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Abstract: When a mother’s milk is unavailable, the best alternative is donor milk (DM). Milk delivered
to Human Milk Banks should be pasteurized in order to inactivate the microbial agents that may be
present. Currently, pasteurization, performed at 62.5 ˝C for 30 min (Holder Pasteurization, HoP), is
recommended for this purpose in international guidelines. Several studies have been performed to
investigate the effects of HoP on the properties of DM. The present paper has the aim of reviewing
the published papers on this topic, and to provide a comparison of the reported variations of
biologically-active DM components before and after HoP. This review was performed by searching
the MEDLINE, EMBASE, CINHAL and Cochrane Library databases. Studies that clearly identified
the HoP parameters and compared the same DM samples, before and after pasteurization, were
focused on. A total of 44 articles satisfied the above criteria, and were therefore selected. The findings
from the literature report variable results. A possible explanation for this may be the heterogeneity of
the test protocols that were applied. Moreover, the present review spans more than five decades, and
modern pasteurizers may be able to modify the degradation kinetics for heat-sensitive substances,
compared to older ones. Overall, the data indicate that HoP affects several milk components, although
it is difficult to quantify the degradation degree. However, clinical practices demonstrate that many
beneficial properties of DM still persist after HoP.
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1. Introduction

Human milk (HM) is the gold standard for the feeding and nutrition of preterm and term
newborns [1–3]. A mother’s own milk is the first choice for improving the short- and long-term
outcomes for all neonates [1]. However, the benefits of HM are mediated by several specific bioactive
and immunomodulatory factors, and HM can be considered a species-specific biological “dynamic”
system [4].

When a mother’s own milk is unavailable or in short supply (a common occurrence in Neonatal
Intensive Care Units), the World Health Organization and the American Academy of Pediatrics
recommend the use of donor milk (DM) as the best alternative [1,3]. Milk delivered to Human Milk
Banks (HMBs) should be pasteurized so as to inactivate viral and bacterial agents [5]. The ideal
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pasteurization process should consist of a phase of rapid heating, followed by a phase in which the
temperature is maintained constant, and a final phase of rapid cooling. Currently, a pasteurization
process at 62.5 ˝C for 30 min (the Holder pasteurization method, HoP) is recommended in all
international guidelines for the constitution of HMBs [5,6]. Pasteurized milk is known to retain
many beneficial and protective effects of HM. This method is thought to lead to a good compromise
between the microbiological safety and nutritional/biological quality of DM [7–11].

Nonetheless, it is also well known that HoP affects some of the nutritional and biological properties
of HM. Several studies have been performed to investigate the effects of Holder pasteurization on
the nutritional and immunological properties of DM, but a comprehensive review and comparison of
the related results is, to the best of the authors’ knowledge, not available in literature. Currently, the
available data consist of reviews regarding the advantages of donor milk, but very few details are
given on the effects of HoP on the nutrients of mother’s milk [12–16].

Thus, the present paper is aimed at reviewing the published papers, and at comparing the results
related to the effects of HoP on the biological and nutritive components of DM.

2. Search Methodology

The literature review was performed by conducting electronic searches of MEDLINE, EMBASE,
CINHAL and the Cochrane Library. The electronic search used the following keywords and MeSH
terms: (i) donor milk; (ii) banked milk; (iii) milk bank; (iv) milk banking; (v) (human milk OR donor
milk) AND Holder pasteurization; (vi) (human milk OR donor milk) AND pasteurization; (vii) (human
milk OR donor milk) AND storage; (viii) (human milk OR donor milk) AND heat treatment; (ix) (donor
milk OR Holder pasteurization) AND protein; (x) (donor milk OR Holder pasteurization) AND enzyme;
(xi) (donor milk OR Holder pasteurization) AND lipid; (xii) (donor milk OR Holder pasteurization)
AND saccharide; (xiii) (donor milk OR Holder pasteurization) AND vitamin; (xiv) (donor milk OR
Holder pasteurization) AND minerals; (xv) (donor milk OR Holder pasteurization) AND oxidative
stress; (xvi) (donor milk OR Holder pasteurization) AND cytokine; (xvii) (donor milk OR Holder
pasteurization) AND hormone; (xviii) (donor milk OR Holder pasteurization) AND growth factor;
and (xix) (donor milk OR Holder pasteurization) AND immunoglobulin. No limits concerning the
publication date were set.

Considering differences between the research protocols published to date, we focused the review
on studies with an experimental design that:

- defined exactly the pasteurization method precisely (62.5–63 ˝C for 30 min); and
- compared the same samples of HM before and after the heat treatment.
In order to limit bias in the inclusion/exclusion process, the selection was made with the consensus

of two authors (CP and MG).

3. Results

A total of 58 articles were found from a combination of the searches, but only 44 fulfilled all
the inclusion criteria. Table 1 summarizes the technical details on the methodological aspects of the
selected articles. Tables 2–4 provide an overview of the literature on the effects of HoP on different
components of DM.
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Table 1. Materials and Methods of the different studies included in the survey.

