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Abstract

A svstem to represent and visualize scalar volume data at multiple vesolution is presented. The system
i~ built on a multiresolution model based on tetrahedral meshes with scattered vertices that can be obtained
from any initial dataset. The model is built of-line through data simplification techniques. and stored in
iveempact data structure that supports fast on-line access. The system supports interactive visualization
ol cvepresentation ar an arbitrary level of resolution through isesurface and projective methods. The user
ciniteractively adapt the quality of visualization to requirements of a specific application task. and to the
pecdormance of a specific hardware platform. Representations at different resolutions can be used together

to euhance further interaction and performance through progressive and multiresolution rendering.

{rider Terms — Volume data visualization, multiresolution representation, tetrahedral meshes.

[. INTRODUCTION

Volime datasets used in current applications have different characteristics. but a common problem: a
hiwe <ize which affects both storage requirements and visualization times. This issue is especially im-
portant with curvilinear and irregular datasets, where the mesh topology must be stored explicitly for
visualization purposes [37]. Therefore, in some cases interactive image generation from very large datasets
may not be feasible. even with the use of fast graphic hardware and parallelism.

[n recent years. some efforts have been devoted in the literature towards improving performance of ren-
dering algorithms. but few proposals are based on data simplification, which, on the other hand, has
procuced successtul results in managing data complexity in 2D, such as in free-form and topographic
sutface representation.

L this paper. we describe our experience in designing and developing a volume visualization system that

can haudle data at different vesolutions, and that is based on a data simplification approach.

A Related work

fn the literature. dataset complerity has been carefully taken into account to reduce expected visualiza-
fion times. Performance has been improved through different methods: ad hoc data organizations permit
to speecdup operations that visit the dataset during rendering [10], [22], (38], [42], [5]: simplification of the
indering process can be achieved either by approximation techniques [40], [37], or by reducing the size of
the graphic output {34]. [26]. [9], [18].

On a different perspective, it is also possible to manage data complexity by adopting an approrimated
representation of the dataset. Such an approach is more general because, given a suitable strategy to
vecluce the size of the dataset, it remains totally independent of the rendering system. The methodology
in this case is therefore to work on data simplification rather than on graphics output stmplification.

A naive subsampling from a regular dataset has several drawbacks: there is no control on the accuracy

of the simplified mesh: the technique is not adaptive, i.e. density of data cannot be variable over different
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regions of the domain; and it is not easily extensible to datasets that are not regular. In fact, an irregular
distribution of samples makes the construction of a simplified dataset a non-trivial problem in general.
Adaptive methods have been developed in 2D for the simplification of irregular meshes representing free-
forni and topographic surfaces: effective solutions have been obtained through incremental techniques,
based o either refinement or simplification (see, e.g., [9], [14], (16], [20], [23], [34]). Some of such techniques
can be extended to the 3D case to simplify volume data [4], [17], [31].

The iterative application of a simplification technique with different approximation parameters produces
acollection of representations at different accuracies. A data structure that holds a constant (and usually
stiall) nuber of different representations of the dataset, at different levels of accuracy, is called a level of
detad (LoD representation. LoD representations of surfaces and solid objects are widely used in a number
of leading eclge applications (e.g.. virtual reality based on VRML). An evolution of a LoD representation
is a multiresolution representation, which supports the compact storage of a number m (usually large)
of representations at different levels of detail, where m is a monotone function of the size of the input
lataset (i.e.. the more data, the more representations).

Multiresolution or LoD can greatly improve the efficiency of data rendering, e.g., through suitable pro-
aressive visualization algorithms. The multiresolution approach improves over the LoD one with valuable
characteristics. For instance, the user or the application have much more flexibility in selecting the “best”
level of detail. depending on their specific needs in terms of accuracy, memory, and time performance: in
many cases. it is better to leave that choice at run time, instead to force it in the preprocessing, when
simplification occurs. Many approaches have been recently proposed for the multiresolution management
of surfaces (see, e.g.. [L1] for a survey), while multiresolution volume data management is still in a not
sufficiently developed stage.

Auapproach to the representation of regular volume datasets based on the use of a hierarchical recursive
pactition (an octree-like scheme) has been proposed in [39]. Each node is obtained by recursive subdivision:
it holds a basis function to reconstruct the field, as well as a measure of both error and importance factors,
which are used for selective traversal of the tree. The method cannot be extended to irregularly distributed
data. Using such a structure as a LoD representation, by considering each tree level as a separate layer,
is equivalent to use subsampling. A multiresolution representation is also possible, by selecting nodes
at different levels, but the field may result discontinuous across different levels, thus causing unpleasant
effects (e.g.. aliasing in direct volume rendering, and cracks in isosurfaces).

[n a previous paper [4], we proposed a LoD representation based on tetrahedral decomposition: inde-
pendent simplified representations of a volume dataset at different levels of approximation were built by
a refinement technique. Such a work can be considered preliminary to that presented in this paper, and
it is extended here in several aspects.

Wavelet theory plays an important role in the multiresolution analysis of signals, and approaches based

on wavelets have been proposed also to manage volume data [15], [27], [36]. The approach to data

DRAFT




stplification based on wavelets is much different from the seometric approach we follow. Data are
considered as samples from a signal that is decomposed into wavelets [25]: the coefficients of the wavelet
decomposition represent the dataset at full resolution. while approximated (LoD-style} representations
tiay be used in rendering by considering only subsets of the coefficients. The wavelet decomposition may
also beised i a multiresolution manner by using higher resolution coefficients in limited locations of the
3D space ouly. Times for wavelet-based rendering are generally higher than those of standard cell/voxel-
bisecl tevhimiques and, moreover. generality is limited because the wavelet approach has heen applied to
regular datasers only.

While wany volume visualization systems have been distributed in the public domain. we are not
acquatnted of the availability of systems offering multiresolution features. neither in the public domain,

nor i commercial products.

B Summary

The paper consists essentially of two parts. In the first part {Sections II-1V) we show how a multires-
olution model for volume data based on tetrahedral meshes can be built and stored. In the second part,
(Sections V-VT) we describe a volume visualization system built on top of such a model. and we present
experinental results.

Our approach to multiresolution. is based on data simplification, which is described in Section II: an
approximated representation of volume data at reduced resolution is given by a tetrahedral mesh, having
staller size with respect to an initial mesh defined on the whole dataset. Data values are approximated
by alinear function over each tetrahedron. Tetrahedral meshes are used because of their adaptivity {local
vetinenient) and for the simplicity of linear interpolation.

[n Section III. two methods for building approximated meshes are described: a top-down method that
refines a coarse initial mesh by iteratively inserting vertices, and a bottom-up method that simplifies an
tuitial mesh at the highest resolution by iteratively discarding vertices. The top-down method extends
A previous result that we presented for convex datasets in [4]. to handle also curvilinear (possibly non-
convex) datasets. The bottom-up method extends simplification methods in 2D [18], [34], and it can be
applied also to irregular non-convex datasets.

Since both methods are based on iterative local modifications of a mesh, each of them produces a fine-
grained sequence of meshes at increasingly finer (respectively, coarser) resolution. In other words, a high
nuwniber of different tetrahedral meshes at different resolutions are obtained on the basis of a moderate
number of tetrahedra, namely all tetrahedra that appear during successive updates. Such tetrahedra can
be stored in a compact representation of a multiresolution model, described in Section IV, which supports
fast on-line extraction of a mesh at arbitrary resolution.

[n Section V' we describe the multiresolution visualization system T4n (Tetrahedra Analyser), whose

prototype is available in the public domain. Besides supporting the off-line construction of the multires-
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Fig. 1. A visualization of the terminology used. in a two-dimensional example.

olution model. TAn has direct on-line access to the model itself: it allows the user to interactively select
the resolution of representation, and the transfer function: it supports multiple isosurface fitting and
venclering. clivect volume rendering through projection, and approximated hybrid rendering; moreover, it
supports teractive manipulation of huge volume data through progressive rendering, which is obtained
by nsing representations at different resolutions from the multiresolution model.

Fxpertmental results on the construction of the multiresolution model, on multiresolution visualization,
and on the use of TAn are reported in Section VI.

[u Section VL. concluding remarks are drawn, and current and future work on this subject is summarized.

II. VOLUME DATA APPROXIMATION

A scalar volume dataset is given by the values of a scalar field ¥ taken at a finite set of sample points
I7in R®. A\ volume Q C IR® spanned by the points of V' is called the domain of the dataset: Q is
usually a polyhedron. it can be either convex or non-convex, possibly with cavities. In most cases, a
three-dimensional mesh I is also given, which covers the domain Q. and has its vertices at the points
of 17 the scalar field ¢ is estimated over Q by a function f that interpolates all data values at points
of 17, and is defined piecewise on the cells of I'. The terminology introduced is visually represented in
Figure | where we present, for the sake of simplicity, a 2D example: in this case, Q is a square region, T
is a triangulation. V" is the set of vertices of ', the graph of ¥ is a surface in 3D, and the graph of fis a

corresponding triangulated approximation.

Ao Volume data classification

Volume data can be classified through the characteristic structure of the underlying grid.
s In regular datasets, sample points are distributed regularly in 3D space: € is a block (parallelepiped)
and [' is a regular hexahedral mesh.
o [n curcdinear datasets, sample points lie on a regular grid in a computational space, while the grid
is warped to become curvilinear in physical space: Q is a polyhedron {(usually non-convex), and I’
has the connective topology of a hexahedral mesh, while its cells are irregular hexahedra.
o [u wrregular datasets, sample points are irregularly distributed in 3D space: 2 can be either convex

or non-convex, and [ is usually a tetrahedral mesh, or a hybrid mesh made of tetrahedra and
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irregular hexahedra.

o [ scattered datasets (sometimes also said unstructured), only sample points of V' are known, which
are wregularly distributed in 3D space. while I' must be reconstructed. In the simplest case, (2 can he
axsiimed coincident with the convex hull of V. therefore T may be obtained as a tetrahedrization of
the ponrs of T A more general non-convex situation may require specific reconstruction techniques
that ave bevoud the scope of this work.

Hereatter. we will always assume that T is given, and we will use the following (non-standard) classification
of datasets, which is suitable to our purpose: conver (i.e., having a convex domain, disregarding any further

classification of data distribution and type of mesh): non-conver curvilinear: and non-conver irreqular,

B Titrahedral meshes

A retrahedral wmesh is a collection of tetrahedra such that for any pair of tetrahedra either they are
disjotnt. or rhey meet at a common vertex, or edge. or triangular face. This establishes topological
elationships. essentially incidences and adjacencyes. among the vertices, edges. triangular faces, and
retvaliedra that form the mesh. As a convention, a tetrahedral mesh will be usually denoted by ¥, and a
generic tetrahedron by o.

Giiven a et of points 17, a tetrahedral mesh ¥ having its vertices at the points of ¥ and covering the convex
hull of 17 is called a tetrahedrization of V7. Many different tetrahedrizations of V' exist. In particular, the
Delaunay tetrahedrization has the property that the circumsphere of each tetrahedron does not contain
any powmt of 17 in its interior.  The Delaunay tetrahedrization has some nice properties (~fat” cells,
acyelicity in depth sort [13]), which make it a suitable mesh in the applications [41].

Given o polvhedron Q. a tetrahedral mesh © covering it is also called a tetrahedrization of Q. If Q is
non-convex. a tetrahedrization of Q having vertices only at the vertices of Q does not necessarily exist.
Moreover. deciding whether such a tetrahedrization exists or not is NP-complete [32]. This suggests how
the non-convex case is more difficult to handle, and it justifies the application of heuristics.

Given a tetrahedral mesh 5 with data values at its vertices, it is easy to interpolate such data by using
a linear function within each tetrahedron. Therefore, piecewise-linear interpolation is most commonly
nsed ou tetrahedral meshes. Higher order interpolation would be necessary to achieve smoothness across
different tetrahedra, but this involves high numerical effort which makes it hardly applicable to volume
dlata. Discontinuities of the field represented by a tetrahedral mesh may be modeled by assigning different

values to the same vertex for different tetrahedra incident into it.

C. Approrimated meshes

Let 17 be a volume dataset, and let I' be a given mesh over V, covering a domain 2, and having all points
of 7 as vertices. The pair (V. T') is called a reference model for the volume dataset. An approzimated model

of such volume data is given by a pair (V. 3), with T a tetrahedral mesh having vertices at the subset
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17 of 1", and covering a domain Q that approximates Q. A linear function is given for each tetrahedron
of ©. The accuracy of approximation is given by the difference between the reference model and the
approximated model, which depends essentially on two factors:
o the warping of the domain. i.e.. the difference between Q and its approximation )
o the #rror made in approximating values at the points of |/ through the piecewise-linear function
defined on .

For conver datasets, we assume that Q = Q. i.e.. there is no warping, because convex datasets usually
have a small number of vertices on their convex hull (e.g., the domain of a regular dataset is defined by
SIN vertices).

Fov non-conver curcdinear datasets, we consider a parallelepiped Q.. called the computational domain.
and a regular hexahedral mesh . covering Q., and isomorphic to I'. This is always possible because [ is
a deformed hexahedral mesh. The one-to-one correspondence (isomorphism) between vertices of I, and
U will be called a lifting from computational to physical domain (see Figure 2a). Since ¥ has vertices at a
sutbset of vertices of I'. we can use lifting to back-project T into a corresponding tetrahedral mesh ¥, in
cotnputational domain (see Figure 2b). Meshes . and . both cover Q. provided that ¥, has at least
the eight corners of Q. as vertices. Therefore, each vertex v, of [ is contained into some tetrahedron o, of
Yoo We express the position of v, in baricentric coordinates with respect to o, and we consider the point
tin physical space having the same baricentric coordinates as v, with respect to tetrahedron o, image of
7. through lifting. Point & is called the warped image of v (where v is the image of v, through lifting). The
warping at ¢ is the distance between v and v (see Figure 2c). The maximum distance over all vertices of
[ whose bacl-projection lies inside o, estimates the warping of its lifted image o; the maximum warping
over all tetrahedra of ¥ defines the warping of the whole approximated model.

Fovr non-conver trregular datasets, we estimate the actual difference between the boundaries of Q and
Q. Such a difference is measured by computing at each boundary vertex of ' its minimum (Hausdorff)
distance from the boundary of T (see Figure 3).

The warping of a boundary face ¢ of T is the maximum among all distances corresponding to boundary
vertices of [ that are projected onto o; the warping of © is the maximum among warping of its boundary
faces [3].

Error is measured similarly. In a conver dataset, the error at a datum v contained in a tetrahedron o
is given by the absolute value of the difference between the field value at v, and the value of the linear
function associated to ¢ computed at v.

For a non-conver curvilinear dataset, the error is measured by computing the same difference in compu-
tational domain: this is equivalent to measuring the difference between the field at a datum v and the
o~timated value at its corresponding warped point ¥ defined above.

For non-conver irregular datasets there are two possible situations: if v is inside €, then we compute

the difference as in the convex case; if v lies outside ©, we compute first the projection v, of v on the
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Fig. 2. Lifting and warping for curvilinear datasets (example in 2D): (a) lifting maps a regular mesh I"; into a curvilinear

mesh U: (b) the triangular mesh T approximating I is back-projected in computational space into mesh ¥.; (c) warping
at a puint v is equal to the distance from v to the warped point .
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Fig. 5 Fov non-conver irregular datasets, we estimate the actual difference between the boundaries by computing at each

boundary vertex of I its minimum distance from the boundary of T.

boundary of Q. then we measure the difference between the field at v and the linear interpolation at v,.
[ this case. ¢ s said related to the tetrahedron ¢ having v, on its boundary (see Figure 3).

The error of a tetrahedron ¢ is the maximum amon« the error of all vertices v; such that: for the convex
case. ¢; lies luside o for the non-convex curvilinear case, the point corresponding to v; in computational
space lies wside o, for the non-convex irregular case, v; is either inside o, or related to . The error of
the mesh ¥ is the maximum among all errors of its tetrahedra.

Hereafter. warping and error will be denoted by functions W() and E(), respectively, which can be
evaluated at a point v, at a tetrahedron o, or at a mesh &. Warping and error at data points can also
be weighted by suitable functions that may vary over Q. Weights can be useful to obtain a space-based
measure of accuracy. For example, let us assume that for applicative needs accuracy is relevant in the
proximity of a selected point p. We can select weights that decrease with distance from p. Similarly,
range-based error can be used to require more accuracy where data assume a given value ¢: in this case,
a weight for error can be obtained by composing the value function ¥ with a real univariate function

decreasing with distance from ¢.
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[II. BUILDING AN APPROXIMATED MODEL

Giiven o veference model (V.F). and a threshold pair g = (d.z). we face the problem of butlding an
approxunated model (17, Z) that represents the volume dataset with accuracy pu. ie.. with a warping
stndler than o and an error smaller than =, A key issue is that the size of & should be as small as
posstbles A\ result in 2D suggests that the problem of winimising the size of the mesh for a given accuracy
i~ ttracrable {NP-hard): also. approximated algorithms that warrant a bound on the size of the solution
with tespect to the optimal one are hard to find. and hardly applicable in practice [1]. Hence. heuristics
e boadopted. which tey o obtain a mesh of reduced size by following data simplification strategies.
Fleeee s 1w basic classes of strategies for simplifying a mesh:

o Hefincment heuristies start from a mesh whose vertices are a very small subset of vertices of I'. The
tmesh s iteratively refined by inserting other vertices of T into it. Refinement continues until the
acenracy of the mesh satisfies the required threshold. Selection strategies can be adopted to insert
At each step a vertex that is likely to improve the approximation better. '

o Decomation heuristies start from the reference model I' and tteratively modify it by eliminating
vertices. \s many vertices as possible are discarded. while maintaining the required accuracy. Also
e this case. points are selected at each iteration in order to cause the least possible increase in
warping and error.

Although tn 2D several heuristics have been proposed, experiences in this case show a substantial equiv-
alence of most of them in the quality of results. Since the three-dimensional case is almost unexplored,
extending 2D rechniques that seems most suitable to 3D is a reasonable approach.

I the tollowing subsections. we present two simplification methods: the first method is based on re-
lincnient and Delaunay tetrahedrization, and it can be applied to convex datasets. and to non-convex
curvilinear datasets: the second method is based on decimation, and it can be applied to any dataset,
provided that the veference mesh [ is a tetrahedral mesh. but it is especially well suited to non-convex

trregular meslies.

A A method based on refinement

A refinement method that we proposed in [4] for convex datasets is extended here to deal also with
non-convex curvilinear datasets. The basic idea comes from an early technique developed in the two-
dimensional case. and widely used for approximating natural terrains [14]. An on-line algorithm for
Delannay tetrahedrization is used together with a selection criterion to refine an existing Delaunay mesh
by inserting one vertex at a time. In the case of curvilinear datasets. a Delaunay tetrahedrization is
computed in the computational domain. while its image through lifting gives the corresponding mesh in
the plivsical domain.

[ both cases, the selection strategy at each iteration is aimed to split the tetrahedron that causes the

axuuum warping/error in the current approximation: this is obtained by selecting the datum v,
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corresponding to the maximum warping/error as a new vertex.  The description of the algorithm is
seneral. while specific aspects of either the convex or the curvilinear case are explained when necessary.

Covercacdaraset U an initial mesh T is created first. If V is a convex dataset, then T is a tetrahedrization
of the convex hull of ¥ If V' is a non-convex curvilinear dataset, then a tetrahedrization . of the
somputational domain Q. is considered: sinceQC is a block, ¥, has only the eight corners of Q. as
vertices. and it subdivides Q. into five tetrahedra: © is obtained by lifting &, into physical domain. Given

a threshold 4o for the accuracy, the following refinement procedure is applied:

procedure REFINEMENT(V. S, 4):
while not (T satisfies 4) do
are = SELECT_POINT(V. . u):
S = ADD.VERTEN(T. timay)
eud while
veturn {3}
end :

This refinement procedure always converges since the number of points in V' is finite, and total accuracy
i~ warranted when all of them are inserted as vertices of ©. In summary, three tasks are accomplished at
rach iteration of the refinement procedure:

L. Test the accuracy of T against u: this requires evaluating £(X) and, in the curvilinear case, W (),
and comparing them with = and 4, respectively. This can be done efficiently by using a bucketing

structure similar to that proposed in [21] for dynamic triangulation in 2D, which maintains for each

tetrahedron a list of data points of V7 contained inside it.

[RN4

. Select a new vertex vp,qr from the points of VV by SELECT.POINT: for the convex case. the point
of 17 that maximises E() is selected; for the curvilinear case, the point of V that maximises either
() ov E() s selected, depending on whether W(Z)/E(Z) is larger or smaller than d/¢, respectively.
This can be done efficiently by the joint use of the bucketing structure, and of a priority queue,

maintaining tetrahedra according to their error/warping.

Update T by inserting tmar by ADD_.VERTEX: this is done by using an algorithm for on-line
Delaunay triangulation that was proposed in [19]: in the curvilinear case, update is always made
on the tetrahedral mesh in computational domain, and T is obtained through lifting.

Further details on the implementation of the refinement procedure for convex datasets can be found
in [4]. Such a procedure can be adapted to the case of curvilinear datasets on the basis of the previous
discussion.

A turther remark is necessary, though, for the case of curvilinear datasets. During the initial stages
of refinement. mesh ¥ might result geometrically inconsistent because of the warping caused by lifting.
Indeed. while mesh ©. is a Delaunay tetrahedrization of the computational domain, hence consistent,
some tetrahedra might “flip over” during lifting, hence changing their orientation and causing geometric

mconsistencies in ¥. See Figure 4 for a two-dimensional example. Consistency can be tested by verifying
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Froo L lnconsistency in curvilinear mesh (2D example): mesh £, is geometrically consistent. while its lifted image < is not.
whether cach teteahedron maintains its orientation both in computational and in physical domain.
Weassian infinite warping to each tetrahedron that has an inconsistent lifting. In this way. inconsistent
tetraliedra are vefined first. and the mesh rapidly converges to a consistent one.

The rime complexity of the refinement procedure is not crucial to our application, as long as it remains
o reasonable Founds. because the algorithm is applied off-line to the volume dataset in order to build a
multiresolution model (see Section 1V). However, time analysis in case all n points of V7 must be inserted
o Y shows a bound of O(n3) in the worst case [4], while experiments show a subquadratic behaviour
i practice. Oun the other hand. the space occupancy of this algorithm is quite high. because of the need

ol mamtaming both a bucketing structure and a priority queue (see empirical evaluations in Section VI,

Fables T and T1).

Al Refinement of large datasets by block-decomposition

bor datasets having a regular structure (either in physical or in computational domain) it is possible to
bring space coplexity into more manageable bounds, by splitting the dataset into blocks, and running
the algorithi separately on each block. Assume, for instance, that a regular dataset of size m x n x p is
given: we can subdivide it, e.g.. into &% blocks of size (m/k + 1) x (n/k + 1) x (p/k+ 1) and process them

separatelyowith the same threshold p in all cases. Then, the resulting meshes are joined to form a mesh
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Fig. 5. Two adjacent blocks 1 and T3, and the coincident triangulations T and T of their common face.

of the whole domain.

o order to warrant the correctness of such a procedure, we must be sure that the structure obtained by
jowming all results is indeed a tetrahedrization of the whole domain. This can be proved by showing that
given 1wo blocks sharing a common face, the refinement algorithm will triangulate such a face in the same
way while vefining each block (see Figure 3). Let ©; and 4 be the meshes of the two blocks. and let T,
and 1 be the triangulations of the face r common to both blocks in £, and Lo, respectively. We may
assume that. upon suitable initialization of the meshes, T} and T are initially coincident. Let us consider
a generic step of the algorithm that refines T;: if the vertex inserted does not lie on r, update will change
neither Ty nor the error and warping of data points lying on r; on the contrary, if the vertex inserted lies
o it must be in particular the point maximising error/warping among all data points lying on ». This
means that the sequence of vertices refining T} is independent of the refinement that occurs in the rest of
Y. Since the same situation occurs for the refinement of T, we can conclude that the same sequence of
vertices will be selected for Tb, hence the two triangulations for a given accuracy will be coincident. Note
rhat. however. the result will not be the same that we would obtain by running the refinement algorithm

on the whole dataset, since the resulting tetrahedrization might not be globally Delaunay: the Delaunay

property 1s verified only locally to each block.

B. 4 method based on decimation

The refinement method described above is hardly adaptable to the case of non-convex irregular datasets.
Major difficulties arise in finding an initial coarse mesh to approximate the domain €, and in the estimation
of warping. Moreover, the Delaunay triangulation is not applicable to non-convex polyhedra, since it is
undefined in the constrained case.

Experiences in the approximation of non-convex objects through 2D triangular meshes suggest that a
decimation technique might be more adequate to the ¢ of non-convex irregular datasets (see, e.g., [34],
{18]). In the following, we describe an algorithm that - tends such heuristics to volume data: starting
from the reference mesh T, vertices are iteratively discarded until possible. Given a threshold p for the

accuracy. the following refinement procedure is applied:
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procedure DECINIATION{(V. D u):

K

— |

while ¥ satisfies w do

veon = SELECT.MIN.VERTEX(V. S, u):
L o— REMOVEVERTEXN(Z, v1,0)

cud while -

veturn (Y]

cud -

The rest of aceuracy is simpler in this case than in the refinement procedure. Inceed. at each iteration.
accarney nay worsen only because of local changes. Therefore, it is sufficient to maintain a variable
storine the current aceuracy. which is updated after each iteration by testing whether the accuracy in the
chaneed portion of the mesh has become worse than the current one.

On the contrary. procedures SELECT_MIN_VERTEN and REMOVE_VERTEX are somehow more deli-
cate thaa their respective counterparts SELECT_MAX_POINT and ADD_VERTEX.

Selecting o vertex to be removed involves an estimation of how much error and warping of the mesh
iy erease because of removal: the eriterion adopted is that the vertex causing the smallest increase in
creor/warptug should be selected at each iteration. An exact estimation of the change in error and warping
cian be obramed by siimulating deletion of all vertices in the current mesh. This would be computationally
expensives sinee each vertex has 24 incident tetrahedra on average, and it may involve relocating many
points lving inside such tetrahedra. We rather use heuristics to estimate apriori how much a vertex removal
atfects crror and warping. Such an estimation is computed at all vertices before decimation starts, and it
i~ updated at a vertex each time some of its incident tetrahedra change.

l order to estimate error increase. we pre-compute the field gradient ¥, at each vertex v of the reference
models this can be done by calculating the weighted average of gradients in all tetrahedra incident at v,
where weight for the contribution of a tetrahedron o is given by the solid angle of o at v. Then, for each
vertex o the mesh, we search the vertex w. among those adjacent to ¢, such that the difference AV,
between U, and Vois minimum. Value AV, gives a rough estimate of how far from linear is the field
i the ueighbourhood of vi the smaller AV, ., the smaller the expected error increase if v is removed.
Value AV, . and a pointer to w are stored together with v.

Warping changes only if a vertex lying on the boundary of T is removed. Therefore, for each such vertex
. we estimate apriorl warping increase caused by removing v on the basis of the local geometry of the
boundary of ¥ in the neighbourhood of v. We adopt a criterion based on the distance d, between v and
a plane thar best fits all vertices lying around v on the boundary of © (see Figure 6): the smaller d,.. the
~swaller the expected warping increase if v is removed. Therefore, d, is stored together with ¢.

Virtices of ¥ are maintained in a priority queue that supports efficient selection. In this framework, the
selection criterion adopted in procedure SELECT_.MIN_VERTEX is symmetrical to the one used in the

refinement algorithm: the vertex of ¥ is selected which is expected to produce the smallest increase in
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Fig w0 An apriori estimate of warping increase caused by removing a boundary vertex v is obtained by measuring the

distance of © from an average plane fitting its adjacent vertices on the boundary of T.

either warping or error. depending on whether W (S)/E(S) is larger or smaller than §/z.

Once a vertex v has been selected, we need to tetrahedrize the polyhedron resulting from the elimination
ot all the tetrahedra incident on r. Therefore, removing it from the mesh is not necessarily possible: this
cifficuley is related to the fact that it may not be possible to tetrahedrize a non-convex polyhedron. Since
deciding whether this is possible or not is NP-complete. we use heuristics to try to remove a vertex by
collapsing oue of its incident edges to its other endpoint. In particular, given a vertex v, we try to remove
1t by collapsing the edge e that joins v to vertex w having the smallest difference AV, ., from v in its
surface normal: recall that w had been selected while estimating the cost of removing v in terms of error.
Edge collapse is a simple operation: all tetrahedra incident at e are deleted, while all other tetrahedra that
have a vertex at ¢ are modified by moving such a vertex at w. All adjacencyes are updated accordingly: if
two tetrahedra o, and ¢y were both adjacent to a tetrahedron oo that is deleted, then oy and o2 become
wutually adjacent (see Figure Ta for an example in 2D). Geometrical consistency of the mesh may be
violated if some tetrahedron “flips over”, i.e., it changes its orientation, because of edge collapsing (see
Figure 7h for an example in 2D). Consistency can be tested simply by checking the orientation of each
retrahedvon incident at v before and after collapse. If collapse results impossible, then no mesh update
occurs. while v is temporary tagged as non-removable, by setting its error and warping estimate at infinity.
In this way, a different vertex will be selected at the next cycle.

After a successful edge collapse, a precise evaluation of the current accuracy must be obtained. As
i the refinement method, we adopt a bucketing structure to maintain the relation between tetrahedra
and data points they contain. Updating this structure involves only the portion of mesh covered by the
“old” tetrahedra that were adjacent to v. All removed points (including v) that belong to such a volume
are relocated with respect to the “new” tetrahedra. Note that, in case v was a boundary vertex, some
points may fall outsicle the mesh: such points (including v) are assigned to tetrahedra by considering their

projections on the “new” boundary faces of the mesh (see Figure 8). Changes in accuracy are computed
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Fig. 7. Edge collapse in 2D: (a) a valid collapse: (b) an inconsistent collapse.

z

Mieo ¥ Points that fall outside the mesh are assigned to tetrahedra by projecting them on the boundary faces.

for el potnt on the basis of its new location. Finally. the apriori estimate of ervor and warping increase

> recotpited at each vertex that was adjacent to ¢, and the priority queue is updated accordingly.

