vs.
26.4 µg/m3, Table 2), thus being located in environments affected by lower pollution levels.
AirQino stations overall under-estimate ARPA PM2.5 observations (17.8 vs. 22.5 µg/m3),
while PurpleAir stations over-estimate them (30.5 vs. 26.4 µg/m3). Conversely, both
AirQino and PurpleAir stations overall under-estimate ARPA PM10 daily concentrations
(31.2 vs. 34.3 µg/m3 the former, 34.5 vs. 36.8 µg/m3 the latter, Table 3).

In Table S4, the statistics of PM2.5/PM10 daily concentration ratios measured by the
LC and ARPA stations are also reported. ARPA stations paired to the AirQino stations lie in
areas affected by a lower amount of fine particles than those paired to the PurpleAir stations
(mean ratio of 0.67 vs. 0.72). The ARPA PM2.5/PM10 ratio is generally under-estimated by
the former (0.57 vs. 0.67), while over-estimated by the latter (0.85 vs. 0.72).

Figure 3 shows the map of PM2.5 and PM10 daily concentrations averaged over the
full period at each LC station as compared to the corresponding ARPA stations.

AirQino stations reproduce ARPA PM2.5 observations quite well (Figure 3a), with
the highest discrepancies (percentage under-estimations at worst between 40 and 60%)
occurring in the eastern part of the study area (station IDs 96 and 184). PurpleAir stations are
slightly finer overall than AirQino stations, though locally exhibiting higher discrepancies
(percentage over-estimations at worst between 60 and 100%) occurring inland throughout
the domain (IDs 65684, 66626 and 71131).
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AirQino stations are particularly reliable in monitoring PM10 daily concentrations
(Figure 3b); they systematically under-estimate reference observations, though exhibiting a
percentage bias of, at worst, 28% (again at ID = 96). Conversely, PurpleAir stations exhibit
both significant over-estimations (at most 50%, ID = 65684) and under-estimations (at most
40–60%, IDs 230713, 230732 and 218818).

3.2. Scores by Station of Low-Cost Stations

The statistical scores exhibited by each LC station against the reference stations are
detailed in Table 4 (PM2.5) and Table 5 (PM10 concentrations). The scores in monitoring the
corresponding PM2.5/PM10 daily concentration ratios are reported in Table S5.
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Table 4. Statistical scores of LC stations compared to ARPA reference stations in measuring PM2.5

daily concentrations (15 October 2022–15 April 2023) 1,2.

Network ID Valid Data (%) MB (µg/m3) MAE (µg/m3) Slope Intercept (µg/m3) RMSE (µg/m3) R2

AirQino

34 92.4 +2.6 6.6 1.06 1.5 8.7 0.65
42 75.4 +0.4 8.5 0.64 7.9 11.2 0.49
96 60.7 −6.2 7.1 0.33 4.0 10.0 0.37

132 91.8 −8.1 8.6 0.73 −0.8 10.8 0.70
135 92.9 +2.8 7.0 1.25 −2.9 9.4 0.72
158 78.7 −8.8 11.0 0.50 3.8 14.6 0.64
171 91.3 −5.4 6.3 0.66 3.4 7.9 0.78
172 89.6 −10.1 10.3 0.49 2.7 12.5 0.61
184 65.6 −10.4 10.5 0.25 1.8 12.6 0.51

PurpleAir

64303 65.0 +7.0 8.4 1.15 2.8 10.1 0.81
65684 66.7 +14.6 15.3 1.11 11.8 19.7 0.51
66626 65.0 +14.0 14.2 1.85 2.3 16.2 0.85
71131 69.4 +15.6 15.7 1.12 12.8 17.4 0.74
229086 66.7 +4.5 6.2 0.88 8.0 7.9 0.86
230713 58.5 −11.0 11.1 0.81 −5.9 12.7 0.74
230729 61.2 +8.4 9.2 1.11 5.5 10.4 0.83
230732 58.5 −8.6 8.6 0.65 0.6 10.2 0.85
292327 66.1 +1.0 7.9 0.60 11.7 10.6 0.41
299967 65.0 +8.6 9.1 1.04 7.3 11.0 0.86

1 All R2 scores significant at 1% level (p < 0.05). 2 Values in bold for slope, intercept, RMSE and R2 denote LC
stations meeting US EPA target values recommended for PM2.5 air sensors (Table S3).

Table 5. Statistical scores of LC stations compared to ARPA reference stations in measuring PM10

daily concentrations (15 October 2022–15 April 2023) 1.

Network ID Valid Data (%) MB (µg/m3) MAE (µg/m3) Slope Intercept (µg/m3) RMSE (µg/m3) R2

AirQino

34 96.7 −3.8 9.2 0.92 −1.7 11.3 0.58
42 79.2 −3.4 10.3 0.78 4.3 12.8 0.58
96 63.4 −6.8 8.8 0.52 5.0 11.4 0.42

132 85.8 −1.5 10.8 0.84 3.7 13.5 0.54
135 97.3 −0.6 10.9 1.06 −3.0 14.0 0.63
158 92.4 −8.1 12.5 0.89 −4.1 14.8 0.61
171 90.7 +3.2 7.7 1.07 0.8 10.3 0.76
172 92.4 −1.9 8.7 0.83 3.8 11.1 0.57

PurpleAir

64303 66.1 +2.4 9.1 1.07 −0.5 10.7 0.73
65684 67.8 +17.1 20.4 1.02 16.4 26.9 0.37
66626 68.9 +7.4 9.7 1.47 −4.4 12.2 0.77
71131 70.5 +6.6 11.7 0.84 13.1 13.7 0.65
73781 71.0 −4.2 8.1 0.69 7.6 11.8 0.83
218818 62.3 −20.6 20.6 0.35 0.8 23.7 0.79
229086 68.9 +5.0 7.6 1.03 4.0 9.4 0.87
230713 66.7 −18.1 18.2 0.58 −3.1 21.7 0.51
230729 67.8 +7.5 11.0 1.00 7.3 12.7 0.69
230732 65.0 −13.4 13.4 0.57 1.2 16.1 0.67
292327 65.6 −3.1 10.0 0.60 11.2 14.0 0.40
299967 68.3 +8.5 10.0 1.11 4.6 12.3 0.86

1 All R2 scores significant at 1% level (p < 0.05).

LC sensors were assessed in meeting the target values of US EPA “base” testing for
PM2.5 air sensors (Table S3). Both the linear regression’s slope and intercept are concurrently
met by four (out of nine) AirQino sensors, and by two (out of ten) PurpleAir sensors
(Table 4). The linearity attribute (R2 ≥ 0.70) is satisfied by three AirQino and eight PurpleAir
PM2.5 sensors. All LC sensors (except AirQino ID 184) lack precision, as the standard
deviation of PM2.5 measured concentrations is above 5 µg/m3 (Table 2). Also, the attribute
of error is systematically failed, as all LC sensors exhibit RMSE values above 7 µg/m3

(Table 4).
The boxplots of MB, MAE, RMSE and R2 distributions, exhibited by all LC stations as

detailed in Tables 4 and 5 and Table S5, are plotted in Figure 4.
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Figure 4. Boxplots of statistical skill scores of LC stations vs. ARPA reference stations in monitoring
daily concentrations of PM2.5, PM10 and PM2.5/PM10 ratio (15 October 2022–15 April 2023): (a) mean
bias; (b) mean absolute error; (c) root mean square error; (d) coefficient of determination. Boxplots
are delimited by the first (Q1) and third (Q3) distribution’s quartiles, while the black line inside the
box denotes the median value (Q2). The mean and standard deviation values by pollutant for each
LC network are reported in brackets.

