
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 2, FEBRUARY 2022 847

Floor Identification in Large-Scale Environments
With Wi-Fi Autonomous Block Models

Wenhua Shao , Haiyong Luo , Fang Zhao , Hui Tian , Member, IEEE, Jingyu Huang ,
and Antonino Crivello

Abstract—Traditional Wi-Fi-based floor identification
methods mainly have been tested in small experimental
scenarios, and generally, their accuracies drop significantly
when applied in real large and multistorey environments.
The main challenge emerges when the complexity of Wi-
Fi signals on the same floor exceeds the complexity be-
tween the floors along the vertical direction, leading to
a reduced floor distinguishability. A second challenge re-
gards the complexity of Wi-Fi features in environments
with atrium, hollow areas, mezzanines, intermediate floors,
and crowded signal channels. In this article, we propose
an adaptive Wi-Fi-based floor identification algorithm to
achieve accurate floor identification also in these environ-
ments. Our algorithm, based on the Wi-Fi received signal
strength indicator and spatial similarity, first identifies au-
tonomous blocks parcelling the whole environment. Then,
local floor identification is performed through the proposed
Wi-Fi models to fully harness the Wi-Fi features. Finally,
floors are estimated through the joint optimization of the
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autonomous blocks and the local floor models. We have
conducted extensive experiments in three real large and
multistorey buildings greater than 140 000 m2 using 19
different devices. Finally, we show a comparison between
our proposal and other state-of-the-art algorithms. Exper-
imental results confirm that our proposal performs better
than other methods, and it exhibits an average accuracy of
97.24%.

Index Terms—Autonomous block, fingerprint, floor iden-
tification, multistorey buildings, smartphone, Wi-Fi model.

I. INTRODUCTION

INDOOR location-based services (ILBSs) with smartphones
have received increasing attention due to the high demand

for location-aware applications [1], [2]. In order to satisfy ILBS
requirements, researchers have investigated several indoor po-
sitioning technologies, including Wi-Fi [3], [4], Bluetooth Low
Energy [5], pedestrian dead reckoning [6], [7], vision camera
based [8], and magnetic field [9]–[11]. These technologies
applied in user localization have shown good accuracies in
2-D planes, but their results are worse in 3-D environments,
especially in wide and multistorey buildings.

In these environments, correct floor identification is a funda-
mental primary goal to effectively deploy an ILBS. Solutions
based on a combination of Wi-Fi and barometer information
have been widely investigated. In fact, information about the
atmospheric pressure, theoretically, can be exploited as reliable
discriminators to identify different floors. Unfortunately, the
absolute value is difficult to be precisely measured with cheap
barometers; thus, the air pressure is usually used to estimate
relative floor changes. As an example, Zhao et al. [12] up-
dated the reference pressure of a floor with the Wi-Fi floor
classification and evaluated short-term floor changes through
air pressure information. However, the majority of commercial
smartphones are not equipped with barometers, and therefore,
Wi-Fi is still the most important information to develop floor
identification methods. Consequently, Wi-Fi-based methods are
generally modeled as classification problems, including linear
discriminant analysis (LDA) [13], k-means clustering [14], and
deep neural network (DNN) [15]. In literature, several works
rely on labeling the Wi-Fi fingerprints with the floor number
where the readings have been collected and, then, leveraging
appearances of access points (APs) in fingerprints to mark the
features as significant for the floors [12]. In those cases, the
working hypothesis is considering the received signal strength
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indicator (RSSI) from an AP gathered at one floor stronger than
the RSSI received from the same AP on other floors due, e.g.,
to the attenuation introduced by walls. However, in wide and
multistorey buildings, the attenuation effect along horizontal
direction becomes as obvious as the effect on different floors
due to the presence of walls, rooms, people, and furniture,
which contribute to propagation loss. For each APs, the RSSI
becomes weak at different floors but also at faraway places
of the same floor. Although many Wi-Fi-based methods have
been presented, challenges for precise floor identification in
complicated multistorey environments are still open.

The first main challenge arises when the complexity of the
environment on the same floor is comparable to the complexity
along different floors. HYFI [12] leveraged probabilities of AP
appearances in the whole floor as features. This system needs
much time to collect enough samples and to ensure a correct
balance across the floor. The slow convergence is a limitation
and a drawback of the system. HyRise [16] only utilized the
strongest signal strength to shrink the feature coverage, but the
system also discards many information that could potentially
improve the positioning performance. In order to tackle this
problem, we propose to classify the building into multiple 3-D
autonomous blocks through a clustering algorithm based on
Wi-Fi fingerprint using RSSI and spatial similarity. We define
an autonomous block as a small spatial cell that contains similar
RSSI and spatial features. Considering an autonomous block, the
Wi-Fi fingerprints have reworked RSSI features, thus decreasing
the effect of the complexity on the same floor, and successively,
fine-grained Wi-Fi models are used to improve floor identifica-
tion performance for each autonomous block.

A second challenge regards the handling of Wi-Fi failures
in complex environments, which include open spaces, mezza-
nines and intermediate floors, large and multistorey areas, and
crowded signal channels. A failure during a Wi-Fi scan might
also be caused by too weak signals from a faraway AP or by
channel interferences due to crowded signal channels. Existing
works [13], [17] suggest to fill failed AP scans with the minimum
detectable RSSI value, for example −90dBm. However, if the
failure is caused by channel interference, the minimum value
will wrongly indicate that the signal is coming from a remote
AP. Considering the Wi-Fi characteristic in complex scenarios,
we propose a fine-grained Wi-Fi model to discern them and
fully utilize the available Wi-Fi features. Then, we estimate
different floors through the joint optimization of autonomous
block detection and local floor identification. We have performed
several experiments in real-world scenarios, and we claim that
the proposed algorithm improves the floor identification accu-
racy in complex environments.

Specifically, we provide the following contributions:
1) augmented k-means clustering algorithm, based on Wi-Fi

RSSI and spatial similarity, to overcome the complexity
on the same floor;

2) enhanced Bayesian Wi-Fi models for fine-grained indoor
positioning able to fully utilize all the available infor-
mation from a Wi-Fi scan. Our algorithm automatically
identifies several autonomous blocks inside the whole en-
vironment, and then, it optimizes the floor identification;

3) we have conducted extensive experiments to test our
algorithm in three real-world buildings. The deployment
area is greater than 140 000m2. Results reveal that the
proposed algorithm achieves high accuracies and robust
performances as compared with state-of-the-art methods.

The rest of this article is organized as follows. Related works
are reviewed in Section II. Section III describes Wi-Fi finger-
prints and provides a system overview. Section IV introduces
the autonomous block clustering algorithm. Section V shows the
proposed fine-grained Wi-Fi model and our floor identification
methods. Implementation details and experimental results are
presented and discussed in Section VI. Finally, Section VII
concludes this article.

II. RELATED WORK

A. Wi-Fi-Based Floor Identification

Wi-Fi-based floor identification has been usually approached
considering Wi-Fi fingerprints collected at the same floor similar
and grouped together. A supervised learning model has been
used to identify the right floor. Luo et al. [13] proposed the
LDA to build a multifloor Wi-Fi fingerprint database. They
leveraged a majority voting mechanism to identify the floor.
Their work solved the high computation complexity problem
existing in several works containing a similar approach. Kim
et al. [15] analyzed the hierarchical and different nature of the
building/floor/location estimation and designed a single-input
multioutput DNN to enable the hybrid regression. However,
these works ignored the inherent complexity of radio-wave
propagation in indoor environments. ViFi [18] proposed a Wi-Fi
RSSI prediction method based on a multiwall multifloor prop-
agation model to generate a discrete RSSI radio map, which
allowed a sevenfold reduction in the number of measurements
to be collected. The inherent complexity of Wi-Fi propagation in
indoor environments increases the risk of identifying a sequence
of floors at different levels, so introducing a sequence of vertical
jumps of the final position estimation. Consequently, researchers
have attempted to refine the vertical motion detection in order to
perform floor identification updating the estimation only when
vertical motions have been detected.

B. Integrated Floor Identification

Generally, acceleration and pressure information are used to
detect vertical motions. HyRise [16] modeled the pressure with
a finite-state machine; then, it updated the Wi-Fi probabilities of
each floor according to the pressure states. Banerjee et al. [19]
leveraged pressure values to adjust floor change probabilities
in their Wi-Fi-based algorithms. They also leveraged stationary
detection to eliminate the barometer drift problem. Since the
atmospheric pressure decreases when the altitude increases,
researchers have proposed several barometer-based floor identi-
fication solutions. In order to estimate the absolute floor number,
a reference barometer station is necessary: HYFI [12] utilized
Wi-Fi positioning results as virtual reference stations. Bisio et
al. [20] proposed an indoor/outdoor detection to determine the
first-floor pressure as the virtual reference station. However,
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TABLE I
COMPARISON BETWEEN FLOOR IDENTIFICATION ALGORITHMS

Fig. 1. Data flow of offline and online phases.

barometers are only equipped in few models of smartphones,
thus limiting the real application of pressure-based methods.

As Table I reveals, although the accelerometer/gyroscope
/pressure patterns have been used to improve the performance
of floor identification, based on the analysis of existing works,
we can conclude that Wi-Fi is still the most important and
common signal for enabling a ubiquitous floor identification.
Seldom the works in literature have also fully considered the
issues encountered in real large-scale multistorey environments,
including the problem of an increased signal heterogeneity on
the same floor, and a strong channel interference. Our work
analyzes the two issues and proposes the clustering method to
identify autonomous blocks and Wi-Fi models to implement
robust and accurate floor identification.

III. SYSTEM OVERVIEW

In this section, we first describe the working principles of
Wi-Fi fingerprint, and successively, we describe the system
overview.

A. Working Principles of Wi-Fi Fingerprints

As shown in Fig. 1, our system consists of two phases: an
offline phase to train a floor model and an online phase to detect
floors based on the model. In the offline phase, a site surveyor
walks around the building holding one smartphone to periodi-
cally collect Wi-Fi fingerprints and fingerprint coordinates of
all reachable areas at different floors (inputted by the same
site surveyor). The combination of a Wi-Fi fingerprint and its
coordinates is called a sample. Samples of the whole building
are sent to a training server and then are processed to get a
floor detection model. Considering the discernibility of Wi-Fi
signals, the distance between two samples is less than 2 m,

TABLE II
NAMING CONVENTION OF VARIABLES, SUPERSCRIPTS, AND SUBSCRIPTS

comparable to the positioning accuracy of RSSI-based position-
ing systems [21]. On the other hand, it is suggested to collect
fingerprints at the working time so assuring realistic features of
collected fingerprints in accordance with the supposed use of
the system.

In the online phase, end users download the floor detection
model from the training server using a dedicated smartphone
app. The smartphone collects real-time Wi-Fi fingerprints and,
based on the model, estimates the floor where the user is.

For clarity, the naming convention of variables used in this
article is summarized in Table II. The representations of fin-
gerprint coordinates and fingerprints are as follows. As shown
in (1), according to Table II, the system utilizes loch, a triple of
real numbers, to represent the fingerprint coordinates. Variable z
contains the number of the floor. NS is the total number of sam-
ples collected into the building. The maximum Wi-Fi sampling
frequency is around 0.5 Hz; thus, the time used for sampling
is approximated to 2 s. When the average sample density is
greater than 1 sample/m2, the proposed system reaches a stable
floor identification accuracy. Accordingly, the sampling time is
around two times the building area in square meters. Equation (2)
reveals the structure of a Wi-Fi fingerprint fph, a list of observed
MAC and RSSI pairs at location loch. The total number of APs is
NA. In (3), rh,i depicts the RSSI of a smartphone scanning APi

at location loch. If an AP is successfully scanned, the smartphone
collects the RSSI as a negative integer. Otherwise, we set the
RSSI value with Null. Samples collected during the offline phase
can be represented in (4). A sample sh is a couple of location
loch and the observed Wi-Fi fingerprint fph. During the online
phase, the user position is unknown, and therefore, we utilize
fp and ri to represent online fingerprint and RSSI

loch ∈ {(xh, yh, zh) |xh, yh, zh ∈ R} , h ∈
[
1, NS

]
(1)

fph = {〈MACh,i, rh,i〉i ∈ [1, NA]}, h ∈ [1, NS ] (2)

rh,i ∈ {N− ∪ {Null}}, h ∈ [1, NS ], i ∈ [1, NA] (3)

sh = 〈loch, fph〉, h ∈ [1, NS ]. (4)

B. System Architecture

The proposed system architecture, shown in Fig. 2, relies on
seven functional modules: 1) autonomous block clustering; 2)
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Fig. 2. Overview of the proposed system.

model training for autonomous blocks; 3) model training for
local floors; 4) probability estimation of autonomous blocks; 5)
local floor probability estimation; 6) joint probability estimation;
and 7) floor estimation with maximum likelihood estimation
(MLE).

1) Autonomous block clustering: The module clusters the
training Wi-Fi dataset of a building into several au-
tonomous blocks, within which the Wi-Fi fingerprints
have similar RSSI and spatial features.

2) Model training for autonomous block: Based on the clus-
tered Wi-Fi fingerprints, the module performs the model
training for autonomous block detection by evaluating the
statistical features of each autonomous block.

3) Model training for local floor identification: For each
autonomous block, based on the floor number of the
Wi-Fi dataset, the module performs the model training for
the local floor identification by evaluating the statistical
features of each floor.

4) Probability estimation of autonomous block: In the online
phase, when a real-time Wi-Fi fingerprint is collected, the
module calculates the probabilities of the fingerprint for
each autonomous block.

5) Probability estimation of local floor: The module calcu-
lates the probabilities of the received fingerprint for every
floor in every autonomous block.

6) Joint probability estimation: The module calculates
the joint probability of all the combinations of au-
tonomous blocks and their local floors, given the received
fingerprint.

7) Floor estimation with MLE: The module estimates the
final floor number of the real-time Wi-Fi fingerprint by
selecting the floor number with the maximum likelihood
probability of all the joint probabilities.

IV. AUTONOMOUS BLOCK CLUSTERING WITH RSSI AND

SPATIAL SIMILARITY

The basic principle of Wi-Fi-based floor identification is to
consider the AP signal variation at different floors. However, as
the size of the building enlarges, AP signals are also attenuated
by walls and propagation loss along the horizontal direction.
Therefore, when the building size is large enough, the Wi-Fi
signal heterogeneity along the horizontal direction is even wider

Fig. 3. Wi-Fi fingerprint comparison of different floors and areas.

Fig. 4. Clustering autonomous block through Wi-Fi fingerprint.

than the heterogeneity along different floors. This phenomenon
leads to inaccuracies. For example, Fig. 3 shows a comparison
between Wi-Fi fingerprints collected in three different areas,
100m2 large, of the same building. Places 1 and 2 belong to the
same floor. Places 1 and 3 belong to different floors and place
3 is below place 1 of 4 m. The total number of APs observed
in the building is 4058. We collected 40 Wi-Fi fingerprints in
each of the three places. The figure shows a comparison of the
fingerprints collected based on the presence of APs. If an AP
occurs in a fingerprint, the AP is represented as a blue pixel,
otherwise as a yellow pixel. Pixels of the same row represent the
occurrences of APs in a Wi-Fi fingerprint. Pixels of the same
column show occurrences of an AP in different fingerprints.
In the example shown, the fingerprints’ heterogeneity increases
from floor 3 to floor 2 in the same area 1; thus, they can be
used to discriminate floors in area 1. Unfortunately, the Wi-Fi
heterogeneity between places 1 and 2 on the same floor 3 is
even greater than the previous (i.e., the correlation coefficient
between Areas 1 and 2 is −0.03 and the coefficient between
Areas 1 and 3 is 0.18). In fact, the spatial distance between
places 1 and 2 is about 80 m, and due to the many obstacles
in the middle, we observe strong Wi-Fi signals attenuation.
This problem is common in large and multistorey buildings, and
therefore, indoor positioning systems reach low performances
in floor identification.

To address this problem, we propose to divide the environ-
ment into several autonomous blocks with clustering techniques.
Inside each autonomous block, Wi-Fi fingerprints have similar
features both in RSSI and spatial spaces. Then, we can construct
local floor identification models for each autonomous block, thus
reducing the interferences on the same floor.

Fig. 4 shows a graphic representation of our autonomous
block clustering. Four APs are deployed on different floors of
a building. Considering the weak penetration of Wi-Fi signals,
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Fig. 5. Example of an autonomous block clustering. (a) Cluster of an
autonomous block. (b) Real testing environment.

the building can be divided into three autonomous blocks based
on observable APs.

Floors and walls divide the whole building into several blocks;
thus, APs in the same autonomous block have two features: they
are close to each other and only few obstacles are in the middle.
Therefore, also the fingerprints collected into the same block are
similar to each other. In other words, as Fig. 3 reveals, place 2 is
more different to place 1 than place 3, but these differences are
irrelevant for floor detection. Our system clusters places 1 and 2
into two different autonomous blocks to isolate the differences
of fingerprints on the same floor.

Fig. 5 shows an example in which one dot corresponds to
a location on which a Wi-Fi fingerprint has been collected.
Based on these samples, our system performs clustering to create
autonomous blocks. The red dots in Fig. 5(a) belong to the same
autonomous block, and the blue dots belong to other blocks.
As stated before, our algorithm clusters Wi-Fi fingerprints with
similar signal similarity and spatial proximity into the same
autonomous block, which generally covers multiple floors. Also,
fingerprints collected at lobbies, hallways, and mezzanines are
clustered into the same autonomous block. Therefore, we apply
a local fine-grained Wi-Fi model to refine and improve the floor
detection performances.

Wi-Fi fingerprint samples gathered into a multistorey envi-
ronment compose a large dataset. Therefore, we propose the
efficient K-means method [22], shown in Algorithm I, as the
clustering algorithm for the autonomous block identification.
The input D is the whole building dataset of Wi-Fi fingerprints
and fingerprint coordinates D = {sh|h ∈ [1, NS ]}. NB is the
target number of the autonomous blocks. The algorithm clus-
ters Wi-Fi fingerprints and produces NB autonomous blocks
with the related fingerprint sets. When the algorithm starts, the
centroids of each autonomous block are randomly initialized.
Then, it analyzes all the instances sh and evaluates the distance
dh,k from sh to all centroids. Successively, the autonomous
block membership membh of sh is classified as the centroid
ctrk(1 ≤ k ≤ NB) with the minimum distance.

As (5) reveals, the centroid ctrk of an autonomous block
consists of two parts: fingerprint centroid fctrk and spatial
centroid sctrk. The forms of fctrk and sctrk are equal to fph
and loch, respectively:

ctrk = 〈fctrk, sctrk〉, k ∈ [1, NB ]. (5)

Accordingly, our algorithm leverages the Jaccard [23] and
Euclidean distance to measure the similarity and proximity of
Wi-Fi fingerprints. As Fig. 4 reveals, considering the weak

Algorithm 1: The Autonomous Block Clustering Algorithm

Require: D,NB

1: Initialize autonomous block centroids ctrk randomly
2: repeat
3: for each sh ∈ D do
4: Init shortest distance sdh ←MaxDistance
5: Init membership membh ← null
6: for each ctrk do
7: dh,k ← calculate distance from sh to ck
8: if dh,k < sdh then
9: sdh ← dh,k

10: membh ← ctrk
11: end if
12: end for
13: end for
14: Update autonomous block fingerprint centroid

fctrk
15: Update autonomous block spatial centroid sctrk
16: until Converge

penetration of Wi-Fi signals, the RSSI of AP 1 is undetectable
in autonomous block 2 because the signal becomes too weak.
In other words, the RSSI of an AP is only detectable in a small
area of a large building. Therefore, our system leverages the
similarity of detectable AP set as a gauge for clustering. As (6)
reveals, the detectable AP set is the MAC part of (2)

fmh = {MACh,i|i ∈ [1, NA]}, h ∈ [1, NS ]. (6)

Specifically, we utilize the normalized Jaccard distance
jdish,k to measure the similarity of detectable AP sets. It is
defined as the size of the intersection divided by the size of
the union of the sample sets. As (7) reveals, fctrk is the Wi-Fi
fingerprint of the centroid ctrk. |fmh ∩ fctrk| is the number
of common occurrences of AP MACs in two Wi-Fi fingerprints.
The factor is normalized by the possible maximum number of
|fmh ∩ fctrk|. Basically, fingerprint samples with the greatest
number of common APs are clustered into the same autonomous
block

jdish,k = 1− |fmh ∩ fctrk|
max

1≤u1≤NS ,1≤u2≤NB

∣∣fmu1 ∩ fctru2

∣∣
h ∈ [1, NS ], k ∈ [1, NB ].

(7)

APs within the same autonomous block are also physically
close to each other; thus, we utilize the Euclidean distance
edish,k to measure the proximity between fingerprints in the
spatial domain. As (8) reveals, sctrk are the coordinates of the
centroid ctrk. The factor is normalized by the possible maximum
spatial distance of ‖ loch − sctrk ‖2

edish,k =
‖ loch − sctrk ‖2

max
1≤u1≤NS ,1≤u2≤NB

‖ locu1 − sctru2 ‖2

h ∈ [1, NS ], k ∈ [1, NB ].

(8)
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Jaccard and Euclidean distances are two important factors
that influence the performance of autonomous block clustering
and floor identification. The distance dh,k from the sample sh to
the centroid ctrk is a combination of the Jaccard and Euclidean
distances, as shown in (9). Considering the complexity of indoor
environments, the proportion α of the two distances should be
determined empirically

dh,k = α · jdish,k + (1− α) · edish,k
h ∈ [1, NS ], k ∈ [1, NB ].

