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Abstract. We define SLCSη, a weaker logic than SLCSγ , and we interpret
it on face-poset models. We show the relationship between the equiva-
lence induced by the two logics, namely ≡SLCSγ and ≡SLCSη and bisimilar-
ities of finite closure models proposed in the literature.
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1 Introduction

The topological approach to spatial logics has its origin in the early ideas by Mc-
Kinsey and Tarski [17], who gave a topological interpretation of the “necessarily”
operator of the S4 modal logic. The approach was extended to consider Closure
Spaces (CS) [19], a generalisation of topological spaces, covering also discrete
spaces such as general graphs, following work by Galton [13, 15] and Smyth and
Webster [18], among others. Recent work by Ciancia et al. (see [10, 11]) builds
on these theoretical developments using CSs, or better, Closure Models (CMs),
as the underlying framework for the Spatial Logic for Closure Spaces (SLCS). A
closure model is composed of a CS together with a valuation function mapping
every atomic proposition letter p of a given set into the set of points in the
space satisfying p. A spatio-temporal model checker, topochecker [9], has been
developed for the subclass of finite closure spaces. Moreover, the spatial model-
checker VoxLogicA1 [4] has been developed, that is optimised for digital 2D and
3D images, interpreted as a special case of finite closure spaces, and has been
applied successfully in the area of medical imaging [4, 3, 1, 2]. However, for the
2D and 3D visualisation of continuous spatial objects, both in medical imaging
⋆ Research partially supported by MUR projects PRIN 2017FTXR7S, “IT-MaTTerS”,

PRIN 2020TL3X8X “T-LADIES”, bilateral project between CNR (Italy) and
SRNSFG (Georgia) “Model Checking for Polyhedral Logic” (#CNR-22-010), and
European Union - Next Generation EU, in the context of The National Recovery and
Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project “Tuscany Health
Ecosystem” (THE), CUP: B83C22003920001. The authors are listed in alphabetical
order, as they equally contributed to the work presented in this paper.

1 Available from the VoxLogicA repository at https://github.com/vincenzoml/VoxLogicA.



2 V. Ciancia et al.

and virtual reality, polyhedral models of continuous space are often used. Such
spatial models consist of a suitable splitting of the image of an object into areas
of different size, known as meshes. These include triangular surface meshes or
tetrahedral volume meshes (see for example [16]). In [5], an interpretation of
SLCS on polyhedral models has been defined. In the sequel, we will refer to it
as SLCSγ . Also, a novel notion of bisimilarity for such models, namely simplicial
bisimilarity has been proposed and the theoretical foundations have been devel-
oped for polyhedral model checking, including a global model checking algorithm
for SLCSγ interpreted on face-poset models, i.e. discrete and finite representations
of polyhedral models. An implementation of the PolyLogicA1 model-checking
tool has been presented. A visualiser for models and model checking results has
been developed as well. In [8] ±-bisimilarity has been proposed, that is a novel
notion of spatial bisimulation for face-poset models. It has also been shown that
±-bisimilarity coincides with the logical equivalence induced by SLCSγ . This re-
sult paves the way for the definition of model reduction procedures based on
minimisation with respect to ±-bisimilarity, i.e. procedures that are guaranteed
to preserve SLCSγ properties on face-poset models and, finally SLCSγ properties
on the polyhedral models the former represent. Model reduction will contribute
to increase efficiency of the model checking algorithms.

In the present report we present SLCSη, a weaker version of SLCSγ . The
purpose of investigating weaker logics, and consequently coarser equivalences,
is that the latter may provide better minimisation procedures, in the sense of
generating smaller models. Face-poset models are a subclass of quasi-discrete
closure models (QdCMs).

We also compare the logical equivalences induced by SLCSγ and SLCSη with
bisimilarities defined on QdCMs that have been investigated in [7, 12]. It turns
out that there are bisimilarities on QdCMs — in particular CMC-bisimilarity and
CoPa-bisimilarity — that are stronger than the equivalence induced by SLCSγ
and so they can be used as a basis for model minimisations that will anyway be
correct, although not optimal.

2 Background and Notation

We first introduce some background concepts and related notation. For a func-
tion f : X → Y , and subsets A ⊆ X and B ⊆ Y , we define f(A) and f−1(B)
as {f(a) | a ∈ A} and {a | f(a) ∈ B}, respectively. The range of f is defined
as range(f) = f(X). The restriction of f on A is denoted by f |A. The set
of natural numbers and that of real numbers are denoted by N and R, respec-
tively. We use the standard interval notation: for x, y ∈ R we let [x, y] be the
set {r ∈ R |x ≤ r ≤ y}, [x, y) = {r ∈ R |x ≤ r < y} and so on, where [x, y] is
equipped with the Euclidean topology inherited from R. We use a similar nota-
tion for intervals over N: for n,m ∈ N [m;n] denotes the set {i ∈ N |m ≤ i ≤ n},
[m;n) denotes the set {i ∈ N |m ≤ i < n}, and similarly for (m;n] and (m;n).
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(a) (b) (c) (d)

Fig. 1: (1a) A simplicial complex (actually a simplex itself). (1b) Decomposed
into its simplexes as faces. (1c) Partitioned into its cells. (1d) A triangular surface
mesh of a dolphin [6].