Ref * Preterm/Term Phase of
Lactation

Expression
Method Status Pre-Pasteurization

Storage
Pasteurization

Equipment Sample Size Analytical Method ˝

[17] N/A Mature N/A Frozen

´20 ˝C up to
6 months; thawing
in a water bath at
37.5 ˝C

Sterifeed:
pre-heated water
bath (63.2 ˝C);
62.5 ˝C for 301;
cooling in cold
water bath

17 pools—4 donors
each

Adiponectine: RIA

Insulin: electrochemiluminescence
immunoassay

Total fat: creamatocrit

Total protein: BCA

Total energy: bomb calorimetry

Glucose: enzymatic method

[18] Preterm and
Term Mature

Hand or
electric/manual

pump
Frozen

´20 ˝C until
processing; thawing
and heating to 40 ˝C
using a thermostatic
bath

62.5 ˝C for 301;
cooling to <4 ˝C
in stirred
thermostatic baths

34 samples—28
donors Infrared Analyzer (MIRIS)

[19] N/A N/A
Hand or

electric/manual
pump

Fresh No 62.5 ˝C for 301 57 samples Infrared Analyzer (Milko-scan
Minor)

[20] Preterm and
Term Colostrum Hand Fresh No 62.5 ˝C for 301

36 samples: <32
weeks; 32 samples:
32–36 weeks; 33
samples: >36 weeks

Total protein: refraction index

Lysozyme: lysoplate method

Immunoglobulins: RIA

[21] Term N/A N/A Fresh No
LABU-Muttermilch
pasteurizer:
62.5 ˝C for 301

4 Samples—2
CMV-positive and 2
CMV-negative donors

Total protein, alkaline phosphatase
and lipase activity: Hitachi 917
Automatic Analyzer

Folic acid, Vitamin B12:
chemiluminescence immunoassays

sIgA and lysozyme: RIA

[22] N/A Mature Electric pump Fresh No
VLM
exchangeable
HBV-Q-16-16:
63 ˝C for 30'

30 samples—30
donors

Lysine content: fluorimetry

Total protein: Lowry method
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Table 1. Cont.

Ref * Preterm/Term Phase of
Lactation

Expression
Method Status Pre-Pasteurization

Storage
Pasteurization

Equipment Sample Size Analytical Method ˝

[23] Term Mature

Hand or
electric/manual

pump.
Occasional drip

milk

Frozen
´20 ˝C up to
15 days; thawing in
a microwave oven

62.5 ˝C for 301;
cooling by
ice-cold water
for 101

15 samples from
individual mother or
pool (5 donors)

Total fat: crematocrit

Total protein: Lowry method

Lactose: picric acid method

Vitamin A: HPLC

Zinc: Atomic absorption
spectrometry

[24] N/A Mature N/A Fresh

Refrigeration at 4 ˝C
for 1 to 2 days;
centrifugation at
2 ˝C for 1 h; ´30 ˝C
until testing

62.5 ˝C for 301 1 pool—25 donors

Immunoglobulins and
lactoferrin: RIA

Vitamins: labeled cyanocobalamin,
separation of free and
protein-bound vitamins by
gel filtration

[25] N/A N/A N/A Frozen
´40 ˝C until
analysis 62.5 ˝C for 301 1 pool—10 donors

Total protein: BCA

Immunoglobulins: ELISA

Lysozyme activity: Micrococcus
lysodeikticus turbidimetric assay

[26] N/A Mature N/A Fresh Refrigeration 62.5˝ C for 301 in
stirred water bath

2 pools—5 and 6
donors Immunoglobulins: ELISA

[27] Term Mature Electric pump Fresh –80 ˝C until the
analysis 62.5 ˝C for 301 10 samples—10

donors Immunoglobulins: ELISA

[28] N/A Mature N/A Fresh No 63 ˝C for 301 23 samples Immunoglobulins: RIA

[29] Term
Colostrum,
transitional
and mature

Manual or
pump Fresh Refrigeration in ice 62.5 ˝C for 301 5 samples—89 donors

Immunoglobulins: RIA

Lactoferrin: Laurell method

[30] N/A N/A Overflow milk Fresh Refrigeration up to
48 h 62.5 ˝C for 301 16 samples Electroimmunoassay against

monospecific antiserum

[31] N/A Colostrum
and mature

HMB protocol Fresh N/A 62.5 ˝C for 301 10 colostrum and
8 mature milk

Furosine: HPLC

Carbohydrates: gas
chromatography

Cytokines: ELISA

Immunoglobulins: ELISA
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Table 1. Cont.

Ref * Preterm/Term Phase of
Lactation

Expression
Method Status Pre-Pasteurization

Storage
Pasteurization

Equipment Sample Size Analytical Method ˝

[32] N/A Colostrum
Hand or electric

pump Fresh
´20 ˝C until
analysis 62.5 ˝C for 301 1 pool—11 donors

Immunoglobulins: ELISA

Lysozyme activity: Micrococcus
lysodeikticus turbidimetric assay

Lactoperoxidase activity:
ABTS assay

[33] Term Transitional Electric pump Fresh No Metallarredinox:
62.5 ˝C for 301 1 pool—4 donors

IgA, lactoferrin: SDS-PAGE,
Western Blot and mass
spectrometry

Lipase activity:
p-nitrophenol assay

Available lysine: OPA method

[34] N/A N/A N/A Fresh N/A

3 devices:
Sterifeed–Saurin–
Carag: 62.5 ˝C
for 301

10 samples for
Sterifeed; 6 samples
for Saurin; 6 samples
for Carag

Lysozyme, sIgA and lactoferrin:
ELISA

[35] N/A N/A N/A Frozen ´20 ˝C until
analysis 62.5 ˝C for 301 10 samples—10

donors
Lysozyme, sIgA and lactoferrin:
ELISA

[36] N/A N/A Drip milk Fresh No
Semi-automated
Holder
pasteurizer

1 pool—20 donors
IgA: electroimmunoassay

Lysozyme activity: Micrococcus
lysodeikticus turbidimetric assay

[37] N/A Mature Electric pump Frozen and
fresh

–70 ˝C; thawing in
cool water

62.5 ˝C for 301 in
stirred water bath

6 samples: 3 pools
from HMB and 3
samples from 3 donors

Total fat: gravimetry

Fatty acids: gas chromatography

Lipase activity: triglyceride
emulsion

Amylase: ELISA

[38] N/A Mature N/A Frozen

4 ˝C overnight;
thawing at 37 ˝C
in water bath,
gently mixed

Sterifeed:
pre-heated water
bath (63.2 ˝C);
62.5 ˝C for 301;
cooling in cold
water bath

17 pools—4 donors
each

Cytokines and growth factors:
ELISA

Fatty acids: gas chromatography
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Table 1. Cont.

Ref * Preterm/Term Phase of
Lactation

Expression
Method Status Pre-Pasteurization

Storage
Pasteurization

Equipment Sample Size Analytical Method ˝

[39] N/A Mature N/A Fresh
Refrigeration until
analysis

62.5 ˝C for 301 in
water bath under
constant agitation

1 pool—6 donors

Tocopherol: HPLC

Fatty acids: gas chromatography

Cytokines: ELISA

[40] Term Mature Hand or electric
pump Fresh No 62.5 ˝C for 301 17 samples Cytokines and growth factors:

ELISA

[41] Preterm and
Term

Transitional
and mature

N/A Frozen
´20 ˝C until
analysis

LABU-Muttermilch
pasteurizer: 63 ˝C
for 301

51 samples—28
donors

IGF and IGFBP: RIA

EGF: ELISA

[42] Term Mature N/A Fresh No 62.5 ˝C for 301 13 samples—13
donors Free amino acids: HPLC

[43] Preterm and
Term

Colostrum,
transitional
and mature

N/A Frozen Thawed overnight ACE pasteurizer:
62.5 ˝C for 301

39 samples—3–4
donors each

Fatty acids: gas chromatography

Free amino acids: Amino acid
Analyzer

[44] Term Mature Manual pump Frozen
Refrigeration max
4 h; ´20 ˝C up to
3 weeks

62.5 ˝C for 301 5 samples—9 pools Vitamins: HPLC

[45] Term Mature Hand or pump Fresh Refrigeration 62.5 ˝C for 301 5 each—89 donors Vitamins: HPLC

[46] N/A Mature Electric pump Frozen
´80 ˝C until
analysis 62.5 ˝C for 301 10 samples—10

donors
Vitamin C, Tocopherols: HPLC

Fatty acids: gas chromatography

[47] N/A Mature Manual pump Fresh No 62.5 ˝C for 301 1 pool—10 donors Vitamin C, Tocopherols: HPLC

Fatty acids: gas chromatography

[48] N/A N/A N/A Frozen Frozen 63 ˝C for 301 50 samples—50
donors Vitamin A, beta catotene: HPLC

[49] N/A
Colostrum,
transitional
and mature

N/A Frozen
Thawing in ice-filled
plastic container for
151

63 ˝C for 301 60 samples Vitamin A: gas chromatography

[50] Preterm and
Term Transitional Electric pump Fresh No

62.5 ˝C for 301;
cooling in running
water

12 samples—12
donors

Fat content: gravimetry

Fatty acids: gas chromatography

[51] Term N/A Hand Fresh No 62.5 ˝C for 301 1 pool—16 donors
Fatty acids: gas chromatography

L-lactate in milk: enzymatic
biosensor
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Table 1. Cont.

Ref * Preterm/Term Phase of
Lactation

Expression
Method Status Pre-Pasteurization

Storage
Pasteurization

Equipment Sample Size Analytical Method ˝

[52] N/A N/A N/A Fresh No 63 ˝C for 301 3 samples—3 donors
Total fat and fatty acids: gas
chromatography, Infrared
spectroscopy and NMR

[53] N/A Transitional N/A Fresh No
62.5 ˝C for 301;
cooling in running
water

7 samples—1 donor Fatty acids: gas chromatography

[54] N/A N/A Electric/manual
pump Fresh N/A

62.5 ˝C for 301;
cooling in stirred
ice-cold water
bath

21 samples—21
donors Furosine: HPLC

[55] Preterm N/A Electric pump Fresh No Sterifeed: 62.5 ˝C
for 301

10 samples—10
donors Oligosaccharides: HPLC

[56] Preterm N/A Electric pump Fresh No Sterifeed: 62.5 ˝C
for 30’ 9 samples—9 donors Glycosaminoglycans: HPLC

Carbohydrates: gas
chromatography

[57] N/A Mature N/A Fresh Refrigeration 62.5 ˝C for 301 in
stirred water bath 1 pool—8 donors

Volatile compounds: gas
chromatography—mass
spectrometry

[58] Term N/A Electric pump Fresh No 62.5 ˝C for 301 31 samples—31
donors

MDA and GSH: HPLC

GPx activity: Lawrence and Burk
method

ToAC: commercial kit

[59] N/A Mature Hand Frozen ´80 ˝C up to
2 weeks 62.5 ˝C for 301 30 samples—10

donors

Total fat : creamatocrit

Fatty acids and volatiles: gas
chromatography

MDA: TBARS

Tocopherols and ascorbic acid:
HPLC

ToAC: ORAC

[60] N/A Mature Hand Frozen ´40 ˝C in HMB;
´18 ˝C in lab 62.5 ˝C for 301 1 pool—5 donors

Free nucleotide monophosphates:
capillary electrophoresis—mass
spectrometry

* Ref: number in reference list; ˝ RIA: Radioimmunoassay; ELISA: enzyme-linked immunosorbent assay; HPLC: high-performance liquid chromatography; BCA: bicinchoninic
acid assay; ABTS: 2,21-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); SDS-PAGE: Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis; OPA: o-phthaldialdeyde;
NMR: Nuclear Magnetic Resonance; MDA: malondialdehyde; GSH: reduced glutathione; GPx: glutathione peroxidase; ToAC: total antioxidant capacity; TBARS: thiobarbituric acid
reactive species; ORAC: Oxygen Radical Absorbance Capacity.
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Table 2. DM components not affected by Holder Pasteurization (HoP) (consensus on results).

Components Reference

Total Nitrogen Content [18]

Cytokines

IL2, IL4, IL5, IL13 [31,38]
IL12p70 [31,38,39]

IL17 [31,39]

Growth Factors

EGF [40,41]
TGF�1 [40]
TGF�2 [31]
MCP-1 [31]

Amino acids

Free amino acids [43]
Taurine, methionine, cystine, glutamate [42,43]

Vitamins

D, E, B2 [44]
B5, Biotin, B3 [45]

B12 [21,24,44,45]
Zinc [23]

Lipids
Polyunsaturated fatty acid n3

20:5 [37,50]
22:5 [38,47,50]
22:6 [37,39,43,47,50]

Polyunsaturated fatty acid n6

18:2 [37–39,43,47,50–53]
18:3 [39,43,47,50]
20:2 [47,50]
20:3 [39,47,50]
20:4 [37–39,43,47]
22:4 [37,47,50]
22:5 [38,47]

Monounsaturated fatty acid

14:1 [37,39,43,47,50]
15:1 [47,50,52]
16:1 [37–39,43,47,50–53]

17:1; 22:1 [47,50]
20:1 [39,47,50]
24:1 [37,47,50]

Saturated fatty acid

10:0, 16:0 [37–39,43,47,50–52]
15:0 [39,47,50,51]
17:0 [39,47,50]
20:0 [39,47,50,52]
21:0 [47]
22:0 [47,50]
24:0 [37,50]

Saccharides

Oligosaccharides [55]
Glycosaminoglycans [56]

Myoinositol [31,54]
Lactose [18,19,23,31,54]

Oxidative Stress Markers

Malondialdehyde [58,59]
ORAC and Hexanal [59]
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Table 3. DM components affected significantly by HoP (consensus on results).

Components Effect of HoP References

Immunoglobulins

IgG4 Reduction (% not reported) [31]

Enzymes

Lipase Complete loss [21,33,37]
Alkaline phosphatase Complete loss [21]
Amylase Reduction (15%) [37]

Cytokines

IL7 Increase (% not reported) [31]
MIP-1� Reduction (% not reported) [31]
MCAF/MCP-1 Reduction (% not reported) [39]

Growth Factors

IGF1, IGF2, IGFBP2, IGFBP3 Reduction (% not reported) [41]
EPO Reduction (% not reported) [40]
HB-EGF, HGF Reduction (% not reported) [38]
GM-CSF Increase (% not reported) [31]

Hormones

Insulin, Adiponectin Reduction (% not reported) [17]

Free amino acids

Arginine, leucine Increase [43]
Aspartate Reduction (% not reported) [43]
Glutamine Increase (% not reported) [42]

Vitamins

Ascorbic + Dehydroascorbic Reduction (12%) [47]
Ascorbic Acid Reduction (16.2%–26%) [46,47]
B6 Reduction (15%) [44,46]

Oxidative Stress Markers

Glutathione, Glutathione peroxidase
activity, Total antioxidant capacity Reduction (% not reported) [58]

Lactulose Increase (% not reported)/(Not
detected in all samples) [31,54]

Nucleotide monophosphate content Increase (% not reported) [60]

Table 4. DM components affected by HoP (discordant results).

Components Effects of HoP References

Total Protein Content Reduction (% not reported) Significant: [17,19,20]
Not significant: [21–23,37]

Immunoglobulins

IgA Reduction (20%–62%) Significant: [25,28,29,31,32]
Not significant: [20,24,26,27,30,35]

sIgA Reduction (20%–50%) Significant: [35]
Not significant: [21,34]

IgM Reduction (50%–100%) Significant: [28,29,31,32]
Not significant: [20,24,26]

IgG Reduction (23%–100%) Significant: [32]
Not significant: [20,24,26,28–30]
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Table 4. Cont.