(9)

When an iteration ends, the centroids of each autonomous
block are recalculated. As (10) shows, the RSSI centroid fctrk
is the union of all the AP MACs classified as the centroid. The
union operation guarantees that Wi-Fi fingerprints that have
more common MACs are classified as the same autonomous
block

fctrk = union
membu==ctrk

(Fu), k ∈ [1, NB ]. (10)

The spatial centroid sctrk shown in (11) is the average coordi-
nates of all the fingerprints that belong to the same autonomous
block. In the training phase, the algorithm iterates until the
centroids of autonomous blocks converge so training samples
are clustered into autonomous blocks

sctrk =

vectorSum(locu)
membu==ctrk

count(membu == ctrk)
, k ∈ [1, NB ]. (11)

Possible autonomous blocks range from 1 to NS . In order to
find the optimal value, we leverage the elbow method [24]—an
effective way to find the rightK inK-means-based clustering—
to determine the value of NB . As (12) reveals, the distortion of
the resulting cluster is the sum of the squared distance between
a sample and its centroid. A lower distortion means that the
samples within a cluster are closer to each other. The basic idea
of the elbow method is that the distortion decreases as the number
of clusters increases. It first decreases fast and then slowly after
a critical K value. The critical K value is the elbow point, and
in our algorithm, it represents the right number of autonomous
blocks

distortion =

NS∑
h=1

(dh,membh)
2. (12)

V. WI-FI MODEL AND ACCURATE FLOOR IDENTIFICATION

As previously discussed, Wi-Fi signals are affected by many
factors, including obstacles, building structures, channel inter-
ferences, and propagation loss. For example, Fig. 6(a) shows a
simple scenario, in which AP signals are attenuated by floors,
and therefore, a floor can be identified through the AP detection.
Generally, in large and multistorey buildings, raised or interme-
diate floors, and mezzanines are often present. In Fig. 6(b), no
floor causes an AP signal attenuation on floor 2. Then, the signal
is still strong at F1 and F2, decreasing the floor distinguishability.
On the contrary, in Fig. 6(c), when a smartphone is too far from
an AP, the AP signal is attenuated by walls along the horizontal
direction, making it weak on the same floor and other floors.

Fig. 6. Wi-Fi features in different indoor scenarios. (a) Simple sce-
nario. (b) Hollow space scenario. (c) Large horizontal scale scenario.
(d) Channel interference scenario.

Fig. 7. Potential Wi-Fi scan results.

When more APs are deployed, it is worth noting that the AP
channel number is limited, so the risk of channel interference
increases. In Fig. 6(d), smartphone S2 may fail to correctly scan
AP1 due to channel interference introduced from AP2. In this
situation, the Wi-Fi information may appear as retrieved on F1.

Fig. 7 shows a summary of the scenarios discussed in Fig. 5.
Basically, only when a smartphone successfully scans an AP,
it detects the RSSI of the AP. The RSSI value can be used to
depict the smartphone’s proximity to the AP. A failed Wi-Fi
scan might be caused by a too weak signal or due to channel
interference. A failure due to too weak signal suggests that a
user is far away from the AP. Instead, a failure due to channel
interference may also occur when a user is close to the AP.
Unfortunately, the failure due to channel interference is less
easily recognizable. Traditional Wi-Fi-based floor identification
methods generally ignore the reasons of scan failures, therefore
limiting the performances.

A. Probability Estimation of an Autonomous Block

In order to accurately identify floors in complex scenarios,
it is necessary to precisely model the features of Wi-Fi scans.
Considering a real-time Wi-Fi fingerprint, no information is
available to directly discern the reasons of a Wi-Fi scan failure.
We propose to identify failures for too weak signals by labeling
out far away APs in the training phase. Specifically, the space
of the whole building is divided into several small cells based
on the clustered autonomous blocks. In other words, a cell is a
small portion of the building, which has similar RSSI features.
We classify the APs into two types: positive and negative. For
each cell, positive APs are the ones that appeared at least once
in the cell, corresponding to success or interference case in
Fig. 8(b). Negative APs are the ones that never appeared in the
cell considered but appeared in other cells, corresponding to the
too weak signal case. Then, considering a failed Wi-Fi scan in
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Fig. 8. Wi-Fi model comparison. (a) Traditional Wi-Fi model. (b) Pro-
posed Wi-Fi model.

TABLE III
WI-FI MODEL FOR AUTONOMOUS BLOCK DETECTION

a real-time Wi-Fi fingerprint, if the AP is marked as negative in
a cell, the failure is considered as a failure due to a too weak
signal for the cell. On the other hand, if the AP is positive, then
the failure is considered a failure due to channel interference.

This article proposes a hierarchical probability model to rep-
resent the Wi-Fi fingerprints feature of a block. Based on the
order of magnitudes, the probabilities can be classified into three
level of granularity. The high granularity is related to faraway
APs. The middle granularity is related to the appearance of the
AP into the block. The low granularity is related to received
signal strength from an AP of the block. Table III shows detail
of the enhanced Bayesian Wi-Fi model for autonomous block
detection proposed in this article. For the real-time phase, when
a new Wi-Fi fingerprint is available, we classify the APs into
the fingerprint as true or false. True APs are the ones that have
been detected in the fingerprint and have appeared in the offline
phase. False APs are the ones that have appeared in the offline
phase, but they have not been detected in the new fingerprint.
The joint probability of a positive AP and a true scan (PT ) result
isP (ri, S

B
i,k);S

B
i,k is the event of successful detecting the ith AP

in the kth autonomous block. As (13) reveals, P (ri, S
B
i,k) equals

the product of P (ri|SB
i,k) and P (SB

i,k). P (ri|SB
i,k) is modeled

as Gaussian distribution. μB
i,k and σB

i,k are the RSSI mean and
variance of the ith AP in the kth autonomous block. P (SB

i,k) is
the scan success probability

⎧⎨
⎩

P (ri,SBi,k) = P (ri|SBi,k)P (SBi,k)
P (ri|SBi,k) = N(μB

i,k, σ
B
i,k)

P (SBi,k) = SuccessfulScanNumber
TotalScanNumber

. (13)

As (14) reveals, PB
k (FB

i,k) is the probability of a positive
AP and a false scan (PF), in other words the probability of
a failure in detecting the not far ith AP. The probability reflects
the channel interference level

P (FB
i,k) = 1− P (SBi,k). (14)

The probability of a negative AP and a true scan (NT ) result
P(NT B) is constant to zero, indicating that an AP is far away
from an autonomous block, and if the AP is detected, then the
user should not be in the autonomous block. However, consid-
ering that the sample time is limited, for a real application, we
replace the zero with a small probability value. The probability
of a negative AP and false scan (NF) result P(NFB) is constant
to one.