Definition 1 (Sequences). Given a set X, a sequence over X from x, of
length ℓ ∈ N, is a total function s : [0; ℓ] → X such that s(0) = x. For sequence
s of length ℓ, we often use the notation (xi)

ℓ
i=0 where xi = s(i) for i ∈ [0; ℓ]. •

In the remainder of this section, we recall the main results concerning the in-
terpretation of SLCS on polyhedral models. The interested reader is referred to [5]
for a detailed treatment of the subject. Sect. 2.1 below recalls the basic notions
of simplex, simplicial complex and polyhedral model. Then, in Sect. 2.2 simpli-
cial bisimilarity and the SLCS interpretation on polyhedral models are briefly
reviewed as well as their relationship. The discrete representation of polyhedral
models in terms of face-poset models and the SLCS interpretation on the latter
is recalled in Sect. 2.3 where their formal relationship is also shown.

2.1 Simplex, Simplicial Complexes and Polyhedra

The notions of simplex, simplicial complex and polyhedron form the basis for
geometrical reasoning in a finite setting, amenable to polyhedral model-checking
and related techniques. A simplex is the convex hull of a set of affinely indepen-
dent points2, namely the vertices of the simplex.

Definition 2 (Simplex). A simplex σ of dimension d is the convex hull of
a finite set {v0, . . . ,vd} ⊆ Rm of d + 1 affinely independent points, i.e. σ =

{λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ [0, 1] and
∑d

i=0 λi = 1}. •

Note that a simplex is a subset of the ambient space Rm and so it inherits
its topological structure. Given a simplex σ with vertices v0, . . . ,vd, any subset
of {v0, . . . ,vd} spans a simplex σ′ in turn: we say that σ′ is a face of σ, written
σ′ ⊑ σ. Clearly, ⊑ is a partial order relation.

The relative interior of a simplex plays a similar role as the notion of “interior”
in topology and is defined as follows:

2 v0, . . . ,vd are affinely independent if v1 −v0, . . . ,vd −v0 are linearly independent.
In particular, this condition implies that d ≤ m.
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Definition 3 (Relative Interior of a Simplex). Given a simplex σ with
vertices {v0, . . . ,vd} the relative interior σ̃ of σ is the set
{λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ (0, 1] and

∑d
i=0 λi = 1}. •

We write σ̃′ ⪯ σ̃ whenever σ′ ⊑ σ, noting that ⪯ is a partial order as well
and that σ̃′ ⪯ σ̃ if and only if σ̃′ is included in the topological closure of σ̃.

The notion of simplicial complex builds upon that of simplex and is the
fundamental tool for constructing complex geometrical objects as sets of points
in Rm, namely polyhedra, out of simplexes.

Definition 4 (Simplicial Complex and Polyhedron). A simplicial com-
plex K is a finite collection of simplexes of Rm such that: (i) if σ ∈ K and
σ′ ⊑ σ then also σ′ ∈ K; (ii) if σ, σ′ ∈ K then σ ∩ σ′ ⊑ σ and σ ∩ σ′ ⊑ σ′.
The polyhedron |K| of K is the set-theoretic union of the simplexes in K. •

Relations ⊑ and ⪯ on simplexes are inherited by simplicial complexes: rela-
tion ⊑ on simplicial complex K is the union of the face relations on the simplexes
composing K, and similarly for ⪯. Note that different simplicial complexes can
give rise to the same polyhedron and that the set K̃ = {σ̃ |σ ∈ K \ {∅}} of
non-empty relative interiors of the simplexes of a simplicial complex K forms a
partition of polyhedron |K|. The elements of K̃ are called cells and (K̃,⪯) is the
face-poset of K. By definition of partition, each x ∈ |K| belongs to a unique cell
in the face-poset. We recall that the polyhedron |K| is a subset of the ambient
space Rm and so inherits its topological structure.

Example Fig. 1 shows a triangle as an example of a simplicial complex, and its
simplexes in the face relation. The triangle can be partitioned into 7 cells (see
Fig. 1c): its interior (ÃBC, an open triangle), three open segments (ÃB, B̃C, ÃC,
the sides without endpoints) and the (singletons of the) three vertices (Ã, B̃, C̃).
Each vertex is a face of two open segments (and of the open triangle itself), and
each open segment is a face of the open triangle. The figure shows also a small
example of a triangular surface mesh of a dolphin (Fig. 1d). ⋄

Paths play a fundamental role in the definition of SLCS and are defined below:

Definition 5 (Topological Path). A topological path in a topological space
P is a total, continuous function π : [0, 1] → P . •

In the polyhedral semantics of SLCS proposed in [5], all the points of a poly-
hedral model that belong to the same cell are required to satisfy the same set of
atomic proposition letters. This is reflected in the definition below:

Definition 6 (Polyhedral Model). For simplicial complex K and set of propo-
sition letters AP, a polyhedral model is a pair (|K|, V ) where V : AP → P(|K|)
is a valuation function such that, for all p ∈ AP, V (p) is a union of cells in K̃. •

In Figure 2 an example polyhedral model is shown as well as two topological
paths. Different proposition letters are shown as different colours in the picture.
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Fig. 2: An example of a polyhedral model (2a) and two paths, one starting from
point x (2b) and the other one starting from y (2c). Adapted from [5].

2.2 SLCS on Polyhedral Models

The following definition introduces the variant of SLCS for polyhedral models
proposed in [5]. In the present paper, we denote it by SLCSγ .

Definition 7 (SLCS on polyhedral models - SLCSγ). The abstract language
of SLCSγ is the following: Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | γ(Φ1, Φ2).
The satisfaction relation of SLCSγ with respect to a given polyhedral model X =
(|K|, V ), SLCSγ formula Φ, and x ∈ |K| is defined recursively on the structure
of Φ as follows:

X , x |= p ⇔ x ∈ V (p);
X , x |= ¬Φ ⇔ X , x |= Φ does not hold;
X , x |= Φ1 ∧ Φ2 ⇔ X , x |= Φ1 and X , x |= Φ2;
X , x |= γ(Φ1, Φ2) ⇔ a topological path π : [0, 1] → |K| exists such that π(0) = x,

X , π(1) |= Φ2, and X , π(r) |= Φ1 for all r ∈(0,1).
•

Note that the above definition generalises the classical topological interpre-
tation of the 2 modality as interior and 3 as closure. In fact, 2Φ is equivalent
to ¬γ(¬Φ, true) and, dually, 3Φ is equivalent to γ(Φ, true) (see [5] for details).

Furthermore, note that in order for X , x |= γ(Φ1, Φ2), it is in general not
required that x satisfies also Φ1.

Finally, we point out here that the satisfaction relation does not depend
on the specific simplicial complex K, but only on the polyhedron |K| and the
valuation of predicate letters V . More precisely, for simplicial complexes K and
K ′ such that P = |K| = |K ′| and that give rise to polyhedral models X =
(|K|, V ) and X ′ = (|K ′|, V ) the following holds: X , x |= Φ if and only if X ′, x |=
Φ, for every SLCSγ formula Φ and x ∈ P . So, the indication of the specific
simplicial complex generating the polyhedral model is not essential, although in
the sequel, for notational convenience, we will continue to indicate it explicitly.

Example With reference to model X of Fig. 2a, it is easy to see that any
point in the open segment CD satisfies, for instance, γ(green, true), and also
γ(green, red) and red ∧ γ(green, red). ⋄

Definition 8 (SLCSγ Logical Equivalence). Given Polyhedral Model X =
(|K|, V ) and x1, x2 ∈ |K| we say that x1 and x2 are logically equivalent with
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respect to SLCSγ , written x1 ≡X
SLCSγ

x2, if and only if, for all SLCSγ formulas Φ
the following holds: X , x1 |= Φ if and only if X , x2 |= Φ. •

In the sequel, we will refrain from indicating the model X explicitly in ≡X
SLCSγ

when it is clear from the context.

2.3 Face-poset Models and SLCS

The following definition characterises the discrete representation of polyhedral
models we will use in the rest of the paper (see Fig. 3).

Definition 9 (face-poset model). Given Polyhedral Model X = (|K|, V ), the
face-poset model of X is the Kripke model M(X ) = (W,⪯,V) where
(W,⪯) = (K̃,⪯) is the face-poset of K and σ̃ ∈ V(p) if and only if σ̃ ⊆ V (p). •

In the rest of this paper, whenever we say that a Kripke model F is a face-
poset model, we mean that a polyhedral model X exists such that F = M(X ).

We now recall the definition of ±-paths introduced in [5]. They faithfully
represent, in the face-poset model, topological paths in the polyhedral one.

Definition 10 (±-path). Let F = (W,⪯,V) be a face-poset model and let ⪯±

be the relation ⪯ ∪ ⪰. We say that, for ℓ ∈ N, sequence π : [0; ℓ] → W is a
±-path (and we indicate it by π : [0; ℓ]

±→ W ) if ℓ ≥ 2 and the following holds:
π(0)⪯π(1) ⪯± π(2) ⪯± . . . ⪯± π(ℓ− 1) ⪰ π(ℓ). •

The following definition re-interprets SLCSγ on face-poset models and is based
on ±-paths [5].

