MODELING OBJECT DYNAMICS
IN AN OBJECT-ORIENTED

/,-. 4);
@99 /fgg LOGIC PROGRAMMING FRAMEWORK

AT
(. _[‘_‘/7{ _f/;/_;/_ { / w_j . internal Report C95-46
L
| / / / [21 Dicembre 1995
. —
| e e

. T
{ s ,W \ ; / # e } —'y ;{,
‘ / x f/ / A S G. Manco

A / / [e A. Raffaeta
] A i F. Turini
- D/L(e ey *\ff_[_
// / R \/ f’ / / L "/
f / *
/ g ho L
B A T (e
N e L R e
;/ b / /o / y)
| / R,
T RNy
K%:;/L“/k%J_;ﬂ,\\%:,4L%:i:j

e

Modeling Object Dynamics in an Ob Ject-Oriented Logic
Programming Framework

Giuseppe Manco

CNUCE-CNR
Via 8. Muris 36, 56125 Piza, ftuly

e-tnail manco@orione. cnuce. cnr. st

Alessandra Raffaety Franco Turini

Dipartimento di fnformatica
{niversitd di Pisa
Corso ftulia 40, 56195 Pisa, ltaly
e-madl {ruffuety, turing @di.unipi gt

December 21, 1995

Abhstract

We extend logic prograwming witl object-oriented features. Classes and objects are represented
by collection of clauses and features are introduced to handle object-identity, inheritance, roles and
state update. Most of the extensions are brsed on the possibility of dynamically updating inheritance
links. Our prime coucern is to provide a logical acconut for the extensions, Tlis is ohtained directly
via the definitiou of a suitable prool-system, aud, indirectly, via a neta-logical definition in pure logic
Programming, ou one side, and the transation into a [ragment of linear logic, on the other side.

Keywords: Logic programining, object-oriented programmiug, role dynamics, semantics,

1 Introduction

In recent years, due to the increasing use of logic programming in various application fields, a series of
deficiencies has been poiuted out and extensions have been proposed to overcome them. For example,
the unsuitability of the unification algorithm for numerical applications prompted the design of instances
of constraint logic programiming.

In this work we focus upon tle problem of giving logic programming mechanisms for structuring
knowledge and programs. A standard logic program consists of a flat set of Horn clauses, and there
15 no abstraction mechanism to Sipport programming-in-the-large. Clearly solving such a problem is
crucial to make logic programming a well-founded discipline for high-level programming. Many proposals
have been made to improve the expressive power of most Prolog implementations {Ber91, Cas91, Malg1,
McC91, MLV88, MLV3y, Mos93], in which staudard logic programming is augmented with constructs for
declaring and using modules. In this perspective, we try to improve the usability of logic programnming by
augmenting it with object-oriented features. It is perhaps the case that “tocls that support evolutionary
improvements such as object-oriented programming might be more successful than technologies such as
logic programming that are often promoted as offering the prospect of a revolutionary advance” [Kow90].

The practical usefulness of an ohject-oriented logic programming system is twofold. On the one
hand, logic programming lacks abstraction and modularization mechanisms, whereas object-oriented

2 LOGICAL FOUNDATIONