
1

I.E.I. - CNUCE- CGD

FINAL REPORT

Patrizia Asirelli and Gianni Mainetto

Table of Contents

1. Overview of the Project and Report

2.Introduction

2.ISome basic notion on Data Bases

2.2 The syntax used

2.3 Logic Data Bases

2.3.1 Querying the LDB

2.3.2 basic Updating Operations

2.3.3 Integrity Constraints Handling

2.3.4 Redundancy

2.3.5 Transactions

3.The Logic Database Kemel and its Management System (DBLOG)

3.1 The Logic Database Kemel

3.2 Implementation issues

3.3 Basic operations

4.EDBLOG

4.1 Interaction with the user

5.Hints for the integration of EDBLOG with PHOGS

5.1 Modelling and Garphics

5.2 Prolog Programming and Graphics

6. A proposal

6.1 Porting of EDBLOG

6.2 PHOGS built-in predicates in EDBLOG

6.3 Integration of PROGS segments into EDBLOG

7. References

8. Appendix

2

3

1. Overview oj the Project and Report

According to the Project aims (as it appears from the Allegato A of the Contract), the col1aboration
between the Istituto di Elaborazione dell'Informazione of C.N.R. and the Cascade Graphics
Development as been realized by repeated meetings of the two respective representatives P.Asirelli
and P. Castorina.

The first part of the year has been dedicated to know-how exchange. Assistance and materiaIs has
been provided concerning: the state of the art in Logic Programming; its theory and foundations;
Logic Databases in generai; a particular logic database management system reaIized by students,
tutored by Dr. P. Asirelli for their Thesis at the Dipartimento di Informatica of the University of
Pisa. Contribution to the thesis also arised from discussion between Asirelli and Castorina,
expeciaIly for the Transactions management part (see section 3).

The second part has been dedicated by Dr. Asirelli, Dr. Castorina and Dr. Mainetto to get insight
into PHOGS, and propose possible integrations with the logic database management system. In
particular, Dr. Mainetto has studied the PHOGS proposaI in details to get an effecive proposal for
extending MROLOG with PHOGS routines. Two reasons are behind the MPROLOG choice, one
is that both DBLOG and EDBLOG have been implemented in MPROLOG. The other is that, since
it was not clear what was the Prolog Language that Cascade wanted to use,we considered that
MROLOG is generaI enough and has a kernei common to all other Prolog's, so that the proposal
can be easily transferred into any other ProIog-like language.

This report will not get into impiementation detaiis which have been faced by Castorina while
starting the implementation. Furthermore, we will report here just an overview of the overall ideas,
where more care will be spent on the integration proposals.

We assumes the reader to be familiar with some Prolog Language and its interpreter. We also
intend this report to be integrated with the following notes:

P. Asirelli, M. Martelli, "Integrity Constraints, Redundancy and Consistency in Logic Data
Bases", CNUCE Int. Rep. C84-24, 1984.

P. AsireUi, P. Castorina, G. Mainetto, "Programmazione Logica, Basi di Dati Logiche e
Grafica", AICOGRAPHICS'85, Milano, 4-8 Novembre, 1985.

P. AsireHi, P. Castorina, G. Mainetto, "Logic Databases and Graphics: A proposal for
Integration" , I.E.I. Int. Rep. B85-1O, Settembre,1985.

P. AsireUi, M. De Santis, M. Martelli, "Integrity Constraints in Logic Data Bases",
Journal ofLogic Programming, VoI. 2, n. 3, Oct. 1985.

P. Asirelli, P. Castorina, G. Mainetto, "Integrazione di Ambienti grafici e Database
Logici", Proc. of Primo Convegno Nazionale sulla programmazione Logica, Genova, 12-14
Marzo, 1986

P. Asirelli, P. Castorina, G. Dettori, ilA ProposaI For a Graphic-Oriented Logic Database
System", to be presented at IEEE 2nd Int. Conf. on Computers and Application, Peking, China,
June 24-26, 1987.

4

2. lntroduction

2.1 Some basic notion on Data Bases

We will recali now some notion on database that will help clarify the various part of the system we
are presenting.

A Data Dase is a set of data collected and stored in a computer according to some particular
criterion.

A Database Management System (DBMS) consists of the software that allows the user to:
- use andlor update the data in the DATABASE,
- use and reason about the data in abstract tenns more than on implementation details.

Furthermore, the DBMS must posses the following features:
- Security - that is, protection against uncontrolled access to the data;
- Integrity - that is, control over certain kind of "Consistency Constraints";
- Syncronization - that is, maintenance of the system consistency when the system is used by more
than one user, simultaneously.
- Crash protection and Recovery.

A Database System can be seen from different point of view, each one corresponding to a different
level of abstraction.

View

1

View

2

View

n

Conceptual Phisical

Data Base DataBase

fig·1

The Phisical Database is the only database which really exists. lt can be considered as a collection
of Files andlor simple data structures.

The Conceptual Database is the abstract representation of the phisical database.

Views are abstraction of parts of the Conceptual Database.

Furthennore, there are other two dimension to be taken into account, apart from the levels of
abstraction we have seen:

5

- the instances of tlle database, i.e. the current data in the database;
- the schema, i.e.the enumeration of the entity types and of relations among entity types,
according to the level of abstraction referred to by the schema. Thus, for example, we can have a
Phisical Schema corresponding to the Phisical Database, and, the Overall Schema corresponding to
the Conceptual Database, while Subschemas correspond to the different views.

The Data Model is a set of logical structures used to describe the Conceptual Schema. The model
has to be rich enough to be suitable to describe significant aspects of the real world, but, on the
other hand, it has to make it possible to determine, almost automatical1y, an efficient
implementation of the Conceptual Schema (by the Phisical Schema).

It is difficult, and very important too, to determine the appropriate Data Model. fact, the DM
defines the general mechanisms to access the data, and, when such mechanisms are not suitable,
the resulting Database may result to be very inefficient. Researches in the field of Data Models are
still active, yet the Entity/Relationship mode1 is generally considered to be one of the most
advanced, from the point of view of its expressiveness and naturalness. The Entity/Relationship
model generalizes and extends the classical models, such as the Relational Model.

Traditionally, the Phisical Schema and the Conceptual Schema are expressed by means of different
languages, the second one being defined in terms of a programming languages to implement the
Conceptual Schema. DBMS's also are implemented, often , using a different programming
language and the query language for the extemal user often has a logic syntax to be interpreted
onto the Phisical Schema. Thus, often, more than one language is involved in a DBMS and
appropriate interpreters and algorithms have to be defined. As it will be clearer later on, logic offers
a uniform language in which the Data Mode1 can be defined and, being such language a
programming language too, the implementation is immediate (the Conceptual Schema is also the
Phisical Schema), the query language is the same language used anywhere else and the DBMS too
is defined using the same language, providing for definition and implementation. The interpreter
and the algorithms are based upon the same mechanism, i.e. Resolution [Robinson 65].

2.2 The syntax used

Let us define the syntax of the logic language we will use so that the examples can be more easily
understood. Let us stress out that the language we use is exactly the one introduced first by
Kowalski and van Enden in [Kowalski 74] and that it is compatible with all Prolog languages
commercially available.

A logic program consists of a set of clauses (Horn Clauses).

Each clause looks like:

facts (ground unit clauses)

rules

where A, BI' ... ' Bn are literals. A is the consequent, BI'.'" Bn are the premises and they
look like p (t 1"." t m) where: p is a predicate symbol and t V· .. , t m are terms.

The informaI interpretation of a clause A f.-B 1"'.' Bn is that, A holds if BI"",
hold.

i - knowledge representation;
ii - knowledge acquisition;
iii - use of knowledge;

7

A Logic Database Management System is thus seen as system for "knowledge management".

While knowledge in such a system is represented by means of Horn Clauses, knowledge
acquisition has to be faced by defining updating operations which guarantee the database integrity
consistency,. and /or redundaney.

The use of knowledge is instead related to the query language interface and the query evaluation
processo

2.3.1 Querying the LDB

The most common use of Logic in the database field has been, unti! recently, confined to the query
language and to integrity constraints formulas. In both cases an interpreter is then necessary to
transform the formulas into the intemallanguage, say QBE, SQL or the relational algebra language.

On the other hand, logie programs are used via resolution of goals, where the initial goal is
considered as the main program. It immediately follows that, when the database is represented by a
logic program, a query is nothing else than a goal to be resolved against the program. The query
evaluation process is resolution.

Integrity constraints are formulas which are properties of the logic program denoting the database
and, in some cases resolution ean still be used to verify them.

2.3.2 Basic Updating Operations

Updating operations in a LDB framework are related to knowledge acquisition. Operations are
necessary to introduce/delete new/old facts and rules and, also, integrity constraints formulas.

Furthermore, updating operations must provide for integrity checking. This means that, when a fact
or a rule is introduced, the obtained database must be consistent with respect to integrity formulas.
The updating request must be denied when it would lead the database in an inconsistent state.

The introduction of a new integrity formula also cause verifieation of the actual database against the
new formulas.

Updating operations also have to deal with redundancy problems. Such kind of problems are
related to implementation and installation issues. They do not affect correctness of the system or its
logical consistency.

2.3.3 Integrity Constraints Handling

Being the logie database we consider a logic program, integrity eonstraints (properties whieh the
database must posses), can be considered as properties of logie programs, thus assimilating the
problem of integrity eonstraint eheeking to that of logie programs properties proving.

Although logie programming offers a straightforward way of implementing deduetive database s,
some restrictions are needed to guarantee the termination of the query evaluation process and the
evaluation of negative queries. Thus the c1ass of logic programs has to be restricted to hierarchieal

8

program definitions which do not allow recursive definitions [Clark 78, Shepherdson 84]. This
restriction can be partially relaxed, at least with respect to negation and to certain kinds of queries
[Barbuti 86].

In [Asirelli 85] an approach to integrity constraint handling for hierarchic databases is proposed in
which a database is considered as consisting of a logic program plus a set of formulas, which must
be proved to be true in the minimal model of the given program. Since a database will be updated,
two approaches are proposed for integrity constraints checking. One approach (The Modified
Program Method) considers a subset of the given logic formulas, called IC - lntegrity
Contraints, and uses them to modify the logic program automatically so that the given formulas are
true in its minimal model (with respect to the model theoretic semantics).This means that all facts
which do not satisfy IC are not provable/derivable from the modified logic program!DB (i.e.
illegal queries cannot succed). The other approach (The Consistency Proof Method)
considers a wider class of logic formulas (called Controls), and proves that they are true or false
using a metalevel proof, on request from the user. The description of the algorithms is sketched in
the next section, while a detailed description of them can be found in [Asirelli 85 and De Santis 85J.
The integrity constraints formulas and the integrity checking algorithms can be extended to work on
database which admit some recursion in the spirit of [Aquilano 86]. Structured database can be
considered too. The extension to generally functional is described in [Mauro 85].

2.3.4 Redundancy

Redundancy probblems are related to excess of information. That is to say that, for example, when
a fact is added to the database and the same fact is already derivable, than a choice has to be made
depending on time or space considerations.

Time considerations concern time of response in the query evaluation process, while space
consideration concern the amount of storage needed for the database.

Generally it is faster to derive information which are explicitely stated than to derive them by rules.
Thus, time considerations encourage the introduction of facts instead of rules.
On the other hand, rules denote a set of facts succinctly. That is, rules allows to save the store.

The above considerations must be taken into account when adding redundant information. dme
has to be saved than redundant facts are accepted, while if space has to be saved they have to be
rejected.
This alI means that an LDBMS should provide for two modes of behaviour, letting the user to
choose between them depending on its machine.

Details on the treatment and implementation of Redundancy Controi are described in [Asirelli 84
and De Santis 85]

2.3.5 Transactions

When a DBMS becomes something more than a toy system, the user has to be provided with
facilities to express compound updating operations. Compound updating operations, in the
framework of databases are often called transactions.

A transaction definition language is generally defined by means of yet another language with its
own interpreter that has to be integrated with the DBMS. Transactions allow a user to define its
own operations at a more abstract level, in terrns of other transactions or repetition of basic
updating operations.

Execution of transactions involves problems of consistency and redundancy as well as basic

9

updating operations. The database has to remain in a consistent state, or tit has to be reset into a
consistent state after system crashes or errors, thus abortion facilities have to be provided to undo
the effects of a transaction.

Of course, in a logic framework, the transaction definition language can still be based on logico
This does not require the user to learn a new language and, from the implementation point of view,
fiew efforts need to be made to build the interpreter using, once more, the basic resolution
procedure used throughout the system.

3.The Logic Database Kernel and its Management System (DBLOG)

3.1 The Logic Database Kernel

A logic database management system EDBLOG [Mauro 85] has been defined which is an
extension of DBLOG [De Santis 85] by introducing transactions definition and handling facilities.
DBLOG considers the database system as consisting of three parts:

a) a logic program in which:

a.l) the set ojjacts, "unit" Horn clauses, are considered to be the Extensional component of
the DB (EDB);

a.2) the set oj deductive rules, "definite" Horn clauses, are considered to be
component of the DB (IDB);

b) a set ofintegrity constraint formulas with:

b.l) a set oj /ntegrity Constraints (/C), which are formulas ofthe form:

Ak ~ BI"", Bs
which can be interpreted informally as: whenever Ak is true then

must also be true;

b.2) a set oj Controls jormulas which are either formulas as in b.l) or else

ii) ~ B 1, ... ,Bn

iii) A 1"'" Am~

Intensional

and ... and Bs

The informaI interpretation for i) is that whenever Al and ... and Am are true then BI and ...
and Bn must also be true; analogously ii) means that BI and ... and Bn must be true and, finally,
iii) means that Al and .. , and Am must be false.
Note that for formulas i)-iii), as well as for formula b.l), all the variables are intended to be
universally quantified, apart from the local variables (i.e. variables occurring only on the right hand
side) which are intended to be quantified existentially.

The basic components of the kernel can be depicted as follows:

10

IC

Facts

Rules

Controls

fig. 2

According to The Modified Program Method, le are used to modify the given set of Facts
and Rules, to obtain a new set of facts and rules denoted by Factsl and M-rules fig.2, where:
Factsl is a subset of Fact and, M-rules consists of both, facts which become rules and rules which
are modified by the modified program approach algorithm.

.. : : ~ : ~ ~ F DC t s : ~ : ~ : : : : : ~ : ; : : : : . :
~ ~ ~ ~ j ~ ~ j j j ~ i ~ ~ ~ ~ ~ j ~ ~ ~ ~:: ~ ~ ~ j ~ ~ ~ j j"ii
. : : ~ : ~ : ~ : Ru l es : ~ : : : : : : : : : : : ~ : ~ : :

For example:

age (david, 20).
age (mary, 22).

Tlle modjfjed

Progrem /'/el/Jod

fig. 3

.IC

FDCtsl

l'Lrules

employee (david).
employee (mary).

employee (Y) --> age(Y ,X), X>20
poss_dept_chief(X) --> age(X, Y). Y <65

poss_dept3hief eX) <-- older_employee (X).
older_employee (X) <-- age(X,Y), Y>40.

fig.4
Then the resulting database to be considered, after running the algorithm for the modified program
method is: .

13

Implementation issues and the complete description of such operations can be found [De Santis
85 and Mauro 85].

4. EDBLOG
EDBLOG is basically DVLOG extended with a theory of c1auses Prolog-lik:e to define transactions.
Such c1auses are either definite clauses or c1auses with the following syntax':

trans i +- precI I trans 1 , ... , trans n I postI

trans i +- prec2 I trans 1 , ... , trans n I post2
The language used to express transactions syntactically resembles Concurrent Prolog, with no
annotated variables [Shapiro 83]. The informaI interpretation is that to execute the operation trans,
the precondition (precI or prec2) must be first verified , and then the c1ause containing this
precondition must be cornrnitted, the body executed and the corresponding postcondition verified.
As in Concurrent Prolog, the commit operation is a way of expressing the behaviour of the Prolog
cut operator.

Preconditions and postconditions in the definitions of transactions will operate as particular forrns
of Controls which must be checked before/after the execution of the set of operations (body of the
transaction).

Since checking for consistency in a DB can be very heavy and rime consuming, preconditions and
postconditions are introduced to separate global DB controls (Controls) from those related to
particular transactions, thus reducing the number of necessary global Controls forrnulas.

The operational interpretation of these transaction definitions is the standard Prolog resolution of
clauses where clauses are tried in the order they appear in the program. Thus, the commitment will
be to the frrst c1ause whose precondition part succeeds: or-nondeterminism is not achievable.
Or-nondeterrninistic behaviour can be obtained by defining transactions which do not have the
cornrnitrnent operation, i.e. standard Prolog clauses.

The successful evaluation of a transaction causes the Controls forrnulas to be checked. The required
transaction operation is aborted if this Controls checking fails. The abortion of a transaction is
automatically handled (by backtracking), by ensuring that elementary updating operations are
backtrackable upon failure. Abortion is also started upon failure of postconditions or of some
operations of the body, thus obtaining an and-nondeterministic behaviour ofthe clauses.

The system can be seen as an amalgamated theory [Bowen 82, Furukawa 84] consisting of the
meta-theory (the theory which handles the evolution of the database), and the object theory (the
logic database).

The set of elementary updating operations must be extended to introduce/delete transactions
definition.system as a meta-theory with respect to the DB.

14

5. Hints for the integration 0/ EDBLOG with PHOGS.

In the two final chapters of our relation we deal with problems related to integrating graphical
capabilities with a database management system in a logic programming framework. The ultimate
aim of the integration is to build a system which allows the programmer to develop graphical
applications in a programming environment which offers a full set of graphicaI functions, while
taking advantage of the facilities of logic and databases. This means to offer the ability to operate
with objects having graphical and non-graphical properties and to generate other objects by
deduction from those already existing, as well as the ability to prove properties of objects in the
considered environment.

A satisfactory solution for this subject involves a lot of researches in different theoretical and
applicative areas which until now have been considered separate or whose proposed solutions seem
to be inadequate: modelling and graphics, deductive databases and DBMS, Prolog programming
and graphics.

In the next two sections, an overview of the ideas that are going on in these fields will be provided.
In the third section we will describe a feasible approach to integrating EDBLOG and PHOGS: the
aim of the integration is to realize an environment to be used for testing new ideas and further
developments. In the last chaper we will briefly describe the architecture of a system that should be
investigated in order to give a final solution to the amount of problems involved in CAD/CAM
applications.

5.1 Modelling and Graphics

The problem of modelling for computer graphics has been faced in the framework of relational
DBMS.

Indeed, computer graphics manages complex objects that represent graphical data. A complex
object can be thought of as a hierarchically organized collection of data describing an object. This
idea works well for graphical data because most pictures are hierarchical in nature. To support such
an idea, many computer graphics systems, both standard and non-standard, provide facilities for
structuring complex objects (pictures) as hierarchies consisting of "segments" i.e. subpicture which
can be manipulated and displayed indipendent1y from the rest of the picture.

When the concept of complex object is applied to a relational DBMS, a hierarchy of nested relations
is obtained. These relations, conveniently arranged, are a practical tool sufficient to satisfy
requirements of computer graphics [Boeing 81, Weller 76]. The use of a relational DBMS as a
place-holder into which the representations of segments are stored realizes the independency of the
data model from the application, allows an easier integration of graphical and non-graphical data,
permits the sharing of the graphical application data with related applications.

[Spooner 84] shows an approach to the integration of a relational DBMS as the data modelling
component of a graphics application with an interactive graphics system. The interface between the
DBMS and the graphics system is designed to be portable, that is adaptable to various standard
graphics package like PHIGS and GKS.

Efforts are going on in the logic programming area to study the problem of defining a graphical
interface to a database.

[Pereira 86] shows that the logic programming language Prolog can be used to hold the graphical
representantion of an object and to describe how the object can be graphically displayed on a
terminai or, viceversa, how an object can be identified via suitable graphical input operations.

15

The book-keeping of graphical representations is performed with the use of unitary clauses. Via
this type of clauses both complex and primitive object representations are holded. The same set of
program clauses (Prolog procedures) are used to implement view and identification operations: this
is an ex ampIe of the advantages that an implementation can take of the Prolog functions' invertible
property.

This approach implies a different definition of the usual standard graphical abstract functions in
order to satisfy the requirements of a non-procedural programming language such as Prologo
Further details about this last subject will be shown in the next section.

5.2 Prolog Programming and Graphics

From its beginning computer graphics has been connected to algorithmic languages. There are
many applications for full graphical interaction with computers, mostly at a lower level than
PROLOGo The graphical interaction is usually embedded in an algorithmic language by some
graphics extensions. Therefore, since most algorithmic languages are procedural (the algorithm is a
procedure), computer graphics is also procedurally oriented. In other words, in each
implementation a set of graphics procedures (subroutines, ecc ...) exists, representing the basic
graphics functions.

Some attempts have been made to find a generaI set of graphics functions suitabie for a wide range
of applications and not connected to a particular algorithmic language. CORE, GKS, PHIGS and
recently PHOGS are good examples for such a language-independent system. However, the
structure of graphics package is strongly influenced by the procedural structure of the algorithmic
language even if they are language-independent.

AH these graphics packages consist of a set of functions for the manipulation of graphics data
structures and for the management of graphics devices. The type of data structures and abstract
functions provided by a package, and aiso the way into which the solution of a graphical problem
can be implemented using such package are directly connected to the data structures and functions
of algorithmic languages and to the von Neumann style of specifying an algorithm, i.e. via
sequential steps.

For example, the most widespread graphics package GKS has a layered structure and provides one
layer which is the unique part of the system dependent from the language, representing the interface
between the system and the application language. This interface has been completely standardized
for several algorithmic languages like Pascai and FORTRAN. The abstract GKS functions are
represented in these two Ianguages as subroutines or procedures, available in libraries. The GKS
data types are easi1y mapped onto correspondent data types of the two languages (integer, real,
array, etc ...).

Prolog [Clocksin 81] on the other hand differs from other algorithmic languages in its basic
concepts.

In Prolog the programmer only describes what problem has to be solved. He is not corcemed with
how the specification is executed by a machine. The problem-specific knowledge (Le. the logic) is
separated from the controi components which are Ieft to the machine. This paradigm of separation
between logic and controi is realized in Prolog [Kowalski 79]: the Prolog programmer is free from
any controi specification.

Furthermore, many data types widely used in graphics are not available in Prolog implementations.

16

To define the Prolog-graphics interface the requirements of both the procedure-oriented graphics
applications and the description-oriented host language Prolog have to be satisfied. There are two
approaches to integrating graphics into Prolog:

a) the implementations of graphical functions especially designed for Prolog, taking into account
the prolog features.

b) the connection of Prolog with an existing graphical package.

The first approach is actually used above alI for small graphics packges which support simple
Prolog applications. The visualization of the Prolog execution tree or the use of graphics for
debugging Prolog programs are examples of such applications. This approach is also suitable for
personal computer-iplementations, taking into account some performance and memory constraints.
Graphics in Micro-Prolog [Julien 82] is a good example for this approach.

This first type of approach can be considered similar to the one briefly summarized in the previous
section, but here the emphasys is on the prolog language rather than on the way to hold relations
representing graphical objects in a database.

For more complex graphics applications a powerful graphics package is required. By taking the
second approach, the problems of integrating a standardized graphics package
description-oriented language Prolog have to be solved.

The second approach has been mainly investigated in the framework of integrating Prolog and the
GKS standard graphics package.

(Syke85] presents a proposal for Prolog binding to GKS.

[Hubner 86] is another interesting proposai regarding the same subject. The authors extend the
Prolog interpreter with two types of functionalities:

a) a set of built-in predicates which correspond one-to-one to GKS abstract functions
(workstation control functions, output primitives, output attributes, some transformations,
errar handling).

b) a set of predicates expecially designed for the aim of managing and displaying on a terminal the
segments (complex object representations or "pictures"). During the execution, the segrnents
reside in the memory handled by the Prolog interpreter: they are a particular type of unitary
predicates which can be loadedlstored from/onto the disk storage.

A special "segment interpreter" evaluates the segments and produces as result the set of graphical
built-in predicates corresponding to their representations.

The concept of segment takes full advantage of prolog capabilities; indeed, one segment can have
parameters and inside its definition Prolog control predicates can appear.

These ideas have been implemented on a Unix machine.

This paper provides many useful suggestions to be taken into account when a UnÌx programmer
deals with the implementation problems of the integration.

17

6. A proposal

Given that the integration must take pIace between EDBLOG, actually implemented in MPROLOG
[Mprolog 86] on a VM/CMS operating system using the simple database management support
provided by every Prolog implementation, and PROGS [Biagi 86], actually implemented in the C
language on a 4.2 bsd UNIX operating system, we propose a type of integration that can be easily
put into effect. This integration can provide a useful environment for exploring new ideas, testing
future developments, gaining further experience on this subject.

The proposed integration supposes that the logic environment contains the application program and
it directs the overall computation of the integrated system. In order to obtain an environment that is
suited for graphical application programs, we must render the segment description visible in the
logic part of the system. As previously noted, the description of segments constitutes a database,
inc1uding information on hierarchical relationships among them. The main purpose of
integration is to increase the EDBLOG facilities to include segments management ones, while
leaving to the PROGS library the task of segment visualization and input handling. Application
programs will be realized as a series of Prolog predicates which can take full advantage of the
EDBLOG database management facilities and of the PROGS high level device interface.

PROGS is a library composed of a set of routines. These routines have their own interface with the
application programs (parameters and their types), use their own data structures, and have a
strategy for memory management. The most part of the implementation decisions will not be
modified in the proposed integration. Particularly, the PROGS PDS (Parent Data Structure) and
HSS (Rierarchical Segment Storage) will not be changed and will coexist with the logic database of
segments. PROGS data structures and their logic counterparts will remain consistent during the
computation of the applicative program.

The advantages of this integration are:
a) rapid development, ease of the implementation, PROGS investment saving, primarily due to

the fact that PROGS can be used almost as it is, with only few changes;
b) possibility of dealing with segments as logica! database objects on which facts and deductive

rules can be defined in order to express graphical and non graphical properties;
c) solution to the problem of the segments archiving on secondary storage, which can be easily

implemented in the logic part via EDBLOG facilities;
d) solution to the probIem of managing the non-graphical data inserted in segments desciptions.

The main disadvantage of the proposed integration is the waste of memory at run dme. Indeed, the
contemporary presence of two representations of the same c1ass of objects (segments) both in the
logic and graphical parts of the integrated system produces this effect.

The integration takes pIace in the following three steps:
a) porting of EDBLOG on the UNIX system;
b) integration ofProlog and PROGS via procedural extensions (built-in predicates);
c) rendering visible the segment representations to EDBLOG via the definition in Prolog of layer

of graphical predicates that handle the logic database of segments before calling the PROGS
counterparts.

6.1 Porting of EDBLOG

EDBLOG is actually coded in MPROLOG over VM/CMS.

MPROLOG is an appealling Prolog implementation. Its main charateristics are the modular
definition of the language, that allows separate compilation s, and the presence of a set of too1s that

18

constitute a flexible programming environment. Furthermore, in the last MPROLOG version a new
tooI, the compiler, is availabie. Compiler will increase the efficiency of the produced code. In the
last version of this product [Logie 86], the programmer can develop applications using an
interactive environment to test and debug his/her modules (PDSS), and then, when alI modules
perform their intended meanings, s/he can use a series of tools in order to produce an efficient code
(Pretranslator, CompiIer, Consolidator).

MPROLOG is also available on Unix systems, like on 4.2 bsd, the version of Uni x running on
Sun workstations. The various versions of MPROLOG are alI highly compatible.

The acquisition of the 4.2 bsd version of MPROLOG is the cheapest solution that minimizes cost
and time of EDBLOG porting. In this case only few changes to the actual EDBLOG code are
needed due to the different way of naming fIle in VM and in UNIX.

In case of choosing another Prolog implementation running on 4.2 bsd Unix, the cost of porting
would not be excessive due to the implementation decision of using, as far as possible, "standard"
Prolog Dec-1O routines in VM EDBLOG. These routines are usually available in all Prolog
impiementations.

6.2 PHOGS built-in predicates in EDBLOG

Prolog is not a pure logie interpreter. The Iogic programming in Prolog is based on a procedural
approach for the interpretation of logico Some procedural extensions (built-in predicates) are also
available in Prolog. Thus, we can add PROGS functions at a Prolog procedurallevel using built-in
predicates.

Many Prolog systems provide facilities to add built-in predieates without directly modifying the
interpreter. One built-in predicate can be implemented in a high-level procedurallanguage.

Consider the MPROLOG system on 4.2 bsd Unix over Sun machines [OS 86]: an MPROLOG
program can define predicates that calI "external" routines written in languages lilce C and
Assembier. AlI the extemal routines coded in C constitute a set of modules loaded at one at
time when one of the routines of a module is called.

This MPROLOG capability is particuIarly well suited to the aim of extending MPROLOG with
PROGS routines at present coded in C. A smal number of updates must be implemented in the
actual PROGS code:
a) change every PROGS routine to retum success or failure when executed;
b) modify the routines that retums one value (the "functions") in this way: add one more item to

the routine parameter list; this new parameter will serve as a place-holder where the
MPROLOG caller can find the output value, i.e. the value actually associated to the routine
name;

c) define a mapping between the actual type of input/output parameters of routines and the
available types ofparameters that can be exchanged between MPROLOG code and C routines.
Modify accordingly PROGS routine code. The last version of MPROLOG provides support to
exchange data of three types: integer, real and stringo

That is alI for PROGS routines from the C point ofview.

From the MPROLOG point of view there is still a probIem to deal with. This problem occurs the
MPROLOG predicate that calls the PROGS routine: calls to extemal C routines fail on backtracking
and their effects are not "undone".

19

One possible solution is simply to ignare the problem: indeed the programmer is aequanted with
sueh a behaviour and, if s/he wants, s/he ean use MPROLOG extra-Iogical predicates ("flow
control" facilities) to proper1y manage baektraeking.

In arder to provide a c1ean semanties far MPROLOG-PROGS routines, we must define for every
routine that changes the state of the graphical system an undo function that restores the state on
baektracking. The correet semantics of a PHOGS routine can be directly implemented in
MPROLOG, using a combination of MPROLOG and PROGS predicates.

One possible "compilative" approach is to try to define a new tool that will be the first and
mandatory phase of the applicative program translation process and will produce the intended
sequence of code as output. Far example, let .. a .. , set_corresponding_textJont(l), .. b .. be the
sequence of code containing the PHOGS routine we want to undo on backtracking. We could map
this sequence to the following MPROLOG code:
.. a .. ,
inquire _corresponding_textJont (XXX),
(set_corresponding_textJont (1), .. b .. ;
set _text Jont (XXX), fail)
provided that XXX is an unbound variable no! presente in .. a .. and .. b ...
Unfortunately, many PHOGS routines have different semantics depending on the state in which
they are executed and the run-time state cannot be inferred from the text of the program. One
example of such situation is the set of PHOGS output primitives that have different effects when
executed in INOP or in SGOP state: in the former case they are immediately displayed, in the latter
they are inserted in the current segment. This characteristic of PROGS renders ineffficient the
compilation solution.
We propose to define a layer of MPROLOG predicates that perform the expected actions on
backtracking. If the current state of the graphical part of the system is needed, it is estabilished via
the PROGS routine inquire_system_state_value . Here is an example:

texc2 (S) ~
inquire system state value (STATE),
(STATE = "IN-OP", -

(text 2 (S);
)Ielete_interactive yrimitive, fail);

STATE = "SGOP",
(text 2 eS);
_ delete_ segment yrimitive, fail)

).
where _ delete _ segment yrimitive is a new PHOGS routine that deletes the last element inserted
one segmento It is worth noting that PHOGS routine names have a prefix underscore sign to
prevent recursion. This set of predicates can constitute a module that includes the external
declarations to be linked to every graphical application program.

A complete study is needed far every routine to controi whether actual PHOGS routine are
sufficient to correctly describe the undo functionality or some new routines must be defined.

In the next section we will discussin details the semantics of the MPROLOG-PHOGS routines that
allow a user program to enter/exit into/from the states where segment representation are managed.

6.3 In tegratio n oJ PHOGS segments into EDBLOG

In this section we describe the way of integrating the database of segments and their hierarchical
relationships into EDBLOG. Such integration will be realized via the definition of a set of Prolog
predicates, one far every PROGS routine that handles segments. The tecnique is similar to the one
described in the previous sectione regarding the undo function.

20

In PHOGS there are two states in which the user can manage segments representations: SGOP i.e.
segment open and EDIT i.e. segment edito We define an MPROLOG predicate for every routine
that can occur in these two states and for those routines that enable the user program to enter/exit
from these states. The purpose of MPROLOG predicates is to collect segment representations a
logica! manner before calling the corresponding PHOGS routine. When the user program exits
from one ofthe two states, the collected representations are inserted in the EDBLOG environment.

The MPROLOG definition ofpredicates is given in Appendix.

Segments are represented in EDBLOG as a set of "segment" facts. Every segment fact is a pair
consisting of a segment name and the list of predicates that describe the segmento For example:

segment (dummy, [poly __ marker _2 (.), set_color (. ..), execute (b))).
segment (square, [poly_line_2 (1, 1, 1,2,2,2,2,1,1, 1))).

The hierarchical relationship among a "father" segment and its "son" subsegments, is also
represented with a similar fact that describes for every segment the list of sons "executed" by the
father.

subsegment (dummy, [b]).
subsegment (square, []).

In EDBLOG we can insert a couple of deductive rule that estabilish whether a segment is primitive
or compound:

compound (Seg_Name) f- subsegment (Seg_Name, [_ l_D.
primitive (Seg_Name) -f- subsegment (Seg_Name, [D.

About segment application data, we propose that they are completely managed by the MPROLOG
predicate insert _ application _data. insert _ application _data has no PHOGS counterpart. This
predicate has two parameters: a tag for the data and a value. When the edited segment is finally
c1osed, application data will be inserted in EDBLOG as facts of the following form:

segment _name (tag, value).
For example, if the application program is editing the segment "a" and if it wants to add the
following data to the current segment description:

insert application data (cost, 100)
this predicate wi1i result, when editing will end, in the insertion of the following fact in EDBLOG:

a (cost , 100).

We have final1y to deal with problems related to MPROLOG-PHOGS routines to enter/exit
into/from SGOP and EDIT states.

From the logical point of view, the full set of predicates inc1uded between the entry into one of the
two states (i.e. the set of operations that start with a open _segment or an open _ edit operation) and
the corresponding exit (i.e. the previous set ends with a close_segment or a close_edit operation),
constitutes a "segment transaction" that is a single operation that updates the logica! database of
segments.

We want to model a segment transaction in a manner similar to the usual EDBLOG transaction, and
in particular we expext that:
a) when a segment is insertedjmodified in the logical part of the system, the database of segments is
checked for consistency and the new item becomes part of the database if and only if lC and
Controls are satisfied;
b) if the previous operation produces a failure, the effect of the segment transaction are completely
undone also in the graphical part of the system.

21

In order to provide such a behaviour in EDBLOG, we define segment transactions as a set of
clauses whose body begins with the predicate that enters in SGOP or EDIT state and ends with the
following sequence: commit (I), predicate that exits from the corresponding state, commit (I).
The body of the c1ause representing a segment transaction is constituted from "primitive"
backtrackable graphical predicates, calls to the usual user-defined EDBLOG transactions, primitive
logical Prolog predicates, calls to Prolog user-defined predicates, but the programmer cannot insert
operator insert Prolog operator like cut and slash to avoid problems related to such extra-logical
Prolog mechanisms.
We embed a segment transaction definition in a particular predicate like segment_tr in order to
check its synctatic defintion:

segmenctr (namel, VarI, , VarN) f- open_segment (..), I close_segment I.
segmenctr (name2, VarI, , VarM) f- open_edit (. .), I close_edit I .

namel, name2, .. are ground atoms. The commit operator is mapped in cut. The definition of the
four MPROLOG-PHOGS predicates is given in the Appendix: they are, as usual, MPROLOG
predicates that call the corresonding PHOGS routine. open_segment and open_edit are
backtrackable. dose segment and dose edit frrst calI PHOGS routine; then issue a real EDBLOG
transaction that tries to insert the segment representation and hierarchical relationship and
application data into the database; if this attempt fails, the segment is also discarded from PHOGS
database and the failure is propagated back that is the complete segment transaction fails due to
presence of the commit operator.

7. REFERENCES

[Asirelli 84] Asirelli P. ,Martelli M., "Integrity Constraints, Redundancy and Consistency in
Logic Data Bases", CNUCE Int. Rep. C84-24, 1984.

[Asirelli 85] Asirelli P., De Santis M., Martelli M., "Integrity Constraints in Logic Data
Bases", Journal oj Logic Programming, VoI. 2, n. 3, Oct. 1985.

[Aquilano 86] Aquilano C., Barbuti R., Bocchetti P. and Martelli M., "Negation as Failure.
Compieteness of the Query Evaluation Process for Horn Clause Programs with
Recursive Definitions", J. oj Autonated Reasoning, n. 2, 1986, pp. 155-170.

[Barbuti 86] Barbuti R. and Martelli M., " Completeness of the SLDNF Resolution for a Class
ofLogic Programs", Proc. ojthe 3rd lnt. Conj. on Logic Programming, London,
1986.

[Boeing 81] "User guide: RIM 5.0 Prime PRIMOS", Boeing Commercial Airplane
Company,Seattle, Whashington, 1981.

[Bowen 82] Bowen K.A. and Kowalski R.A., " Amalgamating Language and Metalanguage in
Logic Programming", in Logic Programming , (Clark K.L. and Tarnlund S.-A.
Eds), Academic Press, London, 1982.

[Cloksin 81] Clocksin, W.F., and C.S. Mellish, Programming in Prolog, Springer Verlag,
New York, 1981.

[De Santis 85] De Santis M., "Logic Programming e Database: un ambiente di sviluppo adatto al
trattamento dei vincoli di integrita''', Tesi di Laurea, Dip. Informatica, U niversita'
di Pisa, Jan. 1985.

22

[Furukawa 84] Furukawa K. et al., " Mandala: A Logic Based Knowledge Programming
System", Proc. ofthe /nt. Conf on Fifth Generation Computer Systems, (ICOT
Ed.), Tokio, 1984.

[Giannini 86] F. Giannini and E. Grifoni, " Programmazione Logica in Ambiente di Sviluppo
Software: Data Base Logici come Data Base di Progetto", Tesi di Laurea, Dip.
Informatica, Universita' di Pisa, Oct. 1986.

[Hubner 86] Hubner, W., and Z.1. Markov, "GKS Based Graphics Programming in Prolog"
Computer Graphics Forum, VoI. 5, March, 1986, pp. 41-50.

[Kowalski 74] R. A. Kowalski, " Predicate Logic as Programming Language", Proc. /F/P-74
Congress, 1974, pp. 569-574.

[Kowalski 79] R. A. Kowalski, Logic for Problem Solving, Artificial Intelligence Series, (Ed.
Nilsson, N. J.). North-Holland, 1979.

[Julien 82] Julien, S.M.P., "Graphical in Micro-Prolog"Res. Report DOC 8217, Imperial
College, London, 1982.

[Lloyd 84] J. Loyd, Foundations of Logic Programming, Springer Verlag, New York, 1984.

[Logic 86] "Logic-Lab Reference - Release 2.1", SZKI, Budapest, Hungary, 1986.

[Mauro 85] F. Mauro, "Basi di Dati Logiche: un Approccio al Trattamento delle Transazioni",
Tesi di Laurea, Dip. di Informatica, Universita' di Pisa, Nov. 1985.

[Mprolog 86] "MPROLOG Language Reference - Release 2.1", SZKI, Budapest, Hungary,
1986.

[OS 86] "OS - Specific details", SZKI, Budapest, Hungary, 1986.

[Pereira 86] Pereira, F.C.N., "Can Drawing Be Liberated from Von Neumann Style?", Logic
Programming and Its Applications, van Caneghem, M., and D.H.D. Warren
(Eds.), A.P.c., Norwood, New Jersey, 1986, pp. 175-187.