In the offline phase, the system calculates P (SB
i,k), μ

B
i,k, and

σB
i,k for all AP in every autonomous block to get the autonomous

block detection model. Then, based on the model, in the online
phase, given a real-time Wi-Fi fingerprint fp and an autonomous
block Bk, the probability P (Bk|fp)—fp lies in Bk—can be
calculated. Based on Table III, all ri of fp can be classified into
four sets: setPTk , setPFk , setNTk , and setNFk , corresponding to
the PT , PF ,NT , andNF events that occur during the online
phase.

Based on the Bayesian rule, given the initial probabilities of
every autonomous block are equal, then P (Bk|fp) is propor-
tional to P(fp|Bk), which is the probability of observing the fp
in block Bk, as shown in the following equation:

P (Bk|fp) =
P (fp|Bk)P (Bk)∑Nc

l=1 P (fp|Bk)P (Bk)
∝ P (fp|Bk). (15)

Considering that APs are independent of each other, therefore,
as (16) reveals, P (fp|Bk) is the joint probability of every ri in
the block Bk

P (fp|Bk) =
∏

ri∈setPTk

P (ri,SBi,k)

∏
ri∈setPFk

P (FB
i,k)

∏
ri∈setNTk

P (NT B)
∏

ri∈setNFk

P (NFB).
(16)

Taking (16) into (15) and considering that P (NFB) con-
stantly equals one, then the probability of an autonomous block
Bk given an online fingerprint fp can be calculated with

P (Bk|fp) ∝∏
ri∈setPTk

P (ri,SBi,k)
∏

ri∈setPFk

P (FB
i,k)

∏
ri∈setNTk

P (NT B). (17)

After normalization, we can conclude (18), the final form of
autonomous block probability estimation where setB is the set
of all the available autonomous blocks.

B. Probability Estimation of a Floor in an Autonomous
Block

Evaluating the probabilities of the autonomous blocks, we
construct a similar Wi-Fi model in order to estimate the floor
probability into the blocks. Basically, we separate too weak
signals and failures due to interferences with the granularity
of the floor. For each floor, as shown in Table IV, APs in the
training model of a floor have also been classified into positive
and negative. The positive AP is the one that has appeared
on the floor. Negative APs only appear on other floors of the
autonomous block. In Table IV, the event SFi,k,j is a successful
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TABLE IV
WI-FI MODEL FOR FLOOR IDENTIFICATION

detection of the ith AP in the kth autonomous block at the jth
floor. The eventFF

i,k,j is a failed scan of a positive AP. The event

NT F is a true scan of a negative AP. NFF is a false scan of a
negative AP.

The model training of floor detection in an autonomous block
is similar to the autonomous block detection model. The system
calculates the probability of successful detecting the ith AP in
the kth autonomous block at the jth floor P (SFi,k,j), and corre-
sponding meanμF

i,k,j and variableσF
i,k,j Then, compared to (15),

we can conclude thatP (Fj |fp,Bk) is the floorFj probability in
the autonomous blockBk, given an online scan result fp, shown
in (19). Given that the prior probabilities of the user’s location
distributed on different floors of the autonomous block are equal,
P (Fj |Bk) is equal for each floor. The factor P (fp|Bk) is a
constant value for each floor. Therefore, P (Fj |fp,Bk) is pro-
portional to P (fp|Fj , Bk), that is, the probability of observing
the scan result fp at the Fj floor in the autonomous block Bk

P (Fj |fp,Bk) =
P (fp|Fj , Bk)P (Fj |Bk)P (Bk)

P (fp|Bk)P (Bk)

=
P (fp|Fj , Bk)P (Fj |Bk)

P (fp|Bk)
∝ P (fp|Fj , Bk).

(19)

Based on the AP independence, P (fp|Fj , Bk) is the joint
probability of every ri appearing at the Fj floor in the block Bk.
Compared to (16) and (17), we can conclude that

P (Fj |fp,Bk) ∝∏
ri∈setPTk,j

P (ri,SFi,k,j)
∏

ri∈setPFk,j

P (FF
i,k,j)

∏
ri∈setNTk,j

P (NT F )

(20)
where setPTk,j , setPFk,j , and setNTk,j correspond to the PT , PF ,
and NT AP set at the jth floor in the kth autonomous block,
respectively. After normalization, we can write where setFk is

the set of all the available floor indexes in the autonomous block
k.

C. Joint Optimization and Final Floor Identification

Our system estimates the final floor with the joint optimiza-
tion of autonomous blocks and related floors. As (22) reveals,
P (Fj , Bk|fp) is the joint probability of floorFj and autonomous
block Bk, given an online Wi-Fi scan result fp. setF and setB

are the sets of all the available floor and autonomous block
numbers of the building. The estimated floor number is the one
that maximizes the probability of P (Fj , Bk|fp)

[Fj , Bk] = argmax
j∈setF ,k∈setB

P (Fj , Bk|fp). (22)

As (23) shows, the probability P (Fj , Bk|fp) is equal to
the product P (Bk|fp) and P (Fj |fp,Bk), which have been
calculated in (18) and (21), shown at the bottom of the page

P (Fj , Bk|fp) =
P (Fj |fp,Bk)P (Bk|fp)P (fp)

P (fp)

= P (Bk|fp)P (Fj |fp,Bk).

(23)

Taking (23) into (22), (22) can be updated as

[Fj , Bk] = argmax
j∈setF ,k∈setB

P (Bk|fp)P (Fj |fp,Bk). (24)

Taking (18) and (21) into (24), through (25), we estimate the
floor on which the user is located

[Fj , Bk] = argmin
j∈setF ,k∈setB

−lgP (Bk|fp)− lgP (Fj |fp,Bk).

