gy
7y

Consiglio Nazionale delleRicezche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

R T e

“ | | BIBLIOTECA |

MMV |

ERROR DETECTION / FAULT TREATMENT IN THE MUTEAM
SYSTEM

D. Briatico, A, Ciuffoletti, L. Simoncini
L. Strigini

Nota interna BB4-05

Giugno 1984

ERRUOR DETECTION / FAULT TREATMENT IN THE MuTEAM
SYSTEM.

D. Briatico #s A. Ciuffoletti #+ L. Siwmoncini #%s L. Strigini #*

Dipartimento di Informaticas Universita’ di Pisa
#%¥ Istituto di Elaborazione dell’ Informaziones CNRy Pisa

ABETRACT

MuTEAM constitutes a continuing effort to
investigate the potentiality of control decentral-
ization in the design of multimicroprocessor sys-
temns. The architecture which has been so far
designed and implemented provides a set of wmechan-
isms s in the hardware; in the kernel an in the
programming languages to help the exploitation of
decentralized non-hierarchical policies for both
resource management and fault treatwent.

In this papsn a possible ED/FT (Ervrovr
Detection/Fault Treatwent) policy is described:
and the functionality of a precowpilers for its
implementation at a very high levels is detailed.
The wuse of surh a tool allows cowmplete tran—
sparency to the user of the redundancy which is
necessary for a - reliable computation.

1. INTRODUCTION.

MuTEAM [13s [21s L[31s [4])y is part of the Computer Science
Program of the National Council of Researches MUMICRO Pro-
Ject for the development of multimicroprocessaor systems for
process control applications.

MuTEAM is an experimental prototypes to be used for the
evaluation of hardware and software design concepts. It sup-
ports concurrent programming and decentralized non hievarch-
ical policies for both resource wanagewent and fault treat-—
ment .

The exploitation of concurrency and decentralization of con-
trol has required a careful design of all the functional
levelss from the programming languages to the kernely to the
physical configuration. Several constructs and mechanisms
have been designed and inserteds to provide the possibility
of implementing a robust system.

The system is constituted by‘ a set of computer elements
(nodes)i the operating system is replicated im each node.
The details of the organization are in [11s [21s [31, [47.

1.1. Programming language.

The concurrent programming model which has been chosen is
based on a set of processess each running in a local pro-
tected environment. The programming language used for the
description of this envirosments is the ECSP I[51y an
extended version of CBP [41: which is a suitable starting
point for a message based cancurrent language.

The communication commands in ECSP provide a wvariety of
mechanisms and may support synchronous an asynchronous as
well as symmetric and asymmetric communications.

Messages are typed and a type check is performed during each
communication between processes. This check enforcesz a logi-
cal error detection mechanism and it is active all the times
that & process need to communicate across the boundary of
its local environment.

The logical communication structure is static in this varpr-
sion of MuTEAMs which means that it is defined at comnpile
time an maintained in the kernel data structure for sach
process of the set which resides on a given node. Since care
must be taken of the fact that one or more nodes can he
faulty:s we must be also able to selectively choose which
logical channels must be active at any given time. The
introduction of dynamic channelss with processname variables
has & strong impact on the flexibility by which such chaoice
can be performed.

The slternative and repetitive commandss introduced for the
management of nondeterminisme and the extension in the ECSP
by using input guards with prioritiess are useful for allow-
ing & flexible implementation of a backward recovery stra-—
tegy.

An dimportant points which must be taken into account when
desigrning a system with robustness characteristicssy is that
a correct exception handling mechanism wust be provided. In
the MuTEAM programming languages process termination is used
at this aim. A process can abnormally terminates causing the
invocation of suitable exception handlers.

Moreovers the cutput command primitive is provided with
three return pointss to take into account successful termi-
nation of the commands on failing termination of the com-
mands when e.g. an abrnormal but not erroneous situation hap-
penss and on error termination of the comwmand: 2.g9. when an
erroneous situation happens. '

l.2. Physical configuration.

In order to have each process running in a local separated
environmentsy a proper protection of the physical shared ele-
ments is reguired. In MuTEAM these are constituted by the
shared memory segments distributed inside the several nodes.
To enforce physical separations a Protection Unit is pro-
vided for accesses to the shared memory.

A single node is considered as the field replaceable unit in
the system and therefore these PU's protect each shared seg-
ment against the set of processes which run in each node.
Error signals from the PU s and those provided by the usual
addressing mechanismy based on segment limits are used as
low level error detection mechanisms.

All these constructs and mechanisms can help to build a
robust system. The aim of this paper is to describe a possi-
ble ED/FT (ervor detection/ fault treatment) policy imple-
mentation in the MuTEAMs and to show how to use correctly
the introduced constructs and mechanisms. A precompiler has
been used to provide a high level implementation.

In the following Sections the ED/FT strategy for the MuTEAM

is describedy its detailed implementation is given and final
comnents are provided.

2. ED/FT IN MuTEAM.

The ED/FT strategy which has been designed far MuTEAM is
based on four distinct phases:

a) Error detectionsd

b)Y Diagnosis of the node(s) which iz <(are) faulty in the
systems’

c) Physical and logical reconfigurations
d) Recovery.
These phases have the following meaning:

Error detection: it is used to notify the occurrence aof an
erroneous eventy it is implemented through low level sigrnal-~
ing (segment-limit violation and access right violationls
through failing of communication priwsitives and through
periodic scheduling of diagnostic processes. The invoked
mechanism is the exception handling in the run-~time support
of the languages which constitutes the interface towards the
fault treatment.

Diagrosis: it is used to idéntiFy what nodels) is Ctare)
responsible for the erronecus event and to identify the set
of processes which must be reconfigured in the system.

Reconfigurationt it is the phase in which the communication
structure is wodified» on the basis of a suitable redun-—
dancys to establish a well functioning set of channels to be
used as @& support to the recovery. The set of processes
which is connected by this set of channels is obtained by a
proper replication of the application processess by insulat-
ing the processes running on the faulty nodei(s) and by con-
necting the substituted processes.

Recovery: it consists in the identification of a correct
system— wide state (for all the processes in the reconfig-
ured set) and in the restart of the computation from a mutu-
ally agreed state.

The redundancy which is necessary for a corvrect functioning
of ED/FT is provided by a redundant set of communication
channelss by a redundant set of back-up processes in the

system and by the set of mechanisms necessary to manage this
redundancy.

The design hypothesis used in structuring ED/FT is that its
implementation is based on the ECSP and wmust be transparent
to the user.

The objgects which have been specified are!
1Y a set of ECSP processes for ED/FT and

2) a precompiler to enforce transparency of the entire pol-
icy.

The job of the precompiler is to expand or wodify an ECSP
programs written with rno hknowledge of the internal redun-—
dancy of the systems in such a way that it can reliably per-
form its computation. The precompiler extensively uses the
set of constructs of the language to provide a clean and
readable version of the original program.

In the following paragraphs we will describe in detail the
single phases previously introduced and discuss the func-—
tionality of the precospiler.

2.1. Error detection.

The basic mechanism for EDs provided by the ECSBP languages
is the raising of exceptions ont

al) the checks on the comwunicationsi
bl the abnorwmal process termination’
c? the failing of commands.

in all these cases the precowpiler inserts: as an exception
handlers an output command toward the FT process. fAs an
examples the precompiler transform the following output com-—
mand

@ &z sen. POV oconsty lexpr)
into
G =z aaae P U oponstyr {(expr)

ON ERROR FT(k) ! awake ¢ 1}
{rollback)

{In the ECSP languages a channel is identified by both =2
type and by & constructor constrs which is a special iden-
tifier of the channel.?

Since the FT process is replicated in each nodes the invoca-
tion on error detection is performed toward the particular
FT process running in the same node with the invoking pro-
CESS.

The other error detection mechaniswmss as low level signaling
or periodic scheduling of diagnostic processes are treated
to emulate the sending of a message invaking the FT process
from a dummy process.

2.2. Diagnosis.

The invocation of the FT process determines the activation
of the Diagnostic Process DP. DP is veplicated on each node
in the system. In terms of ECSP processesy this way be
described as:

FT g8 L FTCL) } FT(2) t ..naw 1 FTLL) 1 couee FTORY 3

where
FTC(i2» =2 [DETECT | DP(i)d | RECONF |§ RECOV 1
The DP is based on & distributed algorithm implementing a

model based on the PMC Diegnosis [3]1. It is described in
£71. Its aim is the identification of the set of processes
which are to be reconfigured.

2.3. Reconfiguration.

Rfs briefly said in the Introductions the reconfiguration
must rely on a redundancy in the system. This redundancy is
twofold: a redundant set of logical channels wmust be pro-

vided and a redundant set of application processes must be
used.

For sake of simplicitys the organization of redundancy is
described for the case in which one single node may be
faulty in the system. The extension to a higher fault multi-
plicity is straightforward.

2.3.1. Process replication.

The precowmpiler acts on the initial activation constructs:
Pe: L PL | P2V oo | Pl

and creates "twin" processes:

P

L Plp { P2p ¢ & Pnp | PLt | P2¢ ¢ ... § Pnut 1

The loader will allocate the "primary" Pip and its ‘“twin®
Pit on different nodes and the execution of the activation
caommand will activate both Pip and Pit. While Pip will be
responsible of performing the actual computations Pits after
activations will only manage the updating of its recovery
structures with the data that are sent to it by Pip and wait
for a message from the FT process.

The structures of Pip and Pit is then the following:

Pip:s: Pit
begin begin
DL DL.”
#L 15 FTCk>»? (RICI-
{reconfiguration’
cL Li1os Pip ? (recovery structures) -}
{update rec.struct.?

®
a

1
end end .

CUELY means "Command List"d "DL" means “"Declaration List")

fAs ECSP allows the nesting of parallel activation commandss
processes are structured in treessy whose roots are Pips Pits
with i=1+Z2s..9n. The failure of any process in the tree
with root Pip induces the substitution of all the processes
in that treel any activation command in the tree of Pip must
induce an analogous activation command in the tree of Pit.

2.3.2. Redundant communications channels,.

To provide the possibility of recoverys all the wessages
sent to Pip must be sent also to Pit.

When Pip executes an operation to save its status (SET-RP
see later) this is rnotified to Pit which will update its
recovery structuress executing the receive of all wessages
which Pip has received.

Fig.l shows the mechanism by which Pit empties its input
- gueue only when Pip notifies to it a SET-RP.

Pip Pit
m2 m
'E mi

Pip M Pit
inpul L inpuk | ‘

queuﬁ

[xx]
§

To implement the sending of a message to both Pip and Pits
the precompiler must transform the output command:

t: ... Pi } constr (exprl) ...

as it ig written by the programmer into the form described
in Fig. 2.

B ...,

L 1 § FT(k3»? (RIC)> -) skip

{1 0§ true -} skip

]

[RICCiy = Pip and Pit fault free ~) Pip! constriexpr?
Pit! constriexprd

[J RICC(i} = Pip faulty -~y Pit! constrlexpr)

[J RICCi) = Pit faulty -} Pip! constriexprl

]

- Fig. 2 -

The meaning is that to the input guard (trued)r» which is
always verifieds is associated a priority (0) which is lower
than to the priority associated to the presence of a message
from FT.

The wmessage incoming from FT assigns a value to the variable
RIC which iz a vector with one entry for each of the chan~
nels. Each entry contains the state (faultys fault freel) of
the partner.

Moreover every process must be able to receive messages from
either Pip or Pit.

To implement its the precompiler must transform the input
command

@z Pi1i7? constrivard

as it is written by the programmers into the form described
in Fig. 3. '

Q:: ¥ o2 8 B
L 15 FT(k>»? (RIC) =) { reconfiguration)
£} 0% true -y skip
13

XP? constrivar)

- Fig.3 -

{reconfiguration) correspond to the phase whichs bhased on
the examination of RICs assigns the value Pip to the pro-
cessname variable XP if Pit is faulty or Pit to XP if Pip is
faulty.

Since the ECBP language provides wmany different types of

- D -

comuunications the precompiler will apply suitable transfor-
mations to each of these types.

The two example shown correspond to the simplest of these
transformations. In Appendix Ay the transformations for all
type of comwmunications are provided.

Each FT process maintains the data structure related taoa the
activation of the application processes and their allocation
to the nodes. This is available since the process alloca-
tion is static in the MuTEAM. On the basis of the identifi-
cation of which node is faultys each FT process defines the
new set of processes which must recover computation and the
new set of channels which are to be used. FT sends reconfi-
guration messages to this set of processes.