[V, A MULTIRESOLUTION MODEL

Facli one of the algorithms described in the previous section can be regarded as producing a ~historical
sequence of tetrabedra, namely all tetrahedra that appear in the current mesh © during its construction.
Based on sieh au observation, we extend here to the three-dimensional case a simple idea to manage mul-
tiresolntion. which we proposed in [8] in the two-dimensional case, for the multiresolution representation
i terrins,

Fach teteahiedron of the sequence is marked with two accuracies py, = (8. 73) and uy = (dy. 24). called its
berth and death. and corresponding to the worst and best accuracy of a mesh containing it. respectively,
Therefore. we have ¢4 < dp and z4 < 7, (in short, pg < p).

Relerring to a historical sequence generated by the refinement algorithm, we have that birth and death
arve the acenracy of the current mesh when the tetrahedron was inserted into it, and when it was discarded

lovi it respectively, The two values are swapped in case the historical sequence is built by decimation.
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Ao Querying the model

(riven a query accuracy p = (4, 2), we have that a mesh at accuracy p will be formed by all tetrahedra
that ave g-alive. Le.. such that gy < p < pp. Based on this fact, we use birth and death as filters to
vetrieve tetrahedra that either form a given mesh, or cover a given range of accuracies. from the historical
~equenes Siehea filter can also be combined with a spatial filter to perform windowing operations, i.e..
to retrieve only tetrahedra that belong to a given query region.

Sinee a multiresolution model contains a huge number of tetrahedra, we have adopted a minimalist data
stracture, which is suitable to maintain the multiresolution model on a sequential file.

For each site in the dataset. we store its coordinates and feld value, while for each tetrahedron in the
lustorical sequence. we store its vertex indexes and the birth and death accuracies. Therefore, space
oceupancy only depends on the number of sites, and on the number of tetrahedra in the historical sequence.
Sires and tetrahedra are stored in two different files. Both sites and tetrahedra are sorted in the order
they appear in the mesh during construction through refinement (in the inverse order, if the model is built
rhrough cecimation). Therefore, tetrahedra result in a non-increasing order of birth.

[n this case. the sequence of tetrahedra belonging to a model at a given resolution u is obtained by
sequentially scanning the file. while selecting tetrahedra according to their birth and death: only tetrahedra
that ave p-alive are accepted, and the search stops as soon as a tetrahedron having a birth accuracy
better than g is found. Tetrahedra covering a given range of accuracies are obtained similarly. Vertices
ot such tetrahedra are obtained by scanning the sequence of sites up to the highest element indexed by a
retrahedron in the set extracted.

Note that performing a combined windowing operation would require a subsequent filter that t~ 1 all
retrahiedra after their extraction.

search efficiency might be improved by adopting data structures for range querles, such as the wterval
tree [29]. or the sequence of lists of simplices (2]. However, such data structures might introduce a relevant
memory overhead. In particular, adopting the sequence of lists of simplices would make sense only if
the list of all accuracies spanned by the multiresolution model (which might be as large as the number
of tetrahedra forming it) can be maintained in the main memory. The interval tree gives optimal time
performance, but its application would be effective only if the whole model can be maintained in the main
memory.

On a diffevent perspective, spatial indexes [33] might be adopted to improve the performance of windowing

operations, but also such structures involve some memory overhead.

B. Transnutting the model through the network
[f'a multiresolution model must be transferred from a server to a client over the network, it is important
to compress information further.

Conciseness can be achieved by avoiding the explicit transmission of tetrahedra forming the historical
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~equience while providing an implicit encoding that allows the client to make the structure explicit effi-
crently

[ the nodel s built through procedure REFINEMENT. by exploiting the properties of Delaunay
tetrahedrizations. we can transmit only the vertices of the inal mesh © in the order they were inserted
Anrvine celinenent e in the order we store them on file). For each vertex. we send to the client its
ceordimates. s field value. and the accuracy of the mesh just after its insertion. This allows the client to
reconstruct the whole historical sequence in the right order. by applying a procedure for on-line Delaunay
terrahcdrization [19] while vertices ave received. Note that this is much a cheaper task thaun rebuilding the
todel Tron the mitial dataset. since the selection of vertices now comes free from the sequence. Moreover,
the on-lne construction performed by the client directly results in a progressive representation {and.
possiblv. rendering) of the mesh at the highest resolution.

Wl model s built through procedure DECIMATION, a similar technique may be adopted. following
Hoppe [INL T this case. the coarsest mesh is transmitted explicitly, while the remaining vertices are
isted i inverse order of decimation {i.e.. in the order we store them on file). For each vertex, we send to
the clicnr s coordinates, its field value. the accuracy of the mesh just before its deletion. and the vertes
Howas collapsed o This last nformation permits to perform a verter-split operation that inverts the
cdge-collupse performed by the decimation algorithm [18). Therefore, the client can generate the whole
historical sequence in the right order, by using a sequence of vertex splits. Similarly to the previous case,
mesh reconstruction is performed by the client efficiently, and progressive transmission and rencering
are supported. Note that. in this case, operations perfornied by the client at each vertex split are much
stinpler than rhose vequired by a Delaunay procecure. while. on the other hand, the amount of information
transinitted is shghtly larger.

The size of data transmitted can be reduced further by using geometric compression [12].

V. THE TAN SYSTEAM

Oun the basts of the multiresolution model and algorithms described in the previous sections. we have
designed a volume visualization system. called TAn (Tetrahedra Analyzer), which is able to nanage

multiresolution based on approximated tetrahedral representations of volume data.

Ao Nustem architecture

The architecture of TAn is depicted in Figure 9. The system is essentially composed of two modules,
the madeling module and the visualization module, which communicate with each other through the
multiresolution data structure, while each of them can communicate with the user through a Graphical
User Interface.

o The modeling module contains the algorithms for building a multiresolution model, starting from

a volume dataset: either the refinement or the decimation algorithm is used to build the model.
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Fig. 9. The architecture of the TAn system.

depending on the type of the dataset in input. The user selects an input dataset, and construction
parameters through the GUI; then, the system reads the corresponding data file, and it runs a
construction algorithm. The resulting multiresolution models is stored by using the data structure
cdescribed in Section V.

‘The modeling module is essentially intended to run off-line, during a phase in which the multires-
olution m«.del is prepared, and stored on the file system for subsequent visualization.

Ounce a multiresolution model has been built, the visualization module can access it through a
submodule called the multiresolution extractor, which contains query processing routines that access
the multiresolution data structure, as explained in Section [V-A.

Tetrahedra extracted from the multiresolution model are piped to two independent submodules:
one that manages a transfer function, and one that performs isosurface extraction.

A transfer function is applied to the range covered by the extracted data, in order to provide color
and opacity for each vertex used in direct volume rendering. The user can load, edit, and store
transfer functions through the GUL

[sosurfaces are obtained through a method called the Marching Tetrahedra (MT), which is a straight-
forward adaptation of the Marching Cubes (MC) [24] to tetrahedral meshes: each tetrahedron is
classified in terms of the value of its four vertices, and triangular patches are obtained by using

linear interpolation along each edge intersected by the isosurface. Isosurface patches are extracted
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fram all tetrahedra loaded in memory. and for either one or more isovalues provided by the user
theough the GUL The user can also define color and opacity for each isovalue independently.
Pliis stage essentially provides geometries. nanely a set of tetrahedra prepared for direct volume

venrlering. and a set of isosurface patches prepared for surface rendering,

respectively.

o Cevmetries ace piped to the Rendering Manager submodule that controls visualization on the basis
of the data curvently loaded in memory and of parameters provided by the user. This submodule
exseutially s ated to filter the geometries (triangles and/or tetrahedra) that should be visualized.
at each rime. and in each location of space. In this way. we are able to implement mechanisms such
as progressiee renderimg - where a low-level mesh can be used during interactive phases, while a high
level miesh is used when the user can wait longer for visualization: and multiresolution rendering

where different LoDs ave used in different portions of space. e.g. to either enhance quality ar
minanily aselected portion of the dataset [7]. Filtering is again performed on the basis of the birth.
death. and location of each tetrahedron or triangle.
lh order to improve performance. the user is allowed to ask 1. : further interactive extraction of
isosurlaces only from tetrahedra of interest. In this case. the Rendering Manager module pipes
back to the isosurface extractor only a pointer to the current tetrahedra list, and collects more
isosirface patches.