Components Effects of HoP References

Lactoferrin Reduction (35%–90%) Significant: [35]
Not significant: [24,29,30,33,34]

Lysozyme

concentration Reduction (20%–69%) Significant: [34] (Sterifeed and Carag), [35]
Not significant: [20,21,30,34] (Saurin)

activity Reduction (% not reported) Significant: [25,32]
Not significant: [24]

Cytokines

IL1beta, IL6 Reduction (% not reported) Significant: [39]
Not significant: [31]

IL8 Increase (% not reported) Significant: [38–40]
Not significant [31]

IL10 Reduction (% not reported) Significant: [38,39]
Not significant: [31]

TNF alfa Reduction (% not reported) Significant: [38,39]
Not significant: [31]

INF gamma Reduction (% not reported) Significant: [38]
Not significant: [31,39]

Vitamins

A
Increase (% not reported)/reduction

(34%)
Significant: [49]

Not significant: [23,44,48]

Folacin Reduction (10%–30%) Significant: [44]
Not significant: [21,24,29]

C Reduction (19.9%–36%) Significant: [44,46]
Not significant: [29]

alfa- and gamma-Tocopherol Reduction (12%–47%) Significant: [39,47]
Not significant: [46]

delta-Tocopherol Reduction (% not reported) Significant: [39]
Not significant: [46]

Total fat content
Reduction (% not reported)/Increase

(% not reported)
Significant: [17–19]

Not significant: [23,37,50,51]

Polyunsaturated fatty acid n3

18:3 Reduction (% not reported) Significant: [53]
Not significant: [38,39,47,50]

Monounsaturated fatty acid

18:1 Increase/reduction (% not reported) Significant: [38]
Not significant: [39,47,50,53]

Saturated fatty acid

14:0 Increase/reduction (% not reported) Significant: [38]
Not significant: [37,39,43,47,50,52,53]

12:0 Increase/reduction (% not reported) Significant: [38,43]
Not significant: [37,39,47,50–52]

18:0 Increase/reduction (% not reported) Significant: [38]
Not significant: (2015) [37,39,43,47,50–52]

Glucose Reduction/Increase (% not reported) Significant: [17] (increase), [54] (reduction)
Not significant: [31]

3.1. Energy Content

The first question that needs to be answered concerning the nutrition of all infants with pasteurized
DM is: is this milk as nutritive as fresh HM? Only two studies have been found to have assessed the
effects of HoP on the energy content of milk, with conflicting results. Ley et al. [17] reported that the
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HM energy content was not modified by pasteurization, whereas García-Lara et al. [18] found that the
energy content was decreased significantly. The two studies used different approaches to calculate
the energy content; in the first case [17], a direct measurement was performed by means of bomb
calorimetry, whereas in the second study the energy content was calculated on the basis of the fat,
protein and lactose contents, as measured by means of infrared spectroscopy [18]. The discrepancy in
the results may be due to statistical artifacts rather than to real differences, since the percent decrease
measured in the two studies was similar.

Overall, current evidence does not support the hypothesis of a relevant change in energy intake
by feeding the infant with pasteurized rather than raw DM.

3.2. Nitrogenous Compounds

3.2.1. Protein Content

The composition of the HM protein fraction varies from mother to mother, and changes during
lactation. The protein content of term milk is estimated to be approximately 0.9 to 1.2 g/dL, while this
value is higher for preterm milk [61]. The true protein content of HM is often overestimated, due to its
high proportion of non-protein nitrogen [62]. In a study by Vieirà et al. [19], the average DM protein
concentration, as assessed by means of an infrared analyzer, was significantly reduced by the HoP
treatment, as was also found for colostrum [20]. Other studies, on the contrary, did not observe any
significant change in protein content [17,21–23], even when the total nitrogen content was measured
indirectly [18].

In conclusion, the majority of the examined reports indicates that HoP does not affect the protein
content of DM. A statistically significant reduction was only found in two studies, although one of the
studies, involving mature milk [19], reported a very slight reduction (´3.9%), similar to that found in
the studies that claimed no effect on total protein content.

3.2.2. Immunoglobulins (Igs)

The effect of HoP on the DM concentration of different classes of immunoglobulins has been
investigated in several studies, the first being published in 1977 by Ford and colleagues [24].

IgAs and secretory IgAs (sIgAs) are the most extensively investigated classes, and almost all
the published studies report a reduction following HoP. A significant reduction in IgAs following
HoP was measured by means of Enzyme-Linked Immunosorbent Assays (ELISA) [25–27] and by
means of Radial Immunodiffusion Assays (RIA) [28,29]. An IgA reduction was also reported in older
studies [24,30], although no statistical significance was reached, perhaps due to weak experimental
design. Ford et al. [24] analyzed a single pooled milk sample, while Evans et al. [30] used samples
derived from overflow milk. The detrimental effect of HoP on IgAs was also confirmed on colostrum
samples [20,31,32]. A reduction in protein bands recognized by means of anti-IgAs antibodies, although
not quantified, was also reported [33]. Secretory IgAs, the dimeric forms of IgAs, were also found to
have decreased following the pasteurization of DM [21,34,35], although not always significantly.

The other Ig classes were investigated in a smaller number of studies, whose results are partially
contrasting, due to the extremely low Ig concentrations, and subsequent difficult detectability in the
milk samples. However, the majority of the studies found some degree of reduction.

IgM concentrations were measured in mature DM after pasteurization, and were found to be
significantly decreased [26,28,29], or even completely degraded [24]. The low resistance of IgMs to
pasteurization has also been confirmed more recently on colostrum [20,31,32]. The same behavior
has also been observed for IgG concentrations in both milk [26,28–30] and in colostrum [20,31,32].
The specific thermal resistance of different IgGs subclasses was also detailed: IgG1 were not affected
by HoP, while IgG4 were reduced, and IgG2 and IgG3 were undetectable in both fresh and pasteurized
milk samples [31].
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As an overall conclusion, the results from the previous reports clearly indicate that one of the
main detrimental effects of HoP is a reduction in all classes of immunoglobulins, probably due to the
complex structure of these molecules.

3.2.3. Lactoferrin and Lysozyme

The immunoprotective protein constituents of HM, with bacteriostatic properties, include
lysozyme and lactoferrin [62].

Lactoferrin is an iron-binding protein that reduces the availability of the free iron required by
iron-dependent pathogens, and therefore is able to inhibit their growth. Moreover, it can disrupt
the bacterial cell membrane by binding to the lipid-A portion of lipopolysaccharides on the bacterial
cell surface [63]. Lactoferrin has been investigated in several studies, using different techniques
(ELISA, RIA, monospecific antisera) [24,29–32], all of which report a reduction in its concentration,
with a percentage ranging from 35% to 90%, but the reduction was only reported as significant
by Christen et al. [35]. Additionally, a reduction in the lactoferrin-containing band, by means of a
protein electrophoresis semi-quantitative method, was reported [33]. Since the bactericidal activity
of lactoferrin is maintained by bactericidal peptides that form during its digestion, it is possible that
part of the activity is still retained in pasteurized HM despite reduction of the protein [62]. One recent
survey [64] conducted by means of non-reducing protein electrophoresis, has reported that lactoferrin
aggregation, rather than degradation, occurs following DM pasteurization with HoP. Whether this
aggregation causes a decrease in lactoferrin bactericidal activity, is still not known.

A similar pattern emerges for lysozyme, whose concentration has been found to be reduced after
pasteurization in several studies, with a percentage ranging from 20% to 85%. The biological activity
of lysozyme was tested by Ford et al. [24], who did not find any significant difference. A significant
reduction in lysozyme activity after HoP was found by other authors [25,36], even in colostrum [32].
It should be pointed out that, in those works, the lysozyme activity was always determined using a
Micrococcus lysodeikticus-based turbidimetric assay, which measures to what extent bacterial growth is
prevented by the addition of lysozyme-containing samples. Since DM is a complex mixture of several
anti-bacterial enzymes and factors, it is not possible to discriminate if the reduction is due only to a
decrease in lysozyme concentration.

3.2.4. Other Enzymes

Owing to their different responses to heating, enzymes and their activity are commonly considered
as markers for assessment of thermal treatments. Some of these enzymes (such as lactoperoxidase and
alkaline phosphatase) are considered technological markers for pasteurization in bovine milk. Data on
lactoperoxidase are scarce for HM, since its concentration is below the detection limit of commercial
kits [24,32]. Alkaline phosphatase has also been found to be completely inactivated by HoP [21], as
commonly found in bovine milk.

Because of the compensatory function of several HM enzymes for nutrient digestion in
newborns [65], some researchers have focused on the activity of lipase and amylase milk enzymes.
A complete degradation (both in concentration and enzymatic activity) has been found for lipoprotein
lipase and bile salt dependent lipase [21,33,37], while amylase activity was partly retained [37].
The clinical relevance of variations in the enzymatic activity of these proteins still has to be investigated.
In particular, the hypothesis of a reduction in nutrient absorption through feeding of pasteurized
rather than raw HM, especially as far as lipid digestion is concerned, cannot be ruled out.

3.2.5. Cytokines

Although cytokines are immunomodulatory components, it appears that most of those found
in HM are anti-inflammatory, thereby possibly lessening the effect of infections [62]. The effect
of pasteurization on several cytokines has been evaluated in colostrum [31]. Interleukin (IL)1�,
IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, IL17, Interferon (IFN)-�, the Tumor Necrosis Factor
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(TNF)-↵ and Monocyte Chemotactic Protein (MCP)-1 were not significantly affected by the process.
Rather remarkably, IL7 increased significantly after pasteurization, perhaps due to its release from
cellular and/or fat compartments into the aqueous fraction, while Macrophage Inflammatory
Protein-1� (MIP-1�) was significantly reduced [31]. IL2, IL4, IL5, IL12 and IL13 were unaffected
even in pasteurized mature DM [38], while IL10 was decreased [38–40], as were IL1� [38], IFN-� [39],
IL6 [39] and TNF-↵ [38,39]. A significant increase in IL8, following HoP in mature DM, was also
found [38,39].

In short, different degrees of thermal resistance were found for different cytokines, and the
biological relevance of this altered balance in specific situations still remains to be addressed.

3.2.6. Growth Factors

To date, only a few studies have evaluated the variation of growth factors (GF) in human milk
after pasteurization, and each one has focused on one specific GF.