2.4. Recovery.

The set of reconfigured processes is responsible for the
execution of all the recovery actions in the system. During
normal funchtioning each primary process must save its vir-
tual state executing set-recovery-point (SET-RP) operations.
The BET-RP can be explicitly issued by the programmer or can
be zutonomously inserted by the protocol for the maintenance
of consistent recovery lines in the system.

The tools provided to the processes to implement recovery
are:

aa the SET-RP operations
b. the protocol for maintaining consistent recovery liness
o the rollback algorithm.

All these tools are added to the application prograwms by the
precompiler and are therefore transparent to the user.

2.4.1. BSBET-RP operation.

This instruction is provided to the programmer who is in
charge of using it for checkpointing in suitable points his
pragram. The SET-RP operation saves the state of the pro-
cesst: this state is composed by the value of the variables
declared either by the programmer or by the precompiler.
The variables which are declared by the precompiler are used
to maintain al) information about the flow of control of the
Processs by information about the consistency of the
recovery lines.

The SET-RP operatinn must send this state to the twin

processs to provide him with the information necessary in
case of recovery.

The precompiler transforms the program shown in Fig. 4a into
the one shown in Fig. 4bs plus the twin process shown in
Fig. dc.

P s Pp =t Pt =&
begin begin begin
DL DL? DL’
cL1 CcLl #[15 FTiky ? (RICY - CLO
Pt ! (DL’ 3 £3 0% Pp ? (DL7D -~} CLO7
SET-RP store (DL7) 1 :
cLz cLz
end end end .
al b ' el
- Fig. 4 -

2.8.2. Protocol for consistent recovery lines.

It is well known [8] that in a set C of concurrent communi-
cating processess a “domino effect" way be caused by an
improper organization of recovery points for C. We have
investigated and implemented a policy which prevents the
"domino effect” by dynamic planning of recovery lines in C.

A formal model has been developed and is shown in [91. 1In
the following an informal presentation and the details for
implementation are provided.

Dynamic planning is provided whenever an event which wmay
alter the consistency of a recovery line happens in C. The
events which are to be considered are those related to the
exchange of messages among processes in C (send and receive
events) and SET-RP events.

For each of these events the recovery information wust be
updated in the partner processes.

Each process P in U associates to each recovery line an ord-
ering number Tp related to the SET-RP operations in P. The
ordering is on the basis of time t local to Py and is such
that

TpCty » Tp(t-ads

if two operation SET-RP have been performed by P at time t-a
and t. The values Tp and Tg are compared between two
partners P and 0 in a communications in such a way that a
logical partial ovdering is induced among the set of events
in different processes in C.

Each process P in €C maintains also the information related
to which processes it has communicated with. This set is
called PE. P maintains also a subset ME of the wmessages
exchanged in C. This subset is constituted by the messages
which have been sent to P before the recovery line main-—
tained in C and which P received after that recovery line.

Example:

Let us consider a set L of three processes Py & and R as
shown in Fig. 5.

P . Q | R \

) SEE:—E‘:'J-‘" - - \BEE{—E&:‘* -~ \“C) sgrﬁp/‘ﬁr—' RL4
ﬂ 5) ¢tz
Q:
h) $—ma B B
;. f?fffffﬁ‘ N - 9)
,,-""” - 2 N
- > t) \\
N
£) R: m3 \\ induced
\ G"\m[SET-RP 0)
R
' | RL2
i i
v v \ 4

)
4;/){'@ PR L Q
2 mi
a4 PR &
¥ {’){Z R m4

The events ady bly ©) in Py @ and R determines only the
increment in Tpsy Tg and Tr. Event f): the sending of message

mZ fFrom @ to R has the following consequences: - @ adds the
name R to PEq¥ — R compares Tr with Tg: since Tr = Tgs R
adds the neme @ to PEr. Event d2 in 8 determines: - 0
increases the value of Tgl - B empties PEg and MEg. Event
hi: the sending of message ml from P to 8 determines the
following consequences! — P adds the name 8 to PEpS - in i)

@ compares Tg with Tps O adds mi to MEgq in the recovery
points such that Tg ' Tp and adds the name P to PEg in the
recovery points such that Tg (Tp. In n) w2 is not saved
since Tr { Tgs but one BET~RP is induced in o) to provide
the correct partial ovdering among & and R.

The planned recovery lines which are present in PsBsR are
indicated by T=1 and 7T=2. A crash in P will determine a
rollback to RLI which involves Ps @ and R. & crash in & will
determine a rollback to RL2 which involves only 8 and R. I¥F
the induced SET-RP o) had not been sets the attempt of B to
rollback on RL2 would have been unsatisfactory for Rs which
wauld have propagated a request of rolling back to RL1I and
this would have caused a "domino effect® on Q.

The previous example hag informally described the operation
of the protocal to provide consistent recovery lines.

The formal proof of corrvectness of the protocol and of these
operations is shown in [(9].

The implementation of this protocol is based on the follow-
ing'datavstructure= recard PRP (planned recovery point)

type PRP = record
T: integer)
PE: set of processname
ME: set of messages
D: descriptor of recovery points
end

3

Each process P maintains an array PRPSET of PRPsi the actueal
number of PRPs in PRPBET is K.

For each SET-RP event a new element is createds with T =
k+is PE = 0Oy ME =0 and D = descriptor of the recovery point.

fAssoristed with 2 send event from P to O is the modification
of the field PE for each PRPs with the addition of 8 to PE.

Associated with a receive event in @ of a message m from P
ie the following wmodifications:?

...1'3...

if Kg (Kps the process @ creates a number Kp - Kg of SET-
RPy and adds the name P to PEq in all its PRPs3

if Kp (Kg» the process B8: for sach PRP such that Tg ={ Kps
adds the name P to PEqs while for sach PRP such that Tqg
Kps adds the message wm to MEg.

The precompiler will add to the code of Pp the code perform-
ing these operationss and to the code of Pt the code per~-
forming similar operations upon reception of a SET-RP nes-
sage from Pp.

The transformations which the precompiler wust pervrform on
the code of a process P is the following.

. In a8 send commands
Pee Pp:s
begin begin
owa type PRP
- var PRPSET: arvray (il..maxlength) of
PRPS
o5 e K: integers
.u e VLo1s FTChY? (RICY =)
{reconfiguration)
5 e a L1 0 true -y skip
. I

@' constriexpr) L RIC(i)» = fp and Rt fault free -
Gp! constriexpr?
oo i Bt! canstrflexpr)
v L3 RICCiID> = @p faulty -
Gt! constriexpr’
. i\ L1 RICCiy» = Qt faulty =)
Gp! constriexpr?
sn e v]
end end

b. in a receive command:
g Pps:
begin begin
ouea type PRP
o var PRPBET: array ({..maxlenagth) of PRP;
ows K: integers
. L 15 FTCh»? (RIC) -} {reconfiguratiom
ou s L1 03 true -y skip

]

XQ? constriKg?

{update PRPSET.FPE: PRPSET.ME
if needed generate SET-RP)

X& ? constr(VAR)

@ 8@ % 8w

@7 constr(VAR)

end end
Co in 2 SET-RP command:
Pes Ppes Pt
begin begin begin
DL DL DL’
. s e i PRt (DL 018 FTCh? (RICY =)y (reconf.}
SET-RP i {st(DL” t L1 05 Pp? (DL -y CLz
{
o s L
end end

where CL2 stores DLs receives the waiting messages and up-—
dates its recovery structures.

2.4.3. Rollback.

The rollback protocol is generated by the precompllers which
adds it to each application process. Each application pro-
cess in the reconfigured sets when the rollback protocol is
invokedy will execute a consensus algorithm to search a
recovery line which is accepted by the processes in the set.

Each procegs P maintains for rollback the faollowing data
structures

type DOFFER = record
FLAG: (terminations rollbacks confirmation)ds
NO: PRP numbers
L.PA: set-of-processes’
(# list of processes who accept #)
LPI: set-of-processes?
(# list of invited processes %)
Rl.: set-of-processes’
(% list containing the recovery
line #3
ends

A variable of this types OFFERy is sent as the body of waes-
sages involved in the rollback. Any process @y in the recon-
figured sety may originate this message» initializing OFFER
as follows:

NO contains the value of T related to PRP chosen by GF
LPA contains the name of 0

LPI contains the names of the processes in PEg in the chosen
PRP.

RL is initially empty. A process Ps whose name is in LPIs
will receive OFFER. 1f P agrees with OFFER.NO it adds its
name into DOFFER.LPA (deleting its name from OFFER.LPIY and
possibly inserts in OFFER.LPI (if not present) the names of
the processes to which propagate the offer. These names are
contained in PRPSET(ocffer number).PE in P. Then P propagates
the OFFER to other processes. If P cannot accept the OFFER >
it resets the OFFER by specifying a new OFFER.NO» canceling
OFFER.LPAy setting OFFER.LPI to the wvalue it has in
PRPSET(new offer number).PE. Then it propagates OFFER.

The DFFER may be rejected when it is related to a recovery
line involving a terminated process.

The rollback protocol is complicated by the parallel-
hierarchic structure of ECSP processes. A comprehensive
analysis of the several rejection conditions is in [10l.

The first phase of the rollback protocols in which OFFER is
manipulated and circulated by the processes in the reconfig-
ured sets terminates when all these processes have agreed on
a comwmon recavery line. This is guaranteed by the fact that
during normal functioning the processes maintain consistency
among PRPss as seen in pavagraph 2.4.2. Therefore a "domino
gffect” cannot be present’ the choice of an older recovery
line may only be induced by the particular process termina-
tion rule used in ECEP.

At the end of the first phases OFFER.LPA contains the names
of the processes in the reconfigured sets and OFFER.LPI is

empty. The last process which has manipulated OFFER will
copy OFFER.LPA into OFFER.RL and will starvrt the second phase
of rollback.

The second phase of the rollback protocol consists in a cowm-—
pensation action on the input buffers of each process in the

reconfigured set.

Consider Fig.6.

SET-RP
dgreed
SET=RPWL recovery
PR line

L Eime o}
S%Jr%{ng 0% rollback

The communication a) was initiated and was terminated before
the starting of rollback’ therefore the message ml is saved
in the PRP of 8. The communication b) was initiated before

the agreed recovery line (message m2 has asssociated times-—
tamp T (PRP.T): m2 is in the input buffer of &, but it has
not been received and therefore is not saved in PRPg. This
communication will not be reexecuted and thervefore & wmusts

during the second phase of rollbacks reexecute the receive
of these messages.

The communication o) was initiated after the agreed recovery

line (message m3 has an associated T = PRP.TY! w3 is in the
input buffer of Bs but it has not been received and is not
saved in PRPg. This communication will not be reexecuted

and therefore B musts during the second phase of rollbacks
discard these messages.

The process which initiates the second phase of rollback
will: - compensate its input buffersi - delete its name from

OFFER.LPA § - propagate OFFER to other processes in
OFFER.LP&. The second phase terminates when OFFER.LFA is
empty. The et of involved processes is wmaintained in
OFFER.RL. To implement the restart from the chosen recovery
lines the precompiler will translate the body of a process
into repetitive structure as shown in Fig. 7.

P Pps:
begin begin
DL” DL’
iCLO IND:= 0O
{SET—-RP #LCIND=0)> ~) CLOF IND:=i1
iCL1 LICIND=1) =) CL1§ IND:=2
{SET-RP 56 s o
CLi... s s oaon
iCLOn—-1> .
{5ET~RP CICIND=n> - CLni IND=exit
iCLn 1
end end
ad b3
- Fig.7 -

Fig. 7a shows the outline of a program as written by the
programmers Fig.7b shows the modified version by the precom-
piler. This shows the simplest transformation. The full set
of transformations is shown in [107.

The wain idea is that the body of each process is
transformed into a cycles and the termination of the roll-
back protocol will assign the proper value to the variable
IND which will point to the proper restart point in the pro-
Cess.

3. CONCLUSIONS.

In this paper an implewmentation of an ED/FT strategy for the
MUTEAM prototype has been presented.

This policy is based on an innovative distributed recovery
protocol for the planning and retrieving of recovery lines.
Some problems have arisen in the implementation due to the
oprocess termination rule used in the ECS5P» with respect to
the guick convergence of the searching for a recovery line.
Studies are under development to overcome these drawbacks
gither by recreation of terminated processes or by moving
PRPss related to nested processes in the hierarchys into the
ropt’ s space.