Definition 11 (SLCSγ on finite face-posets). The satisfaction relation of
SLCSγ with respect to a given face-poset model F = (W,⪯,V), SLCSγ formula Φ,
and w ∈ W is defined recursively on the structure of Φ:

F , w |= p ⇔ w ∈ V(p);
F , w |= ¬Φ ⇔ F , w |= Φ does not hold;
F , w |= Φ1 ∧ Φ2 ⇔ F , w |= Φ1 and F , w |= Φ2;

F , w |= γ(Φ1, Φ2) ⇔ a ±-path π : [0; ℓ]
±→ W exists such that π(0) = w,

F , π(ℓ) |= Φ2, and
F , π(i) |= Φ1 for all i ∈ (0; ℓ).

•

Definition 12 (Logical Equivalence). Given face-poset model F = (W,⪯,V)
and w1, w2 ∈ W we say that w1 and w2 are logically equivalent with respect to
SLCSγ , written w1 ≡F

SLCSγ
w2 if and only if, for all SLCSγ formulas Φ the following

holds: F , w1 |= Φ if and only if F , w2 |= Φ. •

In the sequel, we will refrain from indicating the model F explicitly in ≡F
SLCSγ

when it is clear from the context.
A fundamental result, see [5], follows, where with slight overloading, for x ∈

|K|, we let M(x) denote the unique cell σ̃ ∈ K̃ such that x ∈ σ̃ (see Fig. 3 for
an illustration).
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Theorem 1 (Theorem 4.4 of [5]). Let X = (|K|, V ) a polyhedral model and
M(X ) the associated face-poset model as by Definition 9. For all x ∈ |K| and
SLCSγ formula Φ it holds that X , x |= Φ if and only if M(X ),M(x) |= Φ. ⊓⊔

Example With reference to the face-poset model M(X ) of Fig. 3b for polyhedral
model X of Fig. 2a, it is easy to see that cells C̃ and C̃D satisfy γ(green, true),
and also γ(green, red) and red ∧ γ(green, red). ⋄

B

A

D

C

F

E

x

(a)

B̃Ã D̃C̃ F̃Ẽ

ÃB BDB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(b)

Fig. 3: (3a) A polyhedral model X with atomic propositions red, green and
gray, and a path from a point x to vertex D. (3b) Hasse diagram of face-poset
model M(X ) and a ±-path (in blue) corresponding to the path in X .

3 Weak SLCS on face-poset models

In this section we consider a weaker version of SLCSγ denoted by SLCSη. The
language of the logic is obtained by replacing the reachability operator γ(Φ1, Φ2)
with η(Φ1, Φ2). Intuitively, η(Φ1, Φ2) is equivalent to Φ1 ∧ γ(Φ1, Φ2).3

Definition 13 (SLCSη on finite face-poset models). Let F = (W,⪯,V) be
the face-poset model.Given w ∈ W , satisfaction F , w |= ϕ over SLCSη formulas
ϕ is given by the following inductive clauses:

F , w |= p ⇔ w ∈ V(p);
F , w |= ¬Φ ⇔ F , w ̸|= Φ;
F , w |= Φ1 ∨ Φ2 ⇔ F , w |= Φ1 or F , w |= Φ2;

F , w |= η(Φ1, Φ2) ⇔ a ±-path π : [0; ℓ]
±→ W exists such that

π(0) = w,
F , π(ℓ) |= Φ2 and
F , π(i) |= Φ1 for all i ∈ [0; ℓ).

•

Definition 14 (Logical Equivalence). Let F = (W,⪯,V) be a face-poset
model. For all w1, w2 ∈ W we say that w1 and w2 are logically equivalent,
3 Modal operator η relates to γ in a similar way as operator ζ, defined in [7] in the

context of quasi-discrete closure spaces, relates to ρ.
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written w1 ≡F
SLCSη

w2 if and only if, for all SLCSη formulas Φ, the following
holds: F , w1 |= Φ if and only if F , w2 |= Φ. •

In the sequel, we will refrain from indicating the model F explicitly in ≡F
SLCSη

when it is clear from the context.

Below, we show that SLCSη can be encoded into SLCSγ which implies that the
former is weaker than the latter.

Definition 15. We define the encoding E of SLCSη into SLCSγ :

E(p) = p
E(¬Φ) = ¬E(Φ)
E(Φ1 ∧ Φ2) = E(Φ1) ∧ E(Φ2)
E(η(Φ1, Φ2)) = E(Φ1) ∧ γ(E(Φ1), E(Φ2))

•

The following lemma is easily proven by structural induction using the rele-
vant definitions:

Lemma 1. Let F = (W,⪯,V) be a face-poset model, w ∈ W and Φ a SLCSη
formula. Then F , w |= Φ if and only if F , w |= E(Φ).

Proof. By induction on the structure of Φ. We consider only the case η(Φ1, Φ2).
Suppose F , w |= η(Φ1, Φ2). By definition there is a ±-path π of some length
ℓ ≥ 2 such that F , π(ℓ) |= Φ2 and F , π(i) |= Φ1 for all i ∈ [0; ℓ). By the Induction
Hypothesis this is the same to say that F , π(ℓ) |= E(Φ2) and F , π(i) |= E(Φ1)
for all i ∈ [0; ℓ), i.e. F , w |= E(Φ1), F , π(ℓ) |= E(Φ2) and F , π(i) |= E(Φ1) for
all i ∈ (0; ℓ). In other words, we have F , w |= E(Φ1) ∧ γ(E(Φ1), E(Φ2)) that, by
Definition 15 means F , w |= E(η(Φ1, Φ2)).

Suppose now F , w |= E(η(Φ1, Φ2)), i.e. F , w |= E(Φ1) ∧ γ(E(Φ1), E(Φ2)), by
Definition 15. Since F , w |= γ(E(Φ1), E(Φ2)), there is a ±-path π of some length
ℓ ≥ 2 such that F , π(ℓ) |= E(Φ2) and F , π(i) |= E(Φ1) for all i ∈ (0; ℓ). Using the
Induction Hypothesis we know the following holds: F , w |= Φ1, F , π(ℓ) |= Φ2,
and F , π(i) |= Φ1 for all i ∈ (0; ℓ), i.e. F , π(ℓ) |= Φ2 and F , π(i) |= Φ1 for all
i ∈ [0; ℓ). So, we get F , w |= η(Φ1, Φ2). ⊓⊔

A direct consequence of Lemma 1 is that SLCSη is weaker than SLCSγ .

Theorem 2. Let F = (W,⪯,V) be a face-poset model. For all w1, w2 ∈ W the
following holds: if w1 ≡SLCSγ w2 then w1 ≡SLCSη w2. ⊓⊔

It is easy to see that the converse of Theorem 2 does not hold and we leave
it to the reader to find a counter-example. Furthermore, it is worth noting that
the 3 modality, defined as recalled below

F , w |= 3Φ ⇔ w′ ∈ W exists such that w ⪯ w′ and F , w′ |= Φ

cannot be expressed in SLCSη, while it can be expressed in SLCSγ since 3Φ ≡
γ(Φ, true).
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4 Face-poset models as quasi-discrete closure models

Face-poset models can be seen as a special case of quasi-discrete closure mod-
els. Consequently, bisimilarities defined on (quasi-discrete) closure models can
be used as a basis for reducing the size of face-poset models. In [7, 12] CM-
bisimilarity, CMC-bisimilarity and CoPa-bisimilarity have proposed for quasi-
discrete closure models.

Below, we recall the basic notions concerning (quasi-discrete) closure models.
We also recall a definition of CM-bisimilarity, the definition of CMC-bisimilarity
and a definition of CoPa-bisimilarity.4

Then, in the rest of the section, we show the relationship between the above
mentioned bisimilarities and ≡SLCSγ .

Definition 16 (Closure Space – CS). A closure space is a pair (X, C) where
X is a set (of points) and C : P(X) → P(X) is the closure operator, i.e. a
function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •

It is worth pointing out that CSs are a generalisation of topological spaces.
In fact, the latter coincide with CSs that satisfy the idempotence axiom, i.e.
C(C(A)) = C(A) for all A ⊆ X.

Definition 17 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that for each A ⊆ X it holds that C(A) =

⋃
x∈A C({x}). •

Every CS (X, C) such that X is a finite set is a QdCS. Given a relation R ⊆
X × X, define the function CR : P(X) → P(X) as follows: for all A ⊆ X,
CR(A) = A ∪ {x ∈ X | ∃a ∈ A s.t. aRx}. It is easy to see that, for any R, CR
satisfies all the axioms of Definition 16 and so (X, CR) is a CS. The following
theorem is a standard result in the theory of CSs [14].

Theorem 3. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X ×X such that C = CR. ⊓⊔

In the sequel, we consider only finite CSs. We let
−→
C denote CR and, similarly,−→

C denote CR−1 .

Definition 18 (Finite path). A finite path in a finite CS (X, C) is a total
function π : [0; ℓ] → X, for some ℓ ∈ N, such that π(i + 1) ∈ C({π(i)}) for all
i ∈ [0; ℓ). •

Given a QdCS (X,
−→
C ) and a path π : [0; ℓ] → X, we call ℓ the length of π

and often use the sequence notation (xi)
ℓ
i=0, where xi = π(i) for all i ∈ [0; ℓ]

(see Definition 1). More precisely, we say that (xi)
ℓ
i=0 is a forward path from x0

4 More specifically, the definition of CoPa-bisimilarity we report here is that proposed
in [7]. In [12] an alternative definition has been proposed that is more intuitive and
has been shown to be equivalent to the original one, used in [7].
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if xi+1 ∈
−→
C (xi) for i ∈ [0; ℓ) and, similarly, we say that it is a backward path

from x0 if xi+1 ∈
−→

C (xi) for i ∈ [0; ℓ).
Given a set AP of atomic proposition letters the notion of closure model (CM

for short) is the expected one:

Definition 19 (Closure model – CM). A closure model is a tuple G =
(X, C,V), with (X, C) a CS, and V : AP → P(X) the valuation function, as-
signing to each p ∈ AP the set of points where p holds. •

All definitions for CSs also apply to CMs; thus, a quasi-discrete closure model
(QdCM for short) is a CM G = (X, C,V) where (X, C) is a QdCS. For a closure
model G = (X, C,V) we often write x ∈ G when x ∈ X. Similarly, we speak of
paths in G meaning paths in (X, C).

Clearly, any face-poset model characterises the associated finite CM in the
obvious way, as follows: the CM associated to (W,⪯,V) is (W, C⪯,V).

Definition 20 (CM-bisimilarity - ⇌CM). Given a QdCM G = (X,
−→
C ,V), a

symmetric relation B ⊆ X×X is a CM-bisimulation for G if, whenever (x1, x2) ∈
B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all x′

1 ∈
−→
C (x1), there is x′

2 ∈
−→
C (x2) such that (x′

1, x
′
2) ∈ B;

Two points x1, x2 ∈ X are called CM-bisimilar in G if x1 B x2 for some CM-
bisimulation B for G. Notation, x1 ⇌CM x2. •

Definition 21 (CMC-bisimilarity - ⇌CMC). Given a QdCM G = (X,
−→
C ,V),

a symmetric relation B ⊆ X × X is a CMC-bisimulation for G if, whenever
(x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all x′

1 ∈
−→
C (x1) there is x′

2 ∈
−→
C (x2) such that (x′

1, x
′
2) ∈ B;

3. for all x′
1 ∈

−→
C (x1) there is x′

2 ∈
−→

C (x2) such that (x′
1, x

′
2) ∈ B.

Two points x1, x2 ∈ X are called CMC-bisimilar in G if x1 B x2 for some CMC-
bisimulation B for M. Notation, x1 ⇌CMC x2. •

CMC-bisimilarity is the largest CMC-bisimulation. In [7, 12] it has also been
shown that CMC-bisimilarity is strictly stronger than CM-bisimilarity, as one
would expect.

Definition 22 (CoPa-bisimilarity - ⇌CoPa). Given QdCM G = (X,
−→
C ,V),

a symmetric relation B ⊆ X × X is a CoPa-bisimulation for G if, whenever
B(x1, x2), the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for each forward path π1 = (x′

i)
ℓ1
i=0 from x1 such that B(π1(i), x2) for all i ∈

[0; ℓ1) there is a forward path π2 = (x′′
j )

ℓ2
j=0 from x2 such that the following

holds: B(x1, π2(j)) for all j ∈ [0; ℓ2) and B(π1(ℓ1), π2(ℓ2));
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3. for each backward path π1 = (x′
i)

ℓ1
i=0 from x1 such that B(π1(i), x2) for all

i ∈ [0; ℓ1) there is a backward path π2 = (x′′
j )

ℓ2
j=0 from x2 such that the

following holds: B(x1, π2(j)) for all j ∈ [0; ℓ2) and B(π1(ℓ1), π2(ℓ2)).

Two points x1, x2 ∈ X are called CoPa-bisimilar in G if x1 B x2 for some CoPa-
bisimulation B for G. Notation, x1 ⇌CoPa x2. •

Although, in general, CMC-bisimilarity is stronger than CoPa-bisimilarity,
it easy to prove the following

Theorem 4. Let G = (X,
−→
C ,V) a QdCM with

−→
C = CR, for some non-empty

binary relation R ⊆ X × X. The following holds: if R is a partial order, then
CoPa-bisimilarity on G coincides with CMC-bisimilarity.

Proof. We already know that ⇌CMC⊆⇌CoPa (See Proposition 2 of [7]). In the
sequel we show that ⇌CoPa⊆⇌CMC and we do this by showing that ⇌CoPa is a
CMC-bisimulation.

Suppose x1 ⇌CoPa x2. It is straightforward to check that the first condition
of Definition 21 is satisfied.

Let x′
1 be any element of CR({x1}). Consider the forward path (x1, x

′
1) from

x1. Since x1 ⇌CoPa x2, there is a forward path π from x2 of some length ℓ such
that π(j) ⇌CoPa x1 for all j ∈ [0; ℓ) and π(ℓ) ⇌CoPa x′

1. Furthermore, since R
is a partial order, we also have x2 Rπ(ℓ). But then, by definition of CR, we get
that there is x′

2 = π(ℓ) ∈ CR({x2}) such that x′
1 ⇌CoPa x′

2. Thus ⇌CoPa satisfies
the second condition of Definition 21.

The proof regarding the third condition is similar. ⊓⊔

The following theorem shows that logical equivalence w.r.t. SLCSγ implies
CM-bisimilarity.

Theorem 5. Let F = (W,⪯,V) be a face-poset model. For all w1, w2 ∈ W the
following holds: if w1 ≡SLCSγ w2 then w1 ⇌CM w2.

Proof. In this proof we use the notation introduced below. Let, for w1, w2 ∈ W ,
the SLCSγ formula δw1,w2

be such that if w1 ≡SLCSγ w2, then δw1,w2
is true,

otherwise, let Φw1,w2 be a formula that distinguishes w1 from w2, in particular
let F , w1 |= Φw1,w2 and F , w2 ̸|= Φw1,w2 and set δw1,w2 to Φw1,w2 . Put χ(w) =∧

w′∈W δw,w′ . It is easy to see that, for w1, w2 ∈ W , it holds that

F , w2 |= χ(w1) if and only if w1 ≡SLCSγ w2. (1)

In fact, suppose w1 ̸≡SLCSγ w2, then we have F , w2 ̸|= δw1,w2
, and so F , w2 ̸|=∧

w∈W δw1,w. If, instead, w1 ≡SLCSγ w2, then we have: δw1,w1
≡ δw1,w2

≡ true

by definition, since w1 ≡SLCSγ w1 and w1 ≡SLCSγ w2. Moreover, for any other w,
we have that, in any case, F , w1 |= δw1,w holds and since w1 ≡SLCSγ w2, also
F , w2 |= δw1,w holds. So, in conclusion, F , w2 |=

∧
w∈W δw1,w.

We show that ≡SLCSγ is a CM-bisimulation relation. Suppose w1 ≡SLCSγ w2.
The first condition of Definition 20 follows directly from w1 ≡SLCSγ w2. Below we
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show that the second condition of Definition 20 is satisfied. Let w′
1 ∈

−→
C ({w1}).

By definition of
−→
C we know w1 ⪯ w′

1 and, by definition, of γ and (1) on page 11,
we know that F , w1 |= γ(χ(w′

1), true). Since w1 ≡SLCSγ w2, we also have that
F , w2 |= γ(χ(w′

1), true). By definition of γ, this means that w′
2 exists such

that w2 ⪯ w′
2 and F , w′

2 |= χ(w′
1). By definition of

−→
C we get w′

2 ∈
−→
C ({w2}).

Furthermore w′
2 ≡SLCSγ w′

1, since F , w′
2 |= χ(w′

1). Thus there is w′
2 ∈

−→
C ({w2})

such that w′
1 ≡SLCSγ w′

2. ⊓⊔

Remark 1. Note that the converse of Theorem 5 does not hold, as shown by the
model F of Figure 4 below. Clearly, we have that ÃB ⇌CM B̃C, but we also have

Ã B̃ C̃

ÃB B̃C

Fig. 4: A face-poset model

F , ÃB |= γ(blue, red) whereas F , B̃C ̸|= γ(blue, red). ⋄

The following theorem paves the way to performing model checking on models
reduced modulo CMC-bisimilarity.

Theorem 6. Let F = (W,⪯,V) be a finite face-poset model. For all s, t ∈ W
the following holds: if s ⇌CMC t then s ≡SLCSγ t.

Proof. Suppose s ⇌CMC t and F , s |= Φ. We proceed by induction on Φ for
showing that F , t |= Φ. By symmetry of ⇌CMC we also get that if F , t |= Φ then
F , s |= Φ. We show only the case γ(Φ1, Φ2), the others being straightforward.