The analysis of MB boxplots (Figure 4a) reveals that AirQino stations tend to under-
estimate both PM2.5 and PM10 concentrations observed by the reference stations, at worst
under-estimating the former by 10.4 and the latter by 8.1 µg/m3 (Table 4). Conversely,
PurpleAir stations both under- and over-estimate ARPA observations, also exhibiting
a wider MB distribution—and thus higher MB extreme values—than AirQino stations
(Figure 4a). AirQino MB scores are affected by a lower spread than PurpleAir, markedly in
monitoring PM10 concentrations (σ = 3.5 vs. 11.7 µg/m3). In both MAE (Figure 4b) and
RMSE (Figure 4c) boxplots and for both pollutants, AirQino stations exhibit better scores
than PurpleAir stations, not only if considering the lower mean values (MAE = 8.4 ÷ 9.9
and RMSE = 10.8 ÷ 12.4 µg/m3), but also the narrower distributions’ full range. Conversely,
PurpleAir outplays AirQino in R2 values related to both PM2.5 and PM10 daily concen-
trations (Figure 4d). If considering the full range of R2 distribution, in measuring PM2.5
concentrations, R2 spans 0.37 ÷ 0.78 for AirQino and 0.41 ÷ 0.86 for PurpleAir stations,
while for PM10 concentrations, R2 spans 0.42 ÷ 0.76 (AirQino) and 0.37 ÷ 0.87 (PurpleAir,
Table 4).

Both LC networks fail to reproduce magnitude (Figure 4a) and time variation
(Figure 4d) of the PM2.5/PM10 ratio. In terms of MAE (Figure 4b) and RMSE (Figure 4c),
PurpleAir stations are less inaccurate than AirQino stations.

The analysis of Taylor diagram provides further insight into LC station performances,
markedly focusing on each individual station (Figure 5).
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Several AirQino stations show a lower variability than ARPA reference stations (σLC 
< σARPA) in monitoring PM2.5 daily concentrations (Figure 5a), while PurpleAir stations ex-
hibit a variability comparable or moderately higher than ARPA stations. PurpleAir sta-
tions show a lower centred RMSD and higher correlation coefficients than AirQino sta-
tions, with some points particularly close to the “ARPA observations” optimal point. In 
monitoring PM10 daily concentrations (Figure 5b), as shown by the cloud of points very 
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Figure 5. Taylor diagrams of (a) PM2.5 and (b) PM10 daily concentrations observed by all single LC
stations compared to the paired ARPA reference stations (15 October 2022–15 April 2023). Dashed
black circles (radial distance from the origin) show standard deviation of LC observations (σLC)
normalized to standard deviation of ARPA observations (σARPA). Concentric dashed yellow circles
emanating from ARPA observations point show a centred root mean square difference (RMSD),
which is also normalized to σARPA. RMSD is centred as mean values of LC and ARPA observations
are subtracted first: therefore, the diagram does not provide information about overall biases [47].

Several AirQino stations show a lower variability than ARPA reference stations
(σLC < σARPA) in monitoring PM2.5 daily concentrations (Figure 5a), while PurpleAir sta-
tions exhibit a variability comparable or moderately higher than ARPA stations. PurpleAir
stations show a lower centred RMSD and higher correlation coefficients than AirQino
stations, with some points particularly close to the “ARPA observations” optimal point.
In monitoring PM10 daily concentrations (Figure 5b), as shown by the cloud of points
very close to each other, AirQino stations exhibit quite similar behaviour in all the three
metrics of the Taylor diagram. Conversely, the PurpleAir station points show a large scatter,
particularly in terms of variability with respect to ARPA variability. Also, in measuring
PM10 daily concentrations, PurpleAir stations return a lower RMSD and higher correlation
coefficients than AirQino stations.