¢ Lhe geowetries selected for visualization can be piped to one among three different modules. de-
pending on the rendering modality selected by the user.

(Wonly esosurface rendermg is enabled. then a proper module that visualizes them through stan-
Jdard surface graphics is invoked. which is passed the set of isosurface patches of interest. Note that.
il translucent surfaces are used. it is necessary to sort isosurface patches in depth order prior to
visualization.
Honly divoct volume rendering is enabled. then the selected set of tetrahedra is passed to a Pro-
jected Tetrahedra (PT) algorithm [35], whose main phases are a depth sort of the tetrahedral mesh
anc then, for each cell in depth order, a split-and-compositing action that procuces translucent
trinugles. visualized through standard surface graphics.
[Uhoth sosurfaces and direct volume rendering are used. then both tetrahedra and isosurface trian-
gles ave passed to a module that manages hybrid rendering. In this case, blending conflicts among
tetrahedra and isosurface patches must be resolved. In orcer to do this. each tetrahedron which
contains a surface patch splits into two parts, each of which is further tetrahedrized. The resulting
~t of tetrahedra and isosurface patches are then sorted in depth order, the PT algorithm is applied
to tetrahedra. and the results are visualized in depth order through standard surface graphics.
[t s casy to change this architecture into a network architecture based on a client/server model, by
using the dara transmission method described in Section IV-B. In this case. the server would contain

the nodeling module. plus a cuery processing module that provides, upon request from the client, a
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cotpressed data structure of the extracted mesh or set of meshes.
Flie client would incorporate the visualization module. where the multiresolution extractor would be

~iply v module that schedules requests to the server, collects answers, and decompress the data structure.

B Prototuype qmple mentation

Fhe architecture described in the previous section has been partially implemented. A first version of
tie LA 0 svstent has been released in the public domain in the first quarter of 1996. and it is available (SGI
exeettables onlyy at our Internet site http://miles.cnuce.cnr.it/cg/swOnTheWeb.html. The system
works on SGL workstations and uses the standard graphics library, OpenGL to manage graphics data
cutput. Its GUI has been implemented by NForms [43]. a portable and easy-to-use user interface toolkit
available it the public domain (see at http://bragg.phys.uwm.edu/xforms).

We nplewented the refinement construction algorithm both for convex and non-convex curvilinear
dara bt only the convex version is included in the first release of the system (experiments on curvilinear
datashown in the next section were obtained with a stand-alone version of the algorithm). The decimation
constraction algordhm for irregular datasets is currently under implementation.

The multir solution eaxtractor provides a function for extracting a mesh at any LoD provided by the user.
Uwo mieshies can be loaded into main memory, one at a high LoD. and the other at a low LoD, and used
for miteractive rendering.
Figure 12 shows snapshot of the two GUI windows that allow the user to build a multiresolution model.
and to extract LoD representations from it. The system provides statistics on the size of meshes at different
LoDsi the user can therefore make his choice for the approximated models by taking into account the
preformiances of the workstation used, the frame rate required. and the image quality degradation which
may be accepted.
The following vi-ualization features were implemented:

+ loading and interactive editing of the transfer function;

+ nuitiple sosurface extraction through the MT method:

+ osurface rendering with user defined color and opacity:

o divect volume rendering through the PT method;

» approximated hybrid rendering;

» interactive modification of view parameters;

¢ a progressive rendering modality.

A\ snapshot of the graphic output window, and of GUI windows related to rendering is presented in
Figure 13. The window in the upper left corner is the main me: 1 of the system; the window in the upper
right corner allows the user to extract an isosurface and to as~ n it a given color and opacity; the other
two windows on the right side are related to visualization and . ting of the transfer function: the window

e the lower left corner allows the user to interactively adjust view parameters; the window in the middle
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i~ e 1o select the rendering modality (isosurfaces. or DVR. or both).

The npproximated hybrid rendering is implemented as follows. For eacl tetrahedron. the system explic-
v stores s related isosurface facets. At rendering time all cells are depth-sorted and. for each cell. both
the volnue contribution {obtained with the PT algorithm). and the isosurface facets possibly contained
et e projected. Sinee tetrahedra are not split prior to depth-sort, the result is only approximated
brecsnse o dilferent pareels of a single tetrahedron cannot be sorted correctly with respect to its related
tesiirlies patches. The degradation in image quality may be relevant when low resolution approxinia-
tions se ised but i is lighly recluced with the increase of resolution (Le.. the smaller the single cell. the
sttadlec the visnal ervor introduced by the approximated hybrid rendering). An example of approximated
hvbrid rendering is <hown in Figure 15. The exact method for hybrid rendering. described in the previous
sevtion. s cnerently under implementation.

The progressive rendering modality can be selected by the user to improve interactivity. The mesh at
tow Lol is visualized during the highly interactive phases {e.g.. while the user interactively modifies the
current viewiowhile the mesh at high LoD is automatically visualized when interaction does not oceur for
douiven tie period (e during non—interactive phases). While in the current unplementation the low

LoD is set by the user. in a more sophisticate version it could be selected automatically by the system,

depending on the graphics pecformance of the current platform. in order to ensure real time frante rate.

VI. EXPERIMENTAL RESULTS

Uhe performances of the system were evaluated on four datasets, representative of the two classes of
reeular and non-convex curvilinear datasets. Datasets were chosen as they are commonly used in the
voline vendering field. inorder to facilitate comparisons with other proposals:

« BluntFin. a 40 < 32 x 32 curvilinear dataset. was built by running a fuid-Aow simulation of an
air flow over a blunt fin and a plate!:

o Post. a 3% x 76 x 38 curvilinear dataset which represents the result of a numerical study of a 3D
imcotupressible flow around multiple posts:

¢ SOD. a subset 32 x 32 x 32 (not a subsampling) of a regular rectilinear dataset which represents
the electron density map of an enzyme?:

+ BuckyBall. a 128 x 128 x 123 regular rectilinear datas=t which represents the electron density
around a molecule of C'sy. Some experiments are presented on either 32 x 32 x 32 or 64 x G4 x 64
subsanmpling of such a dataset?.

Mudtivesolution models of such datasets were built through the refinement construction algorithm. and
the various visualization features of TAn were experimented on such models.

"Both BluntFin and Post are produced and distributed by NASA-Ames Research Center.
“SOD was produced by D. McRee, Scripps Clinic, La Jolla (CA). and kindly distributed by the University of Novth

Cavolina at Chapel Hill.
BuckyBall is available courtesy of AVS International Center.
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Fig. 10, Number of points in the simplicial model expressed as a function of the approximation error.

A Multoesolution modeling features evaluation

Fables Tand [T report results on the construction of a multiresolution model from curvilinear and regular
Jdatasets. respectively. Each table reports: the complexity of the multiresolution model (total number of
sites el cells. maximal RAM space occupancy during construction); computation times required to build
the model: and some information on a number of approximated meshes extracted from it. The accuracy
of each approxumation is measured as follows: warping is a percentage of the length of the diagonal of a
winimum bounding box containing the dataset, while error is a percentage of the range spanned by data
values. Times are C'PU seconds of an SGI Indigo workstation {(MIPS R4000).

