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Abstract

Broadcasting is an efficient and scalable way
of transmitting data over wireless channels to an
unlimited number of clients. In this paper the
problem of allocating data to multiple channels is
studied, assuming skewed allocation of most pop-
ular data items to less loaded channels, flat data
scheduling per channel, and the presence of unre-
coverable channel transmission errors. The objec-
tive is that of minimizing the average expected de-
lay experienced by clients. Two different channel
error models are considered: the geometric model
and the Gilbert-Elliot one. In the former model,
each packet transmission has the same probabil-
ity to fail and each transmission error is indepen-
dent from the others. In the latter one, bursts of
erroneous or error-free packet transmissions due
to wireless fading channels are modeled. For the
geometric channel error model and uniform data
item lengths, an optimal solution can be found in
polynomial time when all the channels have the
same probability to fail. Heuristic algorithms are
exhibited for the geometric model and non-uniform
data item lengths as well as for the Gilbert-Elliot
error model and both uniform and non-uniform
data lengths. Extensive simulations show that such
heuristics provide good sub-optimal solutions when
tested on benchmarks whose item popularities fol-
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low Zipf distributions.

1 Introduction

In wireless asymmetric communication, broad-
casting is an efficient way of simultaneously dis-
seminating data to a large number of clients [15].
Consider data services on cellular networks, such
as stock quotes, weather infos, traffic news, where
data are continuously broadcast to clients that
may desire them at any instant of time. In this
scenario, a server at the base-station repeatedly
transmits data items from a given set over wire-
less channels, while clients passively listen to the
shared channels waiting for their desired item.
The server has to pursue a data allocation strat-
egy for assigning items to channels and a broad-
cast schedule for deciding which item has to be
transmitted on each channel at any time instant.
Efficient data allocation and broadcast scheduling
have to minimize the client expected delay, that is,
the average amount of time spent by a client before
receiving the item he needs. The client expected
delay increases with the size of the set of the data
items to be transmitted by the server. Indeed, the
client has to wait for many unwanted data before
receiving his own data. Moreover, the client ex-
pected delay may be influenced by transmission
errors because items are not always received cor-
rectly by the client. Athough data are usually
encoded using error control codes (ECC) allow-
ing some recoverable errors to be corrected by the



client without affecting the average expected de-
lay, there are several transmission errors which
still cannot be corrected using ECC. Such unre-
coverable errors heavily affect the client expected
delay. Indeed, the resulting corrupted items have
to be discarded and the client must wait until the
same item is broadcast again by the server.

Several variants for the problem of data alloca-
tion and broadcast scheduling have been proposed
in the literature [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
14, 16, 18, 19]. The database community usually
partitions the data among the channels and then
adopts a flat broadcast schedule on each chan-
nel [5, 13, 19]. In such a way, the allocation of
data to channels becomes critical for reducing the
average expected delay, while the flat schedule on
each channel merely consists in cyclically broad-
casting the items assigned to the same channel in
an arbitrary fixed order, that is, once at a time
in a round-robin fashion [1]. In order to reduce
the average expected delay, skewed data alloca-
tions are used where items are partitioned accord-
ing to their popularities so that the most requested
items appear in a channel with shorter period. As-
suming that each item transmitted by the server
is always received correctly by the client, a so-
lution that minimizes the average expected delay
can be found in polynomial time in the case of uni-
form lengths [19], that is when all the items have
the same transmission time, whereas the prob-
lem becomes computationally intractable for non-
uniform lengths [5]. In this latter case, several
heuristics have been developed in [4, 19], which
have been tested on some benchmarks where item
popularities follow Zipf distributions. Such distri-
butions are used to characterize the popularity of
one item among a set of similar data, like a web
page in a web site [8]. Thus far, the data allo-
cation problem has not been investigated by the
database community when the wireless channels
are subject to transmission errors.

In contrast, a wireless environment subject to
errors has been considered by the networking com-
munity which, however, concentrates only on find-
ing broadcast scheduling for a single channel to
minimize the average expected delay [6, 10, 11, 16].
Indeed, the networking community assumes all

items replicated over all channels, and therefore
no data allocation to the channels is needed. Al-
though it is still unknown whether a broadcast
schedule on a single channel with minimum av-
erage delay can be found in polynomial time or
not, almost all the proposed solutions follow the
square root rule (SRR), a heuristic which in prac-
tice finds almost optimal schedules [3]. The aim
of SRR is to produce a broadcast schedule where
each data item appears with equally spaced repli-
cas, whose frequency is proportional to the square
root of its popularity and inversely proportional
to the square root of its length. In particular, the
solution proposed by [16] adapts the SRR solution
to the case of unrecoverable errors. In such a case,
since corrupted items must be discarded worsen-
ing the average expected delay, the spacing among
replicas has to be properly recomputed.

The present paper extends the data allocation
problem first studied by the database commu-
nity under the assumptions of skewed data alloca-
tion to channels and flat data schedule per chan-
nel [4, 5, 19], to cope with the presence of erro-
neous transmissions, under the same assumptions
of [16], namely unrecoverable errors. Two differ-
ent error models will be considered to describe the
behavior of wireless channels [17]. First, as in [16],
the channel error is modeled by a geometric dis-
tribution, where each packet transmission has the
same probability q to fail and 1 − q to succeed,
and each transmission error is independent from
the others. Then, the sligthly more sophisticated
Gilbert-Elliot channel error model will be consid-
ered, which was not previously studied in [16].
Such a model is able to capture burstiness, that is
sequences of erroneous or error-free packet trans-
missions, and well approximates the error char-
acteristics of certain wireless fading channels [20].
Specifically, in the case of geometric channel er-
ror model, it will be shown that an optimum so-
lution, namely one minimizing the average ex-
pected delay, can be found in polynomial time
for the data allocation problem when the data
items have uniform lengths and all the channels
have the same failure probability. Instead, heuris-
tic algorithms will be exhibited which find sub-
optimal solutions for the geometric error model



and non-uniform data lengths as well as for the
Gilbert-Elliot error model and both uniform and
non-uniform data lengths. Extensive simulations
will show that such heuristics find good solutions
when tested on benchmarks whose item probabil-
ities are characterized by Zipf distributions.

The rest of this paper is so organized. Sec-
tion 2 first gives notations, definitions as well as
the problem statement, and then recalls the ba-
sic dynamic programming algorithms known so
far in the case of error-free channel transmis-
sions. Sections 3 and 4 consider the geometric
and the Gilbert-Elliot channel error model, respec-
tively, and illustrate heuristics for items of uniform
and non-uniform lengths. Such heuristics are de-
rived by properly redefining the recurrences in the
dynamic programming algorithms previously pre-
sented for error-free channels. Experimental tests
are reported at the end of both Sections 3 and 4.
Finally, conclusions are offered in Section 5.

2 Background on error-free channels

Consider a set of K identical error-free chan-
nels, and a set D = {d1, d2, . . . , dN} of N data
items. Each item di is characterized by a prob-
ability pi and a length zi, with 1 ≤ i ≤ N .
The probability pi represents the popularity of
item di, namely its probability to be requested by
the clients, and it does not vary along the time.
Clearly,

∑N
i=1 pi = 1. The length zi is an inte-

ger number, counting how many packets are re-
quired to transmit item di on any channel and
it includes the encoding of the item with an er-
ror control code. For the sake of simplicity, it is
assumed that a packet transmission requires one
time unit. Each di is assumed to be non pre-
emptive, that is, its transmission cannot be in-
terrupted. When all data lengths are the same,
i.e., zi = z for 1 ≤ i ≤ N , the lengths are called
uniform and are assumed w.l.o.g. to be unit, i.e.
z = 1. When the data lengths are not the same,
the lengths are said non-uniform.

The expected delay ti is the expected number of
packets a client must wait for receiving item di.
The average expected delay (AED) is the number
of packets a client must wait on the average for

receiving any item, and is computed as the sum
over all items of their expected delay multiplied
by their probability, that is

AED =

N∑

i=1

tipi (1)

When the items are partitioned into K groups
G1, . . . , GK , where group Gk collects the data
items assigned to channel k, and a flat schedule
is adopted for each channel, that is, the items in
Gk are cyclically broadcast in an arbitrary fixed
order, Equation 1 can be simplified. Indeed, if
item di is assigned to channel k, and assuming
that clients can start to listen at any instant of
time with the same probability, then ti becomes
Zk

2 , where Zk is the schedule period on channel k,
i.e., Zk =

∑

di∈Gk
zi. Then, Equation 1 can be

rewritten as

AED =

K∑

k=1

∑

di∈Gk

Zk

2
pi =

1

2

K∑

k=1

ZkPk (2)

where Pk denotes the sum of the probabilities
of the items assigned to channel k, i.e., Pk =
∑

di∈Gk
pi. Note that, in the uniform case, the

period Zk coincides with the cardinality of Gk,
which will be denoted by Nk.

Summarizing, given K error-free channels, a set
D of N items, where each data item di comes along
with its probability pi and its integer length zi, the
Data Allocation Problem consists in partitioning
D into K groups G1, . . . , GK , so as to minimize
the AED objective function given in Equation 2.
Note that, in the special case of uniform lengths,
the corresponding objective function is derived re-
placing Zk with Nk in Equation 2.

Almost all the algorithms proposed so far for
the data allocation problem on error-free chan-
nels are based on dynamic programming. Such
algorithms restrict the search for the solutions to
the so called segmentations, that is, partitions ob-
tained by considering the items ordered by their
indices, and by assigning items with consecutive
indices to each channel. Formally, a segmentation
is a partition of the ordered sequence d1, . . . , dN

into K adjacent segments G1, . . . , GK , each of con-



secutive items, as follows:

d1, . . . , dB1
︸ ︷︷ ︸

G1

, dB1+1, . . . , dB2
︸ ︷︷ ︸

G2

, . . . , dBK−1+1, . . . , dN
︸ ︷︷ ︸

GK

A segmentation can be compactly denoted by the
(K − 1)-tuple

(B1, B2, . . . , BK−1)

of its right borders, where border Bk is the index
of the last item that belongs to group Gk. Notice
that it is not necessary to specify BK , the index
of the last item of the last group, because its value
will be N for any solution.

Three main dynamic programming algorithms
for the data allocation problem are now briefly
surveyed, called DP, Dichotomic, and Dlin-
ear. All the algorithms assume that the items
d1, d2, . . . , dN are indexed by non increasing pi

zi
ra-

tios, that is p1

z1
≥ p2

z2
≥ · · · ≥ pN

zN
. Observe that

in the uniform case this means that the items are
sorted by non increasing probabilities. Let SOLk,n

denote a segmentation for grouping items d1, . . . dn

into k groups and let solk,n be its corresponding
cost, for any k ≤ K and n ≤ N . Moreover, let Ci,j

denote the cost of assigning to a single channel the
consecutive items di, . . . , dj :

Ci,j =

j
∑

h=i

thph =
1

2

(
j
∑

h=i

zh

)(
j
∑

h=i

ph

)

(3)

Note that, for uniform lengths, the above formula
simplifies as Ci,j = 1

2(j − i + 1)
∑j

h=i ph.
The DP algorithm is a dynamic programming

implementation of the following recurrence, where
k varies from 1 to K and, for each fixed k, n varies
from 1 to N . When k = 1, sol1,n = C1,n, whereas,
when k > 1, one has:

solk,n = min
1≤`≤n−1

{solk−1,` + C`+1,n} (4)

For any value of k and n, the DP algorithm se-
lects the best solution obtained by considering the
n−1 solutions already computed for the first k−1
channels and for the first ` items, and by combin-
ing each of them with the cost of assigning the
last n − ` items to the single k-th channel. The

DP algorithm requires O(N2K) time. It finds an
optimal solution in the case of uniform lengths
and a sub-optimal one in the case of non-uniform
lengths [19].

To improve on the time complexity of the DP
algorithm, the Dichotomic algorithm has been de-
vised. Let Bn

h denote the h-th border of SOLk,n,
with k > h ≥ 1. Assume that SOLk−1,n has been
found for every 1 ≤ n ≤ N . If SOLk,l and SOLk,r

have been found for some 1 ≤ l ≤ r ≤ N , then
one knows that Bc

k−1 is between Bl
k−1 and Br

k−1,

for any l ≤ c ≤ r. Thus, choosing c = d l+r
2 e as the

middle point between l and r, Recurrence 4 can
be rewritten as:

solk,c = min
Bl

k−1
≤`≤Br

k−1

{solk−1,` + C`+1,c} (5)

where Bl
k−1 and Br

k−1 are, respectively, the final
borders of SOLk,l and SOLk,r. The Dichotomic
algorithm reduces the time complexity of the DP
algorithm to O(NK log N). As for the DP al-
gorithm, the Dichotomic algorithm also finds op-
timal and sub-optimal solutions for uniform and
non-uniform lengths, respectively [5].

Finally, fixed k and n, the Dlinear algorithm
selects the feasible solutions that satisfy the fol-
lowing Recurrence:

solk,n = solk−1,m + Cm+1,n (6)

where m is the minimum ` in the range Bn−1
k ≤

` ≤ n−1 such that solk−1,`+C`+1,n < solk−1,`+1+
C`+2,n, and sol1,n = C1,n.

In practice, Dlinear adapts Recurrence 4 by ex-
ploiting the property that, if SOLk,n−1 is known,
then one knows that Bn

k is no smaller than Bn−1
k ,

and by stopping the trials as soon as the cost
solk−1,` + C`+1,n of the solution starts to increase.
The overall time complexity of the Dlinear algo-
rithm is O(N(K +log N)). Thus the Dlinear algo-
rithm is even faster than the Dichotomic one, but
the solutions it provides are always sub-optimal,
both in the uniform and non-uniform case [4].

3 Geometric channel error model

In this section, unrecoverable channel trans-
mission errors modeled by a geometric distribu-
tion are taken into account. Under such an error



model, each packet transmission over every chan-
nel has the same probability q to fail and 1− q to
succeed, and each transmission error is indepen-
dent from the others, with 0 ≤ q ≤ 1. Since the
environment is asymmetric, a client cannot ask the
server to immediately retransmit an item di which
has been received on channel k with an unrecov-
erable error. Indeed, the client has to discard the
item and then has to wait for a whole period Zk,
until the next transmission of di scheduled by the
server. Even the next item transmission could be
corrupted, and in such a case an additional delay
of Zk has to be waited. Therefore, the expected
delay ti has to take into account the extra wait-
ing time due to a possible sequence of independent
unrecoverable errors.

Assume that the item lengths are uniform, i.e.,
zi = 1, for 1 ≤ i ≤ N . Recall that in such a case
the period of channel k is Nk. If a client wants to
receive item di, which is trasmitted on channel k,
and the first transmission he can hear of di is error-
free, then the client waits on the average Nk

2 time
units with probability 1 − q. Instead, if the first
transmission of di is erroneous, but the second one
is error-free, then the client experiences an average
delay of Nk

2 +Nk time units with probability q(1−
q). Generalizing, if there are h bad transmissions
of di followed by a good one, the client average
delay for receiving item di becomes Nk

2 +hNk time
units with probability qh(1 − q). Thus, summing
up over all h, the expected delay ti is bounded by

∞∑

h=0

(
Nk

2
+ hNk)qh(1 − q) =

Nk

2
+ Nk

q

1 − q

because
∑∞

h=0 qh ≤ 1
1−q

and
∑∞

h=0 hqh ≤ q
(1−q)2

.

Therefore, one can set the expected delay as

ti =
Nk

2

1 + q

1 − q
(7)

By the above setting, the objective function to be
minimized becomes

AED =
N∑

i=1

tipi =
1

2

1 + q

1 − q

K∑

k=1

NkPk (8)

Therefore, for items with uniform lengths, the
data allocation problem can be optimally solved

in polynomial time. This derives from Lemmas
1 and 2 of [5] which prove optimality in the par-
ticular case of error-free channels, that is, when
q = 0. Indeed, when q > 0, similar proofs
hold once the cost Ci,j of assigning consecutive
items di, . . . , dj to the same channel is defined

as Ci,j = j−i+1
2

1+q
1−q

∑j
h=i ph. In words, Lemmas

1 and 2 of [5] show that, whenever the items
d1, d2, . . . , dN are sorted by non-increasing prob-
abilities, there always exists an optimal solution
which is a segmentation and which can be found
by the Dichotomic algorithm.

Consider now items with non-uniform lengths
and recall that Zk is the period of channel k. In
order to receive an item di of length zi over channel
k, a client has to listen for zi consecutive error-free
packet transmissions, which happens with proba-
bility (1 − q)zi . Hence, the failure probability Qzi

for item di on channel k is 1 − (1 − q)zi .
In the case that the first transmission of di

heard by the client is error-free, the client has to
wait on the average Zk

2 time units with probability
1−Qzi

. Instead, the client waits on the average for
Zk

2 + Zk time units with probability Qzi
(1 − Qzi

)
in the case that the first transmission of di is erro-
neous and the second one is error-free. In general,
h bad transmissions of di followed by a good one
lead to a delay of Zk

2 +hZk time units with proba-
bility Qh

zi
(1−Qzi

). Therefore, summing up over all
h as seen in the uniform case, the expected delay
becomes

ti =
Zk

2

1 + Qzi

1 − Qzi

(9)

Thus, the average expected delay to be minimized
is

AED =
1

2

K∑

k=1

Zk

∑

di∈Gk

1 + Qzi

1 − Qzi

pi (10)

Recalling that the items are indexed by
non-increasing pi

zi
ratios, the new recurrences

for the Dichotomic and Dlinear algorithms are
derived from Recurrences 5 and 6, respec-
tively, once each Ci,j is defined as Ci,j =
1
2

(
∑j

h=i zh

)(
∑j

h=i

1+Qzh

1−Qzh

ph

)

. Note that in such

a case optimality is not guaranteed since the
problem is computationally intractable already for
error-free channels.
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Figure 1. Results for 2500 items of non-uniform

lengths when the K channels have the same failure

probability q = 0.001.

3.1 Simulation experiments

In this subsection, the behaviour of the Di-
chotomic and Dlinear heuristics is tested in the
case of geometric channel error model. The heuris-
tics were written in C + + and the experiments
were run on an AMD Athlon X2 4800+ with 2
GB RAM. The above algorithms have been exper-
imentally tested on benchmarks where the item
probabilities follow a Zipf distribution. Specifi-
cally, given the number N of items and a real num-
ber 0 ≤ θ ≤ 1, the item probabilities are defined
as

pi =
(1/i)θ

∑N
h=1(1/h)θ

1 ≤ i ≤ N

In the above formula, θ is the skew parameter. In
particular, θ = 0 stands for a uniform distribu-
tion with pi = 1

N
, while θ = 1 implies a high skew,

namely the difference among the pi values becomes
larger. In the experiments, θ is chosen to be 0.8, as
suggested in [19], while either N is set to 2500 and
K varies in the range 10 ≤ K ≤ 500, or K is set
to 50 and N varies in the range 500 ≤ N ≤ 2500.
The channel failure probabilities can assume the
values 0.001 and 0.01. The experiments are con-
ducted only for the non-uniform case because in
the case of data items with identical lengths the
Dichotomic algorithm finds the optimal solution.
The item lengths zi are integers randomly gen-
erated according to a uniform distribution in the
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Figure 2. Results for N items of non-uniform lengths

when the 50 channels have the same failure probability

q = 0.001.

range 1 ≤ zi ≤ 10, for 1 ≤ i ≤ N .

Moreover, since the data allocation problem is
computationally intractable when data lengths are
non-uniform, lower bounds for a non-uniform in-
stance are derived by transforming it into a uni-
form instance as follows. Each item di of proba-
bility pi and length zi is decomposed in zi items
of probability pi

zi
and length 1. Since more free-

dom has been introduced, it is clear that the op-
timal AED for the so transformed problem is a
lower bound on the AED of the original prob-
lem. Since the transformed problem has uniform
lengths, when all the channels are either error-free
or have the same failure probability, the optimal
AED can be obtained by running the polynomial
time Dichotomic algorithm.

Figures 1-4 show the experimental results for
non-uniform lengths in the case that the failure
probability q is 0.001 and 0.01. One can note that
the two above mentioned lower bounds almost co-
incide. Referring to Figures 3 and 4, the AED
of the transformed uniform length instance in the
presence of errors is 1+q

1−q
= 1.02 times the AED

of the same transformed instance without errors.
One can also note that, since the average data item
length is 5, the AED of the original instance in
the presence of errors should be about 1+Q

1−Q
= 1.10

times the AED of the same original instance in the
absence of errors, where Q = 1−(1−0.01)5 = 0.05.
This can be easily checked in Figure 3, e.g., for
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K = 10, where the ratio between the two AEDs is
about 500

450 = 1.11.

4 Gilbert-Elliot channel error model

In this section, the channel error behavior is as-
sumed to follow a Gilbert-Elliot model, which is a
two-state time-homogeneous discrete time Markov
chain [17]. At each time instant, a channel can
be in one of two states. The state 0 denotes
the good state, where the channel works prop-
erly and thus a packet is received with no er-
rors. Instead, the state 1 denotes the bad state,
where the channel is subject to failure and hence

b

g

1−g1−b

0

(Good)

1

(Bad)

Figure 5. The Gilbert-Elliot channel error model.

a packet is received with an unrecoverable error.
Let X0,X1,X2, . . . be the states of the channel
at times 0, 1, 2, . . .. The time between Xu and
Xu+1 corresponds to the length of one packet.
The initial state X0 is selected randomly. As de-
picted in Figure 5, the probability of transition
from the good state to the bad one is denoted by
b, while that from the bad state to the good one
is g. Hence, 1 − b and 1 − g are the probabil-
ities of remaining in the same state, namely, in
the good and bad state, respectively. Formally,
Prob[Xu+1 = 0|Xu = 0] = 1 − b, Prob[Xu+1 =
0|Xu = 1] = b, Prob[Xu+1 = 1|Xu = 1] = 1 − g,
and Prob[Xu+1 = 1|Xu = 0] = g.

It is well known that the steady-state probabil-
ity of being in the good state is PG = g

b+g
, while

that of being in the bad state is PB = b
b+g

. This
markovian process has mean µ = PB , variance
σ2 = µ(1 − µ) = bg

(b+g)2
, and autocorrelation func-

tion r(ν) = PB + (1 − PB)(1 − b − g)ν , where
b + g < 1 is assumed. Since the system is mem-
oryless, the state holding times are geometrically
distributed. The mean state holding times for the
good state and the bad state are, respectively, 1

b

and 1
g
. This means that the channel exhibits error

bursts of consecutive ones whose mean length is
1
g
, separated by gaps of consecutive zeros whose

mean length is 1
b
.

4.1 Uniform data item lengths

Assume that the item lengths are uniform, i.e.,
zi = 1, for 1 ≤ i ≤ N . Recall that in such a
case the period of channel k is Nk. If a client
waits for item di on channel k, and no error oc-
curs in the first transmission of di, then the client



waits on the average Nk

2 time units with proba-
bility PG = 1 − PB . Instead, if an error occurs
during the first transmission of di and there is
no error in the second trasmission, then the av-
erage delay experienced by the client is Nk

2 + Nk

time units with probability PB(1−r(Nk)). In gen-
eral, when there are h erroneous transmissions of
di followed by an error-free one, the client aver-
age delay is Nk

2 + hNk time units with probability
PB(r(Nk))

h−1(1− r(Nk)). Thus, the expected de-
lay is equal to

Nk

2
PG +PB(1− r(Nk))

∞∑

h=1

(
Nk

2
+hNk)(r(Nk))

h−1

=
Nk

2
PG + PB

Nk

2
+ PB

Nk

1 − r(Nk)

because
∑∞

h=1(r(Nk))
h−1 = 1

1−r(Nk) and
∑∞

h=1 h(r(Nk))
h−1 = 1

(1−r(Nk))2
. Hence, the

expected delay ti and the objective function AED
become, respectively:

ti =
Nk

2

(

1 +
2PB

1 − r(Nk)

)

(11)

AED =
1

2

K∑

k=1



Nk

(

1 +
2PB

1 − r(Nk)

)
∑

di∈Gk

pi





(12)
The new recurrences for the Dichotomic and

Dlinear algorithms are derived from Recur-
rences 5 and 6, respectively, by setting Ci,j =
j−i+1

2

(

1 + 2PB

1−r(j−i+1)

)
∑j

h=i ph.

4.2 Non-uniform data item lengths

Let now deal with non-uniform item lengths.
Recall that Zk is the period of channel k and that
a client has to listen for zi consecutive error-free
packet transmissions in order to receive the item
di over channel k.

Consider the case that the first transmission of
di heard by a client be erroneous. Let P̂B(s) de-
note the probability that in such a transmission
the s-th packet is the first erroneous packet, where
1 ≤ s ≤ zi. Formally,

P̂B(s) =

{
PB

(1 − PB)(1 − b)s−2b
if s = 1
if 2 ≤ s ≤ zi

Consider now the case that two consecutive
transmissions of di heard by a client are erroneous.
Let P̄B(s, σ) denote the probability that, in the
second transmission, the first erroneous packet is
the s-th one given that in the previous transmis-
sion the first erroneous packet was the σ-th one.
Thus, when s = 1, P̄B(1, σ) = r(Zk + 1 − σ),
whereas when 2 ≤ s ≤ zi:

P̄B(s, σ) = (1 − r(Zk + 1 − σ))(1 − b)s−2b

Finally, let P̄G(σ) denote the probability that a
whole transmission of di is error-free given that in
the previous transmission of di the first erroneous
packet was the σ-th one:

P̄G(σ) = (1 − r(Zk + 1 − σ))(1 − b)zi−1

To evaluate the expected delay ti, observe
that if the first transmission of di heard by
the client is error-free, the client has to wait
on the average Zk

2 time units with probability
(1 − PB)(1 − b)zi−1. Instead, the client waits
on the average for Zk

2 + Zk time units with

probability
∑zi

s0=1 P̂B(s0)P̄G(s0) in the case that
the first transmission of di is erroneous and the
second one is error-free. Moreover, two bad
transmissions of di followed by a good one lead to
a delay of Zk

2 + 2Zk time units with probability
∑zi

s0=1

[

P̂B(s0)
∑zi

s1=1 P̄B(s1, s0)P̄G(s1)
]

. Thus,

in general, the expected delay ti is

Zk

2 (1 − PB)(1 − b)zi−1 +
∑∞

h=1[(
Zk

2 + hZk

)
∑zi

s0=1

[

P̂B(s0)
∑zi

s1=1
[

P̄B(s1, s0)
∑zi

s2=1

[

P̄B(s2, s1) · · ·
∑zi

sh−1=1
[

P̄B(sh−1, sh−2)P̄G(sh−1)
]
· · ·
]]]]

Since finding a closed formula for ti seems to
be difficult, an approximation tmi of the expected
delay can be computed by truncating the above
series at the m-th term, for a given constant value
m. Indeed, experimental tests show that the se-
ries converges already for small values of m, as it
will be checked in Subsection 4.3. Thus, the aver-
age expected delay becomes AED =

∑N
i=1 tmi pi.

Recalling that the items are indexed by non-
increasing pi

zi
ratios, the Dichotomic and Dlinear

algorithms can be applied once each Ci,j is com-

puted as
∑j

h=i t
m
h ph.
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Figure 6. The AED behaviour versus the mean error

burst length, when N = 2500 and K = 200.

4.3 Simulation experiments

This subsection presents the experimental tests
for the Dichotomic and Dlinear heuristics in the
case of the Gilbert-Elliot channel error model.
In the experiments for items of uniform length,
the item popularities follow a Zipf distribution
with θ = 0.8, as in Subsection 3.1, while either
N = 2500 and 10 ≤ K ≤ 500, or K = 50 and
500 ≤ N ≤ 2500. Moreover, the steady-state
probability PB of being in the bad state can as-
sume the values 0.001, 0.01 and 0.1, while the
mean error burst length 1

g
is fixed to 10. Note

that b is derived as g PB

1−PB
once PB and 1

g
are fixed.

However, the choice of 1
g

is not critical because the

sensitivity of the AED to 1
g

is low, as depicted in

Figure 6 for N = 2500, K = 200, and 1 < 1
g
≤ 130.