3.3. Overall Scores by Monitoring Network of Low-Cost Stations

Full time series of PM2.5 and PM10 daily concentrations averaged day-by-day by LC
monitoring network vs. corresponding ARPA stations are plotted in Figure 6.
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Figure 6. Time series of daily concentrations averaged by LC monitoring network compared
to corresponding ARPA reference stations (15 October 2022–15 April 2023): (a) AirQino PM2.5;
(b) PurpleAir PM2.5; (c) AirQino PM10; (d) PurpleAir PM10. For each LC monitoring network, mean
bias, root mean square error and coefficient of determination are also shown. The shaded areas show
the confidence interval at 95% level around the mean values.

AirQino stations quite reasonably capture the pattern of ARPA PM2.5 concentrations,
both in magnitude and time variation (RMSE = 5.6 µg/m3 and R2 = 0.80, Figure 6a). A
closer analysis, however, reveals that AirQino measurements were particularly fine until
late January and from March on, while they generally fail to reproduce ARPA observations
during the month of February, i.e., when the highest ARPA concentrations are recorded.
PurpleAir stations prove to remarkably capture the time variation of PM2.5 ARPA observa-
tions (R2 = 0.86, Figure 6b). Compared to AirQino stations, they exhibit better R2 values,
while they exhibit worse values of MB (+5.4 µg/m3) and RMSE (7.1 µg/m3). However,
it should be noted that PurpleAir PM2.5 observations were not available for comparison
from early February to mid-March, which might possibly account for their overall better
correlation than AirQino stations (R2 = 0.86 vs. 0.80). Compared to the case of PM2.5
concentrations, in monitoring PM10 concentrations, AirQino stations better fit the mag-
nitude of reference observations, as returning an overall mean under-estimation of 1.1
µg/m3 (Figure 6c), while time variation is lower (R2 = 0.70). In this case, the February
critical period appears to be better captured. Also, when monitoring PM10 concentrations
(Figure 6d), PurpleAir stations better fit the magnitude (0.4 µg/m3 under-estimation) and
time variation (R2 = 0.76) of reference observations with respect to AirQino stations, al-
though, again, their missing values from early February to mid-March might affect this
outcome.

Figure 7 shows the scatter plot between the PM2.5 and PM10 daily concentrations
averaged day-by-day by LC monitoring network vs. corresponding ARPA stations.

Figure 7a confirms PurpleAir higher accuracy than AirQino in monitoring ARPA PM2.5
daily concentrations (R2 = 0.86 vs. 0.73). The slope of PurpleAir linear best fit basically
matches that of the perfect agreement (1:1) line. Therefore, PurpleAir well reproduces ARPA
PM2.5 daily observations over their full range, apart from a positive offset factor (4.5 µg/m3)
indicating a systematic over-estimation. Conversely, AirQino tends to under-estimate PM2.5
reference observations, particularly at the highest values.

The pattern of the two LC networks is quite similar when focusing on PM10 concentra-
tions, as highlighted by their almost matching best-fit lines (Figure 7b). Compared to ARPA
observations, PurpleAir measurements slightly over-estimate at lower concentrations and
slightly under-estimate at higher concentrations, while AirQino measurements slightly
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under-estimate almost across the full range of concentrations. Again, PurpleAir shows
higher skills than AirQino in fitting the reference observations (R2 = 0.76 vs. 0.69).
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4. Discussion