(25)
As a summary, in the offline phase, Wi-Fi fingerprint sam-

ples are clustered into autonomous blocks. Then, the system
evaluates every block and every related floor to construct the
autonomous block and local floor detection models. Finally, in
the online phase, the system utilizes (25) to calculate the joint
probability of every autonomous block and the floor probabil-
ities within every block and select the maximum probability
prediction as the result.

The time complexity of the system is O(NA), which is
proportional to the number of all the APs detected in the building.

P (Bk|fp) =

∏
ri∈setPTk

P (ri,SBi,k)
∏

ri∈setPFk
P (FB

i,k)
∏

ri∈setNTk

P (NT B)

∏
u∈setB

( ∏
ri∈setPTu

P (ri, SB
i,m)

∏
ri∈setPFu

P (FB
i,m)

∏
ri∈setNTu

P (NT B)

) (18)

P (Fj |fp,Bk) =

∏
ri∈setPTk,j

P (ri,SFi,k,j)
∏

ri∈setPFk,j

P (FF
i,k,j)

∏
ri∈setNTk,j

P (NT F )

∏
u∈setFk

( ∏
ri∈setPTk,u

P (ri,SFi,k,u)
∏

ri∈setPFk,u

P (FF
i,k,u)

∏
ri∈setNTk,u

P (NT F )

) (21)
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Fig. 9. Floor plan of our experimental training center building.

VI. IMPLEMENTATION AND RESULT EVALUATION

A. Experimental Environment

We have conducted our experiments in a large conference
center shown in Fig. 9. The building has four floors and sprawls
over an area of 108× 203 m. The floor height is 4m. Three
floors are above the ground, and one floor is below the ground.
The building contains two large hollow spaces and several small
courtyards. The size of the two large hollow spaces is 1150 and
1250 m2, respectively.

We have collected Wi-Fi data of the whole building with two
Huawei Mate 9 and a Xiaomi Mix 2 smartphones. We developed
a sampling application to collect Wi-Fi fingerprints. A site
surveyor inputted start and end points in the application; then, he
slowly walked along a line to periodically collect fingerprints.
We used one sample line for corridors narrower than 4 m and
parallel lines for that greater than 4 m. It takes about half a day
to sample the whole building once with a single smartphone.
The Mate 9 A collected 6486 samples on July 1 and collected
6517 samples on August 17. The Mate 9 B collected 6408
samples on August 1. The Mix 2 only collected 1630 samples on
August 2, because the sampling frequency of the Mix 2 is about
one-fourth of the Mate 9. Each data collection fully covers the
four-floor 60 000-m2 testbed. These data have been collected
while users were walking. Based on our survey, 4058 MACs
have been detected in this testbed. The number of Wi-Fi stations
is about one-third of the total number of MACs, because most
of the APs generate three different MAC for different kinds of
users, including guests, employees, and administrators. Besides,
these APs automatically adjust their broadcasting power every
day to optimize the communication capacity, but the adjusting
rule is unknown. We also tested our algorithm on a commercial
smartphone, and the average running time for one request was
160 ms.

B. Cluster Evaluation

The weight coefficientα in (2) is a key parameter in clustering
fingerprints. This test examines the clustering effect of differ-
ent weight coefficients. Fig. 10 reveals three typical cases we
have examined: clustering with only RSSI similarity (α = 1),
clustering with only spatial similarity (α = 0), and clustering
with RSSI and spatial similarity (α = 0.5). Fig. 10(a), (c), and
(e) is depicted with different colors, where the autonomous
blocks have been identified on floor 1 (F1). Fig. 10(b), (d), and
(f) illustrate the fingerprints of an autonomous block choosing

Fig. 10. Similarity of spatial relationships and clustered fingerprints
with different weight coefficients. (a) Spatial relation with α = 1. (b)
Fingerprints of an autonomous block with α = 1. (c) Spatial relation with
α = 0. (d) Fingerprints of an autonomous block with α = 0. (e) Spatial
relation with α = 1. (f) Fingerprints of an autonomous block with α = 1.

Fig. 11. Floor identification accuracy with different α.

different α values. A comparison between Fig. 10(a) and (c)
shows that the RSSI similarity based only on clustering is not
able to properly represent the entire building structures. On
the other hand, comparing Fig. 10(b) and (d), it can be found
that fingerprint consistency is low in Fig. 10(d). Therefore, as
Fig. 10(e) and (f) reveal, when both RSSI similarity and spatial
proximity are considered, for example, α = 0.5, fingerprints
within the same autonomous block reveal better consistency both
in RSSI and Euclidean spaces.

Fig. 11 shows the influence of different α values in floor
identification performances. It can be observed that a proper
combination of RSSI similarity or spatial proximity is helpful in
improving autonomous block clustering and floor identification
accuracy. In this experiment, α = 0.8 is the optimal value.

C. Number of Autonomous Blocks

This experiment examines the efficiency of the elbow method
in finding the optimal autonomous block number. As Fig. 12
reveals, the floor detection accuracy quickly improves as the
number of autonomous blocks increases and reaches the maxi-
mum around the elbow point. In other words, a good fingerprint
clustering is also a good separation of autonomous blocks.
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Fig. 12. Setting K with the elbow method.

Fig. 13. Autonomous blocks of the building.

Fig. 14. Floor identification accuracy of different sample densities.

Around the elbow point, Wi-Fi fingerprints of the same au-
tonomous block are more similar. Consequently, by reducing the
influence of the fingerprints gathered at faraway places on the
same floor, the floor detection accuracy of our model improves.
Fig. 13 depicts the autonomous blocks of the testing site. A
point in the figure represents a sample. It can be observed that
autonomous blocks around hollow areas tend to include multiple
floors.

D. Evaluation of Sample Density

The proposed model is based on the Bayesian theory; thus, the
number of samples directly influences the model efficiency and
the floor identification accuracy. Fig. 14 reveals the relationship
between floor identification accuracies, sampling time, and av-
erage sample density. It can be found that accuracy improves as
the sample density increases. When the sample density is greater
than 1 sample/m2, the floor identification accuracies become
stable. We also estimate that the relative minimum sampling
time is about 2.5 h.

E. Evaluation of Signal-Strength-Related Factors

In order to evaluate the performance of signal-strength-related
factors, we conducted three group of comparisons: under a
certain AP and 10 m away from the AP; slow (∼ 0.8m/s) and
fast walking (∼ 2 m/s); workday (less users) and weekend (more
users). The result is shown in Fig. 15(a). It can be found that our
system is robust to signal strength variance.

Fig. 15. Signal strength influence and factor importance analysis. (a)
Signal strength influence. (b) Factor importance.

Fig. 16. Floor identification accuracy comparisons of different algo-
rithms. (a) Same device test (Mate 9 A). (b) Different device test 1 (Mate
9 B). (c) Different device test 2 (Mix 2). (d) Hollow area test (Mate 9 A).

The robustness is a consequence of the features we use
in the system. In fact, signal strength mainly influences the
performance in atrium areas. As Fig. 15(b) reveals, we tested
the importance of the three levels of granularity. The high
granularity PN is the probability of P (NT ), middle granularity
PNF is the joint probability ofP (NT ),P (F), andP (S), and low
granularity is the joint probability of P (NT ), P (F), P (S), and
the signal strength factor P (r|S). In small or narrow areas, for
example, a corridor, the improvement of adding signal strength
factors is trivial because the distinguishability of negative APs
is prominent. Even in wide or atrium areas, higher and middle
granularity already reach a decent accuracy, and the improve-
ment of signal strength factors are limited. Finally, our system
leverages the probability of multiple APs to estimate the results;
therefore, even when the signal strength of a single AP varies
(because the user approaches or leaves an AP), other AP will
ensure the system robustness.

F. Performance Comparison With Different Time/Devices

In order to evaluate the performance of the proposed algo-
rithm, we compare our algorithm with three state-of-the-art
floor identification methods—HYFI [12], LDA [13], and XG-
Boost [25]—in the testing of time migration, device heterogene-
ity, and performance in the hollow area. All methods are trained
with the data collected by Mate 9 A on July 1. Fig. 16(a) reveals
the time migration test. It examines floor detection accuracies
with the August 1 data collected by the same Mate 9 A of the
training dataset. The result shows that the four algorithms reach
remarkable accuracies. The proposed and XGBoost methods are
better than the other two algorithms.

Fig. 16(b) and (c) shows the results of the device heterogeneity
test. Due to hardware differences (e.g., antenna gains and dif-
ferent Wi-Fi chips), the received AP RSSI in fingerprints varies
for different devices. Fig. 16(b) shows two devices of the same
brand and Fig. 16(c) shows of different brands. Although all the
performances of the four algorithms drop, our algorithm is more
robust than others because the proposed enhanced Bayesian
Wi-Fi model fully utilizes the probabilities of PF , NT , and
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TABLE V
FLOOR IDENTIFICATION ACCURACY WITH MORE DEVICES

NF events. The probabilities of these events are more robust
than RSSI features used in state-of-the-art algorithms.

Hollow areas, for example, the autonomous block 1 in Fig. 4,
are more challenging in floor detection than nonhollow areas
because no obstacles are present to attenuate AP signals on
different floors. Fig. 16(d) reveals that the proposed algorithm
is more adaptive to complicated buildings with hollow area
scenarios. In fact, our algorithm is able to detect the coarse
area, in which the fingerprints have been collected through an
autonomous block clustering. Then, it leverages a suitable local
Wi-Fi model to exactly estimate at which floor the user is. For
example, the LDA method assumes that all the APs are visible
on each floor of the building; thus, the method is not suitable to
be directly applied in large and multistorey environments.

G. Evaluation of Different Devices

We also perform tests on extensive devices based on the
UJIIndoorLoc [26] dataset. The selected dataset was collected
with 18 different devices in two buildings at Universitat Jaume.
15 268 samples were collected; 4422 of them are used for
training and 10 846 for validation. The evaluation results of
the four algorithms are shown in Table V . It is worth noting
that every device only covers a part of the building, and the
number of samples collected from the devices is also different.
Therefore, the last row of the table also calculates the average
accuracy of these devices. Again, the proposed algorithm is more
accurate and robust if compared to the other three algorithms.
Performances of the XGBoost algorithm show wide differences
in No. 14 building 1 and No. 3 and 4 building 2 because the three
devices only appeared in the test dataset. We suppose that the
XGBoost algorithm tends to overfit.

VII. CONCLUSION

In large and multistorey environments, the complexity of Wi-
Fi signals on the same floor exceeds the complexity between the
floors along the vertical direction, leading to a reduced floor dis-
tinguishability. Furthermore, the increasing complexity of Wi-Fi
features in complex environments, including atrium/hollow ar-
eas, large floor size, and crowded signal channels reduces the

performance of the Wi-Fi-based system for floor identification.
Therefore, we proposed the adaptive Wi-Fi-based floor iden-
tification algorithm. Our proposal clusters Wi-Fi fingerprints
of a large-scale building into multiple autonomous blocks that
have similar RSSI and spatial features. Then, Wi-Fi models are
applied to tackle Wi-Fi complexity. We tested our algorithm
with 19 devices of different types and brands. The experimental
results show that our proposal reaches average accuracies of
97.84%, 96.42%, and 95.67% in three real large buildings.
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