Suppose F , s |= γ(Φ1, Φ2). Then there is πs : [0; ℓ]
±→ W s.t. πs(0) = s,

F , πs(ℓ) |= Φ2 and F , πs(i) |= Φ1 for all i ∈ (0, ℓ).
We build πt : [0; ℓ]

±→ W as follows:

1. we let πt(0) = t; recall that t ⇌CMC s, and so πt(0) ⇌CMC πs(0);
2. for j ∈ [0; ℓ):

– If πs(j) ⪯ πs(j + 1), assuming πt(j) ⇌CMC πs(j), we let πt(j + 1) = v,
where v ∈

−→
C ({πt(j)}) and v ⇌CMC πs(j+1). Note that such a v exists by

Lemma 2 below, since πs(j) ⪯ πs(j+1) and πt(j) ⇌CMC πs(j). Moreover,
πt(j) ⪯ πt(j + 1) by definition of

−→
C since πt(j + 1) ∈

−→
C ({πt(j)});
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– If πs(j) ⪰ πs(j + 1), assuming πt(j) ⇌CMC πs(j), we let πt(j + 1) = w

where w ∈
−→

C ({πt(j)}) and w ⇌CMC πs(j+1). Note that such a w exists by
Lemma 2 below, since πs(j) ⪰ πs(j+1) and πt(j) ⇌CMC πs(j). Moreover,
πt(j) ⪰ πt(j + 1) by definition of

−→
C since πt(j + 1) ∈

−→
C ({πt(j)}).

It is easy to see that the above definition is a good definition of πt. In particular,
we have that, for i ∈ [0; ℓ], πs(i) ⇌CMC πt(i); in fact, we have that:

– πs(0) ⇌CMC πt(0) by hypothesis and,
– at each step i of the procedure, if πs(i) ⇌CMC πt(i), it is guaranteed, by

construction, that πs(i+ 1) ⇌CMC πt(i+ 1).

Furthermore, since πs(0) ⪯ πs(1), πs(ℓ − 1) ⪰ πs(ℓ), πs(i) ⪯± πs(i + 1) for all
i ∈ (0; ℓ−1) and, by construction, πt(i) ⪯ πt(i+1) if and only if πs(i) ⪯ πs(i+1),
and πt(i) ⪰ πt(i+1) if and only if πs(i) ⪰ πs(i+1), it follows that πt is a ±-path
rooted in t.

Using the I.H. we get F , πt(ℓ) |= Φ2 and F , πt(i) |= Φ1 for all i ∈ (0, ℓ). So,
finally, we have F , t |= γ(Φ1, Φ2).

It is easy to see that the converse of Theorem 6 does not hold.

Lemma 2. Let F = (W,⪯,V) be a face-poset model. For all s, s′, t ∈ W such
that s ⇌CMC t the following holds:

– if s ⪯ s′, then there is t′ ∈
−→
C ({t}) such that s′ ⇌CMC t

′;
– if s ⪰ s′, then there is t′ ∈

−→
C ({t}) such that s′ ⇌CMC t

′.

Proof. If s ⪯ s′, then s′ ∈
−→
C ({s}) by definition of

−→
C and, since s ⇌CMC t by

hypothesis, there is t′ ∈
−→
C ({t}) such that s′ ⇌CMC t′ by Def. 21. Similarly, if

s ⪰ s′, then s′ ∈
−→

C ({s}) by definition of
−→

C and, since s ⇌CMC t by hypothesis,
there is t′ ∈

−→
C ({t}) such that t ⇌CMC t

′. ⊓⊔

We finally note that CM-bisimilarity and logical equivalence w.r.t. SLCSη are
incomparable.

A summary of the relationship between the various equivalences is reported
in Figure 5 representing them with their set-inclusion relation as a poset.

5 Conclusions and Future Work

We have introduced SLCSη, its interpretation on face-poset models and the log-
ical equivalence ≡SLCSη it induces. We have presented an encoding of SLCSη into
SLCSγ that we used for proving that ≡SLCSγ ⊆≡SLCSη . It is easy to see that ≡SLCSγ

is strictly stronger than ≡SLCSη , i.e. ≡SLCSγ ⊂≡SLCSη . We have then compared both
equivalences with equivalences proposed in the literature for finite closure mod-
els, and in particular CM-bisimilarity, CMC-bisimilarity and CoPa-bisimilarity.
It turns out that, for posets CMC-bisimilarity and CoPa-bisimilarity coincide
and CMC-bisimilarity is strictly stronger than ≡SLCSγ that is strictly stronger
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⇌CMC=⇌CoPa

≡SLCSγ

≡SLCSη ⇌CM

Fig. 5: Hasse diagram of the poset of face-poset model equivalences

than both CM-bisimilarity and ≡SLCSη , the latter being incomparable. We plan
to investigate possible definitions of bisimilarities on face-poset models that co-
incide with ≡SLCSη and possible minimisation algorithms for such bisimilarities.
This would represent the best solution for model reduction, that would con-
tribute to improving the performance of model-checking algorithms for SLCSη.
We also will investigate approaches for minimisation algorithms for ≡SLCSγ , or,
equivalently for ±-bisimilarity. At the same time, existing efficient minimisation
algorithms for CMC-bisimilarity or CoPa-bisimilarity are a good, non optimal
solution given the relationship we have proved in this paper between such equiv-
alences and ≡SLCSγ and ≡SLCSη .
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