PM2.5 daily concentrations observed in the Padana Plain by the ARPA reference
stations are in better agreement with the newly emerging AirQino sensors than the well-
established PurpleAir sensors, with better values of MB, RMSE and MAE (Figure 4a–c). As
for PM10 daily concentrations, PurpleAir sensors are more accurate in fitting the magnitude
(Figure 4a), while less accurate in terms of RMSE and MAE (Figure 4b,c). This lower
magnitude of the error exhibited by AirQino vs. PurpleAir stations might be due to the
fact that their paired reference stations are located in environments affected by lower
PM2.5 (Table 3) and PM10 concentrations (Table 4). By contrast, PurpleAir sensors are
better at capturing the linearity of responses and time variation of both PM2.5 and PM10
daily concentrations, as shown with higher values of R2 (Figure 4d) and r (Figure 5). This
confirms findings on sensor performance reported, e.g., by Badura et al. [48]. Furthermore,
it might depend on the average distance of ARPA reference stations from PurpleAir stations,
which is lower than that from AirQino stations for both PM2.5 (4.6 vs. 7.5 km, Table S1) and
PM10 concentrations (4.8 vs. 9.0 km, Table S2). Current PurpleAir PM2.5 performance is
consistent with that reported by Ardon-Dryer et al. [17] within a 2-year (January 2017 to
December 2018) similar field assessment (no co-location) of 46 units vs. (gravimetric-based)
regulatory stations in four US cities. As in Figures 4a, 6b and 7a, the majority of PurpleAir
units measured PM2.5 concentrations higher than the reference stations. As suggested by
Ardon-Dryer et al. [17], this could likely be due to changes in relative humidity, whose
values are particularly high in winter in the Padana Plain.

Although a rigorous field validation (co-location vs. regulatory stations) was not
performed in the present study, it is insightful to compare current LC sensor scores with
those resulting from field validation studies addressed in the literature. Due to this reason,
the present scores deserve more credit. Within a 4-month (September to December 2020)
field validation of three PurpleAir units vs. a co-located (gravimetric-based) regulatory
station in Vancouver (Canada), in monitoring PM2.5 daily concentrations Zimmerman [12]
reported better scores (RMSE = 7.64–10.13 µg/m3, R2 = 0.91–0.94) than those achieved in
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the Padana Plain (RMSE = 7.9–19.7 µg/m3, R2 = 0.41–0.86, Table 4). PurpleAir tendency
of over-estimating PM2.5 observed concentrations (Figures 4a and 6b) is consistent with
the findings by Zimmerman [12] and Barkjohn et al. [49], who reported that PurpleAir
sensors over-estimated PM2.5 concentrations by about 40% in most parts of the US. Current
PurpleAir R2 values in monitoring PM2.5 daily concentrations (Table 4 and Figure 4d)
are worse than those (R2 > 0.88) achieved by Sayahi et al. [24] in Salt Lake City (USA),
where they co-located for 320 days 2 PurpleAir units vs. a reference (gravimetric-based)
station. Compared to the R2 values resulting from a 39-day (December 2016 to January
2017) field validation of three PurpleAir units vs. two (optical-based) regulatory stations
in California (USA) [50], current results are worse for PM2.5 (R2 = 0.41–0.86 vs. 0.93–0.97,
Table 4), while they are comparable for PM10 daily concentrations (R2 = 0.37–0.87 vs.
0.66–0.70, Table 5). Agreeing with findings in [50], in the Padana Plain, PurpleAir sensors
are confirmed to be more accurate in monitoring PM2.5 than PM10 daily concentrations
(Figure 4d). After deploying an AirQino unit close to an ARPA reference station in Florence
(Italy) across a full “heating season” (November 2016 to April 2017), Cavaliere et al. [35]
returned scores in measuring both PM2.5 (MB = +4.39 µg/m3, RMSE = 7.95 µg/m3 and
R2 = 0.90) and PM10 daily concentrations (MB = +0.72 µg/m3, RMSE = 7.80 µg/m3 and
R2 = 0.84) better than those achieved in the Padana Plain (Tables 4 and 5). Within a 78-day
co-location vs. an ARPA station in Capannori (Italy) across a spring period in 2019, Brilli
et al. [36] reported AirQino scores in measuring PM2.5 daily concentrations to be both better
(RMSE = 4.2 µg/m3 vs. 7.9–14.6 µg/m3) and worse (R2 = 0.54 vs. 0.37–0.78) than those
achieved in the present study (Table 4). The AirQino scores reported in the same study
in monitoring PM10 daily concentrations were better in terms of RMSE (4.6 µg/m3) and
comparable in terms of R2 (0.63, Table 5).