Transforming GF (TGF)-�2 was found to be stable in colostrum [31]. Epidermal GF (EGF) [40,41]
and TGF-�1 [40] showed no difference before and after HoP. Heparin-Binding Epidermal-like GF
(HB-EGF) was unaffected by heating, whereas Hepatocyte GF (HGF) was reduced to a great extent [38].
Insulin-like GF (IGF)-1 and 2, as well as IGF binding proteins 2 and 3, were reduced to a variable extent
by pasteurization [41]. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) concentrations
increased significantly after pasteurization, while the Granulocyte-Colony Stimulating Factor (GCSF)
was not detected in any sample, before or after HoP, either in colostrum [31], or in mature milk [38].

Once again, as in the case of cytokines, the low number of studies to date, and the relevant
variability between different growth factors, does not allow any conclusion on the effect of HoP to
be generalized.

3.2.7. Amino Acids

The DM amino acid composition was investigated in two studies, one [42] focusing only on sulfur
amino acids (cysteine and methionine), and a few free amino acids. The authors reported that no
significant modification was caused by HoP, with the exception of an increase in free glutamine [42].
In another study [43], the amino acid profile of pre- and post-pasteurization DM was found to be
significantly different for arginine and leucine, to increase following HoP, and to decrease for aspartate.
Nevertheless, the biological relevance of these variations was reported to be low, since the differences,
although significant, were small.

The available lysine content, which is considered a nutritional marker, as lysine residues are
targeted by proteases during digestion, was evaluated in two studies, with discordant results:
Silvestre et al. [22] showed a 30% reduction (statistically significant) using a fluorimetric method,
while Baro et al. [33] observed an increase in the concentration of this amino acid, measured by
means of o-phthaldialdehyde. In this case, the discordant results may partially be due to the different
experimental designs of the two studies, one of which simulated HoP [22], and the other used a
commercial Holder pasteurizer [33].

3.3. Hormones

Insulin, adiponectin [17] and erythropoietin [40] concentrations were all reported to be decreased
significantly after HoP, although the paucity of the reports does not allow any conclusion on the issue
to be generalized.

3.4. Vitamins

The evidence on the effect of HoP on HM vitamins is contrasting. Folacin and vitamin B12 were
evaluated in different studies with conflicting results, probably due to the significant instability of
vitamins and to the variability between the study sampling and analysis methods of the studies.
Ford et al. [24] found an important reduction in the capacity of DM to bind added vitamins after
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HoP, as measured by adding excess cyanocobalamin (vitamin B12 analog), while other studies [21,44]
did not find any significant difference for vitamin B12 analyzed by means of a chemiluminescence
immunoassay and a competitive protein binding assay. Stability of riboflavin, biotin, and the total
pantothenic acid contents (vitamin B5) has also been observed [45]. A non-significant decrease was
found for folacin (vitamin B9) after HoP [21,24,45]. Van Zoeren-Grobben et al. on the other hand,
found a 30% reduction in folacin as a consequence of HoP, and a significant 15% reduction in vitamin
B6 [44].

While the vitamin C concentration was unambiguously reported to be reduced by HoP [44,46,47],
fat-soluble vitamins showed different responses to pasteurization. Vitamin D was unaffected [44]. In
some reports, vitamin A was found to be reduced [48,49], but other authors found it stable [23,44],
while tocopherols (vitamin E) were found not to be affected in [44,46], but reduced in [39,47].

To summarize, the available data seem to confirm a higher heat sensitivity for water soluble
vitamins, and in particular for vitamin C, which is known to be highly susceptible to several
technological treatments, including freezing and refrigeration [66], while most of the studies seem to
indicate a higher retention of fat soluble vitamins (A, D, and partially E).

3.5. Zinc

Zinc levels have not resulted not to be significantly affected by HoP; however, a variation in
the distribution of zinc was observed, with a significant increase in the fat fraction and a decrease in
whey, possibly as a result of the denaturation of zinc binding proteins, thereby indicating possible
consequences on zinc bioavailability to the infant [23].

3.6. Lipids

The total lipid content was evaluated in several studies: a significant reduction was found
following HoP, using infrared analyzers [17–19], which, however, do not directly measure the
fat content. Other authors have not found significant differences, when using different analysis
techniques [23,37,50,51]. The total fatty acid profile was always found to be unaffected by
pasteurization [37,39,43,47,50,52], with the exception of one study, which reported slight changes
in the relative composition of medium-chain fatty acids (MCFAs) [38], and one of which reported
a small decrease in 18:3 fatty acid [53]. Lepri et al. [51] found a more than two-fold free fatty acid
content increase after pasteurization. A potential increase in the DM free fatty acid fraction following
HoP, provided it does not cause off-flavors, may not be undesirable, as increased free fatty acids are
known to be more readily absorbed in the digestive system, thus resulting in a possibly increased
nutritive potential.

3.7. Saccharides

Several studies have evaluated the effect of HoP on lactose in mature milk and colostrum. In all
cases, and using different analytical techniques, no significant difference was found before and after
HoP [18,19,23,31,54]. The myoinositol levels were not affected by HoP either [31,54], while glucose
was found to be increased [17], stable [31] and reduced [54], although all of the reported variations
were low.