[Phogs 86] Biagi, B., and C. Montani,"PHOGS - Version 2.00 - Functional ovcerwiew and
description",I.E.I, C.N.R., Pisa, 1986.

[Robinson 65] J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle",
J. Assoc. Computo Mach., n. 12,23-41, 1965.

[Shapiro 83] Shapiro, E. Y. and Takeuchi, A., Object-Oriented Programming Concurrent
Prolog, New Generation Computing, 1,1,25-48, 1983.

[Spooner 84] Spooner, D. L., "Database Support for Interactive Computer Graphics",
Proceedings SIGMOD, 1984, pp. 90-99.

[Sykes 85] Sykes, P., and R. Krishnamurti, "A Proposal for a Prolog Binding to GKS",
Tech. Report EdCAAD, Univo ofEdinburgh,1985.

[Wel1er 76] Weller, D., and R. Williams, "Graphics and and Database Support for Problem
Solving", ACM SIGGRAPH Computer Graphics,Vol. lO, Summer 1976, pp.
183-189.

23

8. APPENDIX

In this appendix we give the list of definitions of MPROLOG predicates that interface the
application program with the PHOGS system, modified to be called from the MPROLOG
environment.

The definitions regard the most significant PHOGS primitives that can be issued in EDIT and
SGOP state. We are only interested in routines that change the state ofthe system order to render
them backtrackable.

This technique can be easi1y extended to the other four PHOGS states as shown in 6.2 .

SGOP

ControI functions

open_segment (Name) :-
assclause (editing_seg (Name, []),
assclause (editing_segparts (Name, []),
assclause (editing_segappi (Name, []),

_open_segment (Name);
_close_segment 0, _open_edit (Name) ,
_delete_segment (Name), _close_edit 0,
faiI.

This predicate definition creates in a temporary storage the facts that will be asserted in the logical
database of segments when the segment will finally be closed. We use the predicate assclause to
create the temporary fact because this predicate is backtrackable and its effect will be undone on
failure. The second part of the definition discards the effect of the frrst part from PROGS system if
the segment transaction fails.

close_segment() :-
_ close _segment (),
editing_seg (N, Dese),
editing_segparts (N, Sub),
editing_segappl (N, Appl),
sgop_transaction (N, Dese, Sub, AppI);
_open_edit (N), _delete_segment (N), _close_edit 0, fail.

sgop_transaction (N, D , S, A) f-I, insercf (segment (N,D», insert_f (subsegment (N, S»,
sgop_appl (N,A), I .

sgop_appl (N,[]) f- I .

sgop_appl (N,[[H I T] I Rest]) f-I, insert_f (N(H,T), sgop_appl (N,Rest), I .

This predicate picks from the temporary storage the previously collected facts and inserts them in
the logical database via the sgop_transaction. If the introduction creates a fail, the whole segment.
is discarded from PHOGS system and the failure is propagated back to the calling segmenCtr, that
will also fail.

Output primitives

We define one predicate per output primitive. Here is an example:

texc2 (S) :-
inquire _ system _state _value (STATE),
(STATE = "INOP",

(text 2 (S);
_ delet~interactive yrimitive, fail);

STATE = "SGOP",

).

(_text_2 (S), append_seg (editing_seg, [texc2 (S)]);
_ delete _segment yrimitive, fai!)

24

The predicate append_seg appends to the current editing_seg the list given as second parameter. It
is backtrackable.
The other predicates are obvious.

IndividuaI and generic attribute selection, modelling transformations, view operations.

The problems can be solved in the manner previously specified.

Segment content functions.

execute_segment(S) :­
execute (S),

append_seg (editing_seg, [execute_segment (S)]),
append_seg (editing_segpart, [S]).

insercapplication_data (Tag, Value) f-

append_seg (editing_segappl, [[Tag, Value]]).

Note that this predicate has no PHOGS counterpart.

copy_segment (Name) f­

_copy_segment (Name),
segment (Name, Dese) , append_seg (editin~seg , Dese).

segment (Name , Desc) is a query to the logical database of segments.

copy_block (Name, From, To) f-

copy block (Name, From, To),
segment (Name, Dese),
length (Dese, L), L >= To,
gecelements (Dese, From, To - From + 1, GecList),
append_seg (editing_seg , GecList).

geceiements extracts a sublist from the list given as first parameter and unify the sublist with the
last parameter. The sublist begins in the position passed as second parameter and has a length equal
to the third parameter.

25

Other PROGS functions.

They can be implemented using a combination of the techniques just shown.

We are only interested in controi functions. We have demonstrated that the proposed approach is
feasible.

Controi functions

open_edit (Name):-
segment (Name, Dese),
assclause (editing_seg (Name,Desc»,
subsegment (Name, List),
assclause (editing_segparts (Name, List»),
bag_of (X, Name (X, _), LI),
bag_of (Y, Name (_, Y), L2),
merge (LI, L2, L3),
assclause (editin~segappi (Name, L3»,
open edit (Name);

-close- edit 0,
fail. -

VI e retrieve the segment deseription and hs associated infonnation in the logical database and we
insert them in the temporary storage. merge is a predicate that given the two lists of the same length
passed as first and second parameters creates one list of couples of elements corresponding to the
third parameter.

c1ose_segment 0:-
dose edit (),

editini-seg (N, Dese),
editing_segparts (N, Sub),
editing_segappl (N, AppI),
edictransaction (N, Dese, Sub, Appl);
_open_edit (N), _delete_segment (N), _close_edit 0, fail.

edictransaction (N, D , S, A) r l modify_f (segment (N,D), t),
modify_f (subsegment (N, S),t), appl_transaction (N,A) I .

appCtransaetion (N,n)r I .

appl_transaetion (N,[[H I T] I Rest]) r I, insercf (N(H,T), appl_transaction (N,Rest), I