The performance of the single sensors mounted on both PurpleAir and AirQino
devices was also analyzed. Coker et al. [51] co-located for one year (January to December
2020) one Plantower MS5003 sensor to a reference (gravimetric-based) monitor installed
at the US embassy in Kampala (Uganda). They reported scores in monitoring PM2.5 daily
concentrations (RMSE = 14.43 µg/m3 and R2 = 0.76) quite in line with those achieved by
the same sensors mounted on the PurpleAir units in the Padana Plain (Table 4). Three
Novasense SDS011 sensors were tested by Božilov et al. [52] against a (gravimetric-based)
reference monitor at two cities in Serbia for two 2-week heating periods between 2021 and
2022. In measuring PM2.5 concentrations, they found the RMSE to be ranging between
3.8 ÷ 22.4 µg/m3 and R2 0.55 ÷ 0.82, while in measuring PM10 concentrations, they reported
the RMSE to be ranging between 11.1 ÷ 27.0 µg/m3 and R2 0.52 ÷ 0.80. Compared to
those achieved in the Padana Plain by the same sensors mounted on the AirQino units,
these scores are better in terms of R2 and worse in terms of RMSE (Table 4). Better R2

scores (0.87–0.90) in measuring PM2.5 daily concentrations were also achieved by Badura
et al. [48] while testing three Novasense SDS011 sensors vs. a co-located (gravimetric-based)
reference monitor in Wrocław (Poland) between August 2017 and February 2018.

The indicative compliance of current LC PM2.5 sensors to the US EPA “base” test-
ing [39] was also explored. Assessed in meeting the corresponding target values (Table S3),
the AirQino PM2.5 sensors show better bias and the PurpleAir PM2.5 sensors show better
linearity (Table 4). Conversely, sensors belonging to both networks lack the attributes of
precision (standard deviation above 5 µg/m3, Table 2) and error (RMSE above 7 µg/m3,
Table 4).

If comparing LC sensor performance by pollutant, both PurpleAir and AirQino sensors
exhibit higher accuracy in fitting the magnitude of PM10 than PM2.5 observations, while
lower accuracy in terms of RMSE, MAE and R2 (Figure 4). This outcome is consistent
with findings from the above studies for both PurpleAir [50] and AirQino sensors [35]. In
monitoring PM2.5 concentrations, the PurpleAir sensors are stable across the full range
of observations, unlike the AirQino sensors, whose under-estimations increase as the
observations increase (Figure 7a). By contrast, in monitoring PM10 concentrations, the
pattern of the two LC networks is similar (Figure 7b). This different behaviour per pollutant
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is noteworthy, particularly if considering that for both PurpleAir and AirQino sensors the
PM2.5 and PM10 concentration outputs are produced after a mass conversion procedure
based on a single input signal (Sections 2.2.1 and 2.2.2). This is apparent in the PurpleAir
sensors, whose PM2.5 outputs follow the 1:1 line (apart from an over-estimation offset factor,
Figure 7a), while their PM10 outputs show a slight under-estimation trend (Figure 7b). Since
Plantower PMS5003 sensors mounted on PurpleAir monitors are factory calibrated based on
PM measurements collected in China [13], it can be recommended to introduce a correction
factor to suitably reduce the estimated PM2.5/PM10 ratio. The latter (as shown in Figure 4a
and in Table S5) is on average higher than the ARPA observed value. Likewise, since the
Novasense SDS011 sensors mounted on AirQino monitors are factory calibrated based on
China measurements as well, a correction should also be introduced to the AirQino outputs
in order to increase (rather than decrease) their PM2.5/PM10 ratios. After these adjustments,
the weight of fine fraction in total PM10 concentrations should be increased for AirQino
and reduced for PurpleAir sensors. The boxplots of MAE (Figure 4b) and RMSE (Figure 4c)
related to the PM2.5/PM10 ratios suggest that such corrections could be more successful for
PurpleAir than AirQino sensors, since the former are affected by a lower discrepancy. In
any case, the particularly low R2 values exhibited by both LC sensors (Figure 4d) suggest
their inability at capturing the time variation of PM2.5/PM10 ratio.