Note that the choice of such an upper bound on
1
g

is not restrictive because the probability of hav-

ing a burst with length n is g(1 − g)n−1, which is
negligible as n grows.

Figures 7 and 8 report the experimental results
in the case of uniform lengths and all channels
with the same steady-state probability PB . The
graphics show that the impact of PB is irrelevant
when PB = 0.001 and 0.01 because the AED val-
ues are almost the same as for error free channels,
which in their turn are optimal. When PB = 0.1,
the AED value may increase up to the 20%, with

respect to the error-free case.
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Consider now data items whose lengths are non-
uniform. In the experiments, the number K of
channels is set to 50, the number N of items varies
between 500 and 2000, the item popularities fol-
low a Zipf distribution with θ = 0.8, and the
item lengths zi are integers randomly generated
according to a uniform distribution in the range
1 ≤ zi ≤ 10, for 1 ≤ i ≤ N . The expected de-
lay of item di is evaluated by computing t5i , that



m tm
i

1 25.9150699

2 25.9382262

3 25.9388013

4 25.9388156

5 25.9388160

6 25.9388167

Table 1. Values of tm
i when zi = 10, Zk = 50, 1

g
=

10, and PB = 0.01.

m tm
i

1 25.1989377

2 25.2537833

3 25.2689036

4 25.2730723

5 25.2745215

6 25.2745384

Table 2. Values of tm
i when zi = 5, Zk = 50, 1

g
= 10,

and PB = 0.16.

is truncating at the fifth term the series giving ti.
Indeed, as shown in Table 1 for zi = 10, Zk = 50,
1
g

= 10, and PB = 0.01 and in Table 2 for zi = 5,

Zk = 50, 1
g

= 10, and PB = 0.16, at the fifth term
the series giving ti is already stabilized up to the
fourth decimal digit.

Since the data allocation problem is computa-
tionally intractable when data lengths are non-
uniform, lower bounds for non-uniform instances
are derived by transforming them into uniform in-
stances, as explained in Subsection 3.1, and by
running the Dichotomic algorithm. In particular,
since the steady-state probability PB is the same
for all channels, the AEDs giving the lower bounds
are obtained from Equation 12.

Figure 9 shows the experimental results for non-
uniform lengths when PB is identical for all chan-
nels and assumes the values 0.001, 0.01 and 0.1.
In the figure, lower bounds are shown for both
error-free and error-prone channels. One notes
that, for every value of PB , the behaviour of both
the Dichotomic and Dlinear algorithms is identi-
cal. When PB = 0.001, both algorithms provide
optimal solutions because their AEDs almost co-
incide with the lower bound for channels without
errors. When PB = 0.01, the AEDs of both the
Dichotomic and Dlinear algorithms are 12% larger
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Figure 9. Results for N items with non-uniform

lengths when the 50 channels have the same steady-

state probability PB, which assumes the values 0.001,

0.01, and 0.1.

than the lower bound in presence of errors. In the
last case, namely PB = 0.1, the AEDs found by
the algorithms are as large as twice those of the
lower bound in presence of errors. However, such
a value of PB represents an extremal case which
should not arise in practice.

5 Conclusions

This paper studied the problem of allocating
data to multiple channels, assuming skewed allo-
cation of most popular data items to less loaded
channels, flat data scheduling per channel, and the
presence of unrecoverable channel transmission er-
rors. The objective was that of minimizing the av-
erage expected delay experienced by clients. The
behaviour of two polynomial time heuristics has
been experimentally tested modelling the chan-
nel error by means of the geometric model as
well as the Gilbert-Elliot one. Extensive simu-
lations showed that such heuristics provide good
sub-optimal solutions when tested on benchmarks
whose item popularities follow Zipf distributions.
Since the problem is computationally intractable
(that is, NP -hard) for non-uniform data lengths
and error-free channels, the computational com-
plexity of the problem in the presence of errors re-
mains an open issue only for uniform data lengths
and the Gilbert-Elliot model. As regard to the
non-uniform case, an interesting open question is



that of determining whether a closed formula for
computing the item expected delays exists or not
when the Gilbert-Elliot model is adopted.
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