From the examples it should be evident that the use of a
powerful tool 1like a precompilers if the language provides
suitable mechanismsy is sufficient to iwmplement at a very

....18.._
high level é system function like ED/FT.

Appendix A

Transformations by the precompiler on input and output com-
mands . L

1

The parallei~hierarchical structure of ECBP processes has
the following visibility rules.
A process P can refer by names in an input ar output com-
mand? S
i. Processes in the same activation command

L P POL § PO2Z | POZ | PO4 T

2. . ‘Processes which can be referred by name by the process
PO father of

L P! POL | PO2 | PG3 ! PO4 1.

Therefore in a command list the following three cases may be
present for an output command:

. ‘P! constr(expr)s P is the real partners
b, B! constr(expr)s B is the visible partner’
€. X! constr(exprl)s X is a processname variable.

The transformation related to a. has been shown in Fig.2.

b ' The precompiler transforms it in a form which is shown
in Fig. 1.
[=p . [RICCi> = Xp & Xt fault free =) Xp ! constriexpr)
‘ Xt ! constrieipr?
[IJRICCiL) = Xp faulty =) Xt ! constriexpr)
[IRICC(iL) = Xt faulty =) Xp ! constriexpr)
b

where an assignment of a value to x corresponds to assign-
ments to ¥p e Xt.

In a command list the following input commands may be
present:

as P ? constrivar) P is the real partner

b. & ? constr(var) @ is the visible partner

- 1'? —

[X 7 constrivar?) X is a processhname variable

d. {(XifAny) ? constrivar?

d? . (XEANY FROM (levl) TO {(levz)} ? constrivar)

d". (X:hAls AZy .w. AN ? constrivar?

des d7. and d". are three forms of asymmetric communication.

The transformations are based on the use of processname
variables as in the case a) shown in Fig. 3. Case b) is
identical to a’.

nd The syntax is the same as far al) and bl but in case of
reconfigurationsy the range of the processnawme variable
X is reduced to either Pp or Pt.

In the last three cases the syntax becomes:
(X = XAls XA2y ... XAn) ? constr(var)

where (Al ... An) is the set of processes indicated either
by ANYs are ANY-FROM or by enumerationi in case of reconfi-
guration the value which XAL may assume 1is restricted to
gither Aip or Ait.

4. REFERENCES.

{11 F. Grandonis et al. "The MuTEAM Systewm: General Guide-
lines"s Proceedings FTCS8-11s June 1921: pp. 13-14.

[21 G. Cioffis et al. "MuTEAM: Architectural Insights of a
Distributed Multi~Microprocessor System"s Proceedings
FTCS~11s June 1981 pp.17-19.

[31 F. Baiardis» et al. "Mechanisms for a Robust Multipro-
cessing Envirvonment in the MuTEAM Kernel": Proceedings
FTCE~11s June 1981, pp.20-24.

(41 P. Ciowmpis F. Orandonis L. Simoncini "Distributed Diag-
nosis in Multiprocessor Systemst: the MuTEAM Approach”s
Proceedings FTES-11y June 1921y pp.25-30.

[5] F. Baiardis et al. "The Operating System Kernel of a
Message Passing Distributed System" subwitted for pub-
lication to IEEE Trans. on Computers.

{61 C.A.R. Hoare "Communicating Sequential Processes"s Com-
munications of the ACM-Zis 8. August 1975.

[71 P. Corsinis L. Simoncinis L. Strigini "MuTEAM: A& Mul-
timicroprocessor Architecture with Decentralized Fault
Treatment” submitted for publication to IEEE Trans. on

[93

£101

...‘20._

Computers.

T. Andersons B. Randell edts. "Computing Systews Relia-
bility: an Advanced Course"s Cambridge Univ. Press.
Cambridges 1977,

D. Briaticos A. Ciuffolettis L. Simoncini "& Dowmino
Free Recovery Algorithm: Formal Specification”s submit-
ted for publication to FTCS-14.

D. Briatico "Trattamento dei Guasti Decentralizzato per
Sistemi Multimicroprocessori® Aspetti Formali =
Implementativi per il Prototipo MuTEAM"s Thesis Disser-—
tation (in Italian)s October 1983,