Lhe graph of Figure 10 shows the the number of vertices of the mesh through refinement, depicted
as a tunction of approximation error. Note how rapidly the size of the mesh decreases with the increase
ol crror. These results give a quantitative estimate of the advantage of founding approximate volume
visualization on data simplification techniques.

Figure L1 shows the spatial distribution of sites of the BluntFin dataset, compared with the spatial
distribution of vertices of an approximated model at accuracy (2.%.2.%)

As vou may notice, the experiment reported in Table II for the BuckyBall dataset were run on a
~subsampling. because of limitations in the available RAM. A multiresolution model on the whole dataset,
aic on two subsampled datasets, were also obtained by using the block-decomposition refinement described
i Section [II-A.1. Results are presented in Table III. By adopting this method we can overcome the
wirinsic lunitations of RAM of a specific platform, because for any dataset we can always have a partition
such that the refinement of ach block becomes a tractable problem with the available resources.
fn particular, we can cow;. .ve the results obtained for the 323 subsampled dataset refined as a whole

(lower part of Table II) and refined as 64 independent blocks (upper part of Table IIT). Note that, with
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! Curvilinear Datasets ] no. tetra. no. sites % of sites |

| — T
BlintFin oxaexs) H 10.960
Multires Model:

tor. tetra.= 390.831 RAM = 35.300 Kb construction time = 1.704 sec.

Levels of Detail:

§ <40%. = <4.0% 20.324 3.612 3%
3 <3.0%. £ <3.0% 30,116 5.296 12 %
3 <2.0%. £ <2.0% 17,139 R.263 20 %
§<10%. = <1L0% 80.883 14,162 34 %
3 <0.3%. = <0.3% 111.251 19,6520 47 %
3 <0.2%. = <0.2% 152,927 27351 66 Y%
3 <0%. = <% 182,660 32945 0 %
| § <0.0%. = <0.0% 222,523 10,960 100 %
Post (3sxm6x38) “ 109,744

Multirves Model:

tot. tetra.= 1.620.935 RAM = 95241 Kb construction time = 7.794 sec.

Levels of Detail:

3 <CLO%, = <4.0% 47691 3.282 T %
5 <3.0%. = <3.0% T6.893 13,177 12 %
§ <2.0%. = <2.0% 121.181 2077 13 %
3 <1.0%. = <1.0% 193.971 33.631 30 %
3 <0.5%, = <0.5% 277822 48,413 41 %
3 <0.2%. = <0.2% 395.299 G9.563 63 %
3 <0.1%. £ <0.1% 190,337 87.085 9 %
3 <0.0%., = <0.0% 609,245 109.744 100%
TABLE I

MEsst Gt Gl MULTIRESGLITION MODELS BUILT FROM CURVILINEAR DATASETS (the Post triangulation times are higher than

exnected due to page swapping: the RAM size of the workstation used was only 64MB).

Fie. 1. Distribution of vertices of the BluntFin dataset: oviginal dataset (40.960 sites) on the left. approximatecd mesh

with & < 2% and = < 2% (8.263 sites) on the right.
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; Regular Datasets H no. tetra.  no. sites % of sites
SOD (32x32x32) J! 32,768
Multires Model:
tot. tetra.= 177588 RAM = 45134 Kb construction time = 1.491 sec.
Levels of Detail:
= =10 (%) 11,485 2,094 5 %
: =3.0 (%) 17,178 3.082 9 %
=20 (%) 28,521 5.026 15 %
= =1.0 (%) 59,718 10,443 31 %
= =0.5 (%) 91,963 16,269 49 %
: =0.2 (%) 95,314 16,825 51 %
s =0.1 (%) 95,349 168331 31 %
= =0. (%) 95,349 16,831 51 %
BuckvBall (32x32x32) H 32.768

Multives Model:

tut. tetra.= 472,130 RANM = 25.8368 kb

construction time = 1.318 sec.

Levels of Detail:

s =4.0 (%) 42,468 7,125 21 %
£ =3.0 (%) 51,490 3,680 26 %
c=2.0 (%) 63,649 10.808 32 %
= =1.0 (%) 83,667 14,372 48 %
£ =0.5 (%) 104,113 18,090 55 %
s =0.2 (%) 130,152 22,982 70 %
= =0.1 (%) 150,249 26,854 31 %
= =0. (%) 176,687 12,763 100 %
TABLE II

MEASIZRES ON MULTIRESOLUTION MODELS BUILT ON TWO REGULAR DATASETS.

the block decomposition refinement, total computation time reduces from 1,318 sec. to 532 sec., while
we have only a small increase in the number of vertices necessary to achieve a given accuracy. Such an
mcrease is cdue to the spatial constraints introduced by the block boundaries.

Note also low the performance of data simplification. in terms of data needed to achieve a given accuracies.
proves with the resolution of the input dataset. If we consider, for example, the LoD meshes at accuracy
L0 % from the 323, 643 and 128% multiresolution models of BuckyBall, the percentage of sites needed
to build each approximated mesh decreases respectively from 45.2% to 22.1% down to 6.8% of the total

nmber of sites of the dataset. In absolute values, the ratio between the 1283 and the 32° datasets is 64:1

at full resolution. while reduces to 10:1 at accuracy 1.0%.
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{
; H no. tetra. 1o, sites Y of sites 1
1

BuckvBall 32x32:32) i 32.7
Multires Model:

tot. tetra.= 467261 RAM = 330 Kb construction time = 332 wec.

o
=1
(¢4

Levels of Detail:

s =40 (%) 43.929 T2 22.6 Y%
= =3.0 (%) 33,025 3974 273 %
s =2.0 (%) 65,409 11,133 33.9 %
= =1.0 (%) 36,130 14.339 45.2 %
= =03 (%) 106,695 18,534 36.7 %
s =0.2 (%) 131,967 23.340 12 %
s =0.1 (%) 151.343 27.073 36.6 %
= =0.0 (%) 176.641 32,768 LO0 %
BickyBall (sixsixe1) H 262,144

Multives Model:

tot. retra.= 3.927.793  RAM = 4933 Kb construction time = 5.412 sec.

Levels of Detail:

=40 (%) 105,422 17,164 5.5 %
2 =3.0 (%) 140,183 22,333 R.T %
s =2.0 (%) 203,385 33.202 12.6 %
= =1.0 (%) 353.852 38.014 221 %
= =05 (%) 522,764 86,633 33.0 %
= =0.2 (%) 749,259 125,711 17.9 %
s =0.1 (%) 954,551 161.378 61.5 %
= =0.0 (%) 1.4383.742 262,144 100 %
BuckvBall ir2sxi2sxies) U 2097152

Multires Model:

tot. tetra.= 32,472,130 RAM = 4,935 Kb construction time = 44.086 sec.

Levels of Detail:

= =4.0 (%) 178.138 28.272 1.3 %
= =3.0 (%) 257.390 11,262 1.9 %
= =2.0 (%) 124,283 67.878 3.2 %
s =1.0 (%) 397.994 143.936 6.3 %
= =0.5 (%) 1.672.207 269.195 12.8 %
= =0.2 (%) 3.301.742 537.843 25.6 %
= =0.1 (%) 4.748.306 780.509 37.2 %
= =0.0 (%) §| 12,152,055 2,097.151 100 %
TABLE III

TETRAHECRIZATION OF THE BUCKYBALL DATASET USING THE block-decomposition refinement: 1287 DATASET IS THE
BEIRIAL ONE, WHILE 647 AND 327 DATASETS ARE OBTAINED BY SUBSAMPLING. DECOMPOSITIONS: 32° DIVIDED INTO 64

BLOCKS OF $I2E 871 647 DIVIDED INTO 54 BLOCKS OF SIZE 16%; 128% IS DIVIDED INTO 5137 BLOCKS OF SIZE 167,
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i . . . . .
Accuracy j| ho. vertices | no. tetra }I no. iso. triangles “ DVR time

]

{

; {(0.U0%.0.0%) 10.960 222,528 19,499 44.1%

I {1.0%.1.0%) 14,162 80.833 9.143 16.1

* {4.0%.4.0%) 3612 20,324 3,442 3.9
TABLE IV

BING {WITH THRESHOLD VALUE L.244), AND DIRECT VOLUME RENDERING OF THE SAME DATASET AT

CIFFERENT ACCURACIES. TIMES ARE IN SECONDS ON AN SGI INDico XS24 R4005 ws.

3. Rendering features ecaluation

Figure 14 presents visual results related to isosurface and direct volume rendering of three representa-

tious of the BluntFin dataset. The top images refer to the mesh at full resolution. the middle images refer
to s approximated mesh at accuracy (1.0%. 1.0%). while the bottom images refer to an approximated
mesh at accuracy (LOY% . 4L0%).
Ninnerical results on the size of the meshes. of the extracted isosurfaces, as well as times for DVR. are
~ttutarizechin Table [V, The timages provide evidence that the image degradation is almost un-perceivable
when passing tfrom full accuracy to (1.0%. 1.0%) accuracy, while it is still small at (4.0%. 1.0%). while the
output sizes {and times) are highly reduced.

Visualization results obtained with TAn, which are essentially based on the concept of date simplifica-
fion. can be also compared with results obtained with approximation methods that are based on graphics
outpat sunplification.

[ case of sosurface rendering, the size and number of the facets extracted from a simplified mesh de-
pendd essentially on the variation of the field function (namely, few large facets are fitted on subvolumes
where the gradieut is constant or nearly constant). On the contrary, a geometry-based sumplification of
an sosurface exiracted from the mesh at full resolution would be driven by isosurface curvature ([34].,

[18]). An obvious computational advantage of the approach based on data simplification is that the major

effort is taken in a preprocessing stage (i.e., when the either simplified or multiresolution model is built),
while standard sunplification approaches are implemented as a post-processing phase, therefore reducing
throughput in interactive applications.
Moreover, standard geometry-based methods may produce anomalies if the surface has curvature varia-
tions which are small in size. but reflect significant variations of the field (e.g., a sinusoidal function, having
amplitude lower than the simplification threshold), and, worse than this, intersections between surfaces at
different isovalues may occur because of simplification. These problems do not arise with methods based
on data simplification.

[n a recent paper [6]. we also compared the performance of DRV through the standard PT algorithm
applied to a simplified mesh. to the performance of approximated versions of the PT algorithm [40] applied

to amesh at full resolution. Experiments showed evidence that images with visual degradations similar to
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those ohiained using the approximated PT are produced using highly simplified datasets. thus obraining
mich shorter processing times (about five times shorter).

Lhe farge difference in speedups is because standard approximated PT techniques only act on the pure
rendering phase. thus achieving a reduction in overall time up to a maximum of 50%. On the contrary.
the specdip in overall time achieved by using a data simplification approach is linearly proportional to
the ~stimplificarion operated on data (this means that not only pure rendering is affected. but depth sorting
S eell classification and splitting as well).

VL CloNeLusioNs

FAn s currentdy the only volume visualization syvstem distributed in the public domain that offers
nihiresolition teatures, at least to our knowledge. Our experience with it provides evidence that the
Visnalization of volume data can be managed effectively and efficiently by using multiresolution features
Lased on the concept of data simplification.

The expernnental vesules show that managing multiresolution involves a limited increase in the space
cotplexity: the rario between the size of the multiresolution model is in the average case about 2.5 times
tHhe stze of the mesh at maximal accuracy. at least for our test datasets.

Moreoner the proposed representation supports the design of fast approximated, progressive or multires-
olution visualization algorithms. which are aimed at providing significant speedups in rendering, and at
meereasing the acceprance of visualization as a useful working tool.

Critieal points for the usability of our approach are in the high requirements in memory and processing
tiue needed 1o build the multiresolution model. With the current implementation, the tetrahedrization
of high resolution datasets {e.g.. with more than 100A sites) may require a nemory size beyond that
avalable ou cnrreent mid-level workstations. This problem may be solved by building the multiresolution
model on high-!vel workstations/supercomputers, or by redesigning this process in order to reduce its
tetory and processing requirements. For instance, our strategy based on block decomposition has given
sood results for regular and curvilinear datasets.

A possible extension of the proposed multiresolution model is to structure data to allow the extraction
ol approxunated representatious whose accuracy is variable through data domain. This is especially useful
tov multiresolubion visualization, when different accuracy levels must be used inside a single image. In this
context. it may be extremely useful to supply the user with tools to set a “focus region™. and render data
aceording to that selection [28].

Untortnnately. extracting meshes at variable resolution from our current model may originate cousistency
problems (e possible discontinuities of the field. with consequent “cracks” in the isosurfaces. and alias-
e DVR). [n a previous paper [7]. we implemented multiresolution rendering by using two different
meshes. at high and low resolution. respectively: the high resolution mesh is rendered inside a region of

nterest. while the other is used outside such a region. Topological inconsistencies that occur between the
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fwo meshes at the boundary of the region of interest were overcome by visualizing cells of both meshes
Hiat cross such a boundary. and using blending on such cells.

A nore rigeurous solution of such a problent should be given at the level of the multiresolution ectractor
tmodile. by providing a mechanism for extracting a mesh whose accuracy varles “smoothly™ and consis-
reutly through domain. In recent works [3]. [30] we proposed alternative multiresolution data structures
that provide efficient solutions to this problem. and that produce effective results in the two-dimensional
vase. for visualizing terrain models in the context of flight simulators. However, such structures may require
a relevaut overhead in terms of storage. which make them not easily extensible to the three-dimensional
(R T

Weesire currently working on the second release of the TAn system. Besides implemeunting the decimation
cunstruction algorithni. and porting into the system the (currently stand-alone) modules for refinenient
of non-convex curvilinear dataset. and block decomposition refinement. we plan the following extensions
andd modifications: designing a more compact run-time data structure: implementing a simpler and more
robist techaique for cell classification in the PT algorithm: implementing an algorithm for correct hybrid
rendering. based on cell clipping: implementing an algorithm for correct projective rendering, in the case
ol rransfer funetions rhat contain discontinuities; extending the multiresolution extractor with windowing
features: porring of the system under the Openlnventor toolkit.

Finally. we are planning to found the rendering modules of our architecture on a new concept of tetra-
hedral graphics. where tetrahedra are treated as atomic graphics primitives. just like triangles, and are el-
lictently processed by low-level functions provided by the graphics library, and possibly hardware-assisted.
[ this way. we would clearly separate the geometric aspects of volume visualization. which are treated
by application programs/modules. from the purely graphical aspects, which should be standardized. and

treatect at library and hardware level.
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Fig. 12. Multiresolution model construction and level of detail selection windows.
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Fig. 12, A global view of the rendering-related GUI windows of the TAn system, with multiple isosurfaces extracted from

the SOD dataset.
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Lt Isosurface visualization and direct volume rendering of the BiuntFin dataset. at three different resolutions (from

top to battom. 222K, 30K and 20K tetrahedra).
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Fig. 15. Hybrid rendering of an approximated mesh of the Buckyball dataset at accuracy 0.6% (456K cells out of the 1,483K

of the mesh at full accuracy).
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