Glycosaminoglycans and oligosaccharides have recently been investigated in preterm milk, and
no variation after the pasteurization process was observed [55,56]. These human milk glycans have
been demonstrated to influence the health of newborns, since they possess specific biological properties,
such as an anti-infective role, anti-oxidant functions and prebiotic effects [67].

In short, the evidence to date points toward the stability of DM saccharides during
pasteurization by HoP, both as free molecules and as part of biologically active compounds, such as
glycosaminoglycans and oligosaccharides.



Nutrients 2016, 8, 477 15 of 19

3.8. Indicators of Thermal Treatment

Lactulose, a disaccharide formed through the isomerization of lactose, and furosine, an
intermediate of the Maillard reaction, have been searched for in DM, since they are used in the
food industry to differentiate between different kinds of heat-treated bovine milk, depending on the
intensity of the heat treatment applied. Since HM has more than double the lactose content than bovine
milk, lactulose formation has been found to be triggered more by pasteurization than is normally
found for pasteurized bovine milk, in both milk [67] and colostrum [31]. Furosine was only found to
have formed following pasteurization in colostrum samples [31], while it was not found in any milk
sample [67].

Contador et al. [57] have very recently published a detailed analysis of volatile compounds in
fresh and pasteurized HM, which supports the idea of some thermal-induced modification during HoP.
The preservation of the original volatile compounds in HM is important, since they can negatively
affect its quality, and indicate that undesired reactions have taken place during the treatment (e.g.,
lipid oxidation, Maillard reaction, etc.). A significant change in many volatiles was detected after HoP
in DM; some of these volatiles (aldehydes, furans and pyrans) are undesired, and considered an index
of thermal degradation.

3.9. Oxidative Stress Markers

The oxidative balance of raw and pasteurized HM was assessed by measuring both the
accumulation of oxidants and the activity of oxidant scavengers. Malondialdehyde concentrations
were not found to be significantly affected by HoP but, on the other hand, glutathione concentrations,
glutathione peroxidase activity and Total Antioxidant Capacity were significantly reduced, thus
indicating a decrease in the oxidative scavenging capacity of HM [58]. In a more recent assay [59],
no change in malondialdehyde concentration, total antioxidant capacity (as measured by means of
Oxygen Radical Absorbance Capacity assay), or hexanal concentration has been found, thus indicating
no lipid oxidation and no decrease in oxidant scavengers.

3.10. Organic Acids

Only one study has assessed the L-lactate content of HM, following HoP, using a biosensor based
on an immobilized lactate oxidase enzyme. The results showed a significant increase, probably due to
the release from interaction with other substances [51].

3.11. Recently Published Research

One study has recently highlighted an increase in the nucleotide monophosphate content
following pasteurization, measured by means of mass spectrometry. These compounds are considered
as immune-enhancers and seem to play a role as sleep-inducers, so their increase in HM may be a
positive consequence of HoP [60]. Nevertheless, further evidence is needed before any claim on the
issue could be formulated.

4. Discussion and Conclusions

The present review shows a significant variability in the data reported in the scientific literature
concerning the effects of HoP on the biological components of HM.

A possible explanation for this variability may be the heterogeneity of the test protocols applied in
the studies (e.g., in terms of sample origin, storage conditions or analysis methods). Another important
source of variability is represented by the fact that the Holder pasteurization of donor milk is often
simulated on small aliquots, rather than being performed following HMB-implemented protocols.
Moreover, modern pasteurizers require significantly less time for heating and cooling than older ones,
thus changing the kinetics of the thermal response for heat-sensible compounds. Additionally, it



Nutrients 2016, 8, 477 16 of 19

appears that some biochemical patterns were investigated more extensively than others, while some
other milk components were not considered at all.

The results of the review can be summarized as follows. Saccharides are not significantly affected
by the heat treatment, as either free molecules or as part of biologically active compounds. The total
lipid content is preserved by HoP, as is its fatty acid composition. This finding is of paramount
importance since it suggests that pasteurization is able to preserve both the nutritional and biological
properties relevant to the development of the central nervous system associated with some of these fatty
acids. Consistently, fat soluble vitamins also seem to be unaffected, while water soluble vitamins, and
vitamin C in particular, are generally reported as significantly decreased. The results concerning specific
biologically active molecules (such as cytokines and growth factors) remain uncertain, due to the vast
number of different compounds analyzed in each study, and to the paucity of comparable results.

Proteins are more significantly affected by HoP. In fact, specific proteins with significant
immunologic and anti-infective action (such as immunoglobulins and lactoferrin) are reduced by
pasteurization. A substantial reduction in the enzymatic activity has also been observed. The review
thus confirms the main concerns about Holder pasteurization of HM, and the need for future strategies
to prevent and/or limit DM protein degradation. The available data confirm that HoP affects several
HM components to variable degrees, even though it is rather difficult to quantify the degradation level.
Nonetheless, clinical practices demonstrate that many beneficial properties of human milk remain,
even after pasteurization.

Future studies should be aimed at confirming the currently available data by investigating
more reproducible analytic settings, while avoiding the introduction of potential biases, in order to
understand the real effects of pasteurization on mother’s milk. Moreover, further studies should be
focused on new pasteurization techniques in order to improve the biological quality and safety of DM.
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