5. Conclusions

In recent years, public availability of increasingly extensive LC sensor-based PM
monitoring networks worldwide allowed researchers and citizen scientists to take huge
advantage from the LC sensor technology. However, it should be borne in mind that most
such sensors are only factory calibrated and factory calibration procedures are not specified
in their datasheets [48]. Thus, a proper on-site calibration should necessarily be performed
prior to using their data [52]. Unfortunately, this calibration is often not viable as LC sensors
are frequently placed in regions where reference systems nearby are missing [17]. In the
present study, the performance of two LC monitoring networks in measuring PM2.5 and
PM10 concentrations compared to reference stations over a crucial PM hotspot such as the
Padana Plain (Italy) was analyzed. Both the well-established PurpleAir and the newly
emerging AirQino sensors returned good performance. AirQino sensors were finer in
fitting the magnitude of PM2.5 concentrations, while PurpleAir sensors were in fitting that
of PM10 concentrations. PurpleAir sensors were better at capturing the linearity and time
variation of both PM2.5 and PM10 concentrations. Conversely, findings from several studies
(e.g., [9,12,13,49]) were confirmed about LC sensor difficulties in correctly discriminating
the size of individual particles as a result of the light-scattering PM sampling method they
are based upon.

Indeed, finding a suitable tuning of the PM2.5 vs. PM10 outputs falls into an ever-
wider research line aimed at developing the best correction techniques for LC sensors.
Several such studies for PurpleAir sensors have been carried out in the literature. However,
as pointed out by Barkjohn et al. [49], corrections have been developed for a specific re-
gion [22,28], season [24], or atmospheric condition [17], while few studies have addressed
how widely applicable they are. Incorporating environmental factors such as air temper-
ature and particularly relative humidity proved to return the finest scores [12,17,28,49].
However, finding the best correction algorithm valid for all application conditions remains
a very challenging and certainly open issue that needs further efforts. This is particularly
urgent in highly PM-polluted areas such as the Padana Plain. Here, high-granularity moni-
toring networks based on sufficiently reliable LC sensors could give a new dimension to air
quality monitoring and democratize the whole process by making monitoring and results
directly accessible at the community level [23].

The main limitation of this study lies in that, since the regulatory stations were not
close enough to allow co-location, it was not possible to perform a rigorous field validation
of the LC sensors. In addition, since regulatory observations were sampled at a daily
resolution, PM2.5 and PM10 concentrations collected by the LC stations were assessed at
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24 h rather than their native 1 h resolution. Future research lines could include deployment
of new AirQino stations in the Padana Plain—hopefully very close to the existing ARPA
stations—as well as using current PM observations from the two LC networks for validating
PM forecasting products in the Padana Plain such as, e.g., the Copernicus Atmosphere
Monitoring Service (CAMS).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24123946/s1, Figure S1: Sketch of the AirQino LC air quality
monitoring unit; Table S1: Characteristics and pairing of ARPA reference stations used for validation
of LC stations in measuring PM2.5 daily concentrations; Table S2: Characteristics and pairing of ARPA
reference stations used for validation of LC stations in measuring PM10 daily concentrations; Table
S3: Performance metrics and target values recommended by US EPA for PM2.5 air sensors used for
non-regulatory supplemental and informational monitoring applications in ambient, outdoor and
fixed-site environments: “base” testing [39]; Table S4: Statistics of PM2.5/PM10 daily concentration
ratio measured by LC stations and corresponding paired ARPA reference stations (15 October 2022–
15 April 2023); Table S5: Statistical scores of LC stations compared to ARPA reference stations in
measuring the PM2.5/PM10 daily concentration ratio (15 October 2022–15 April 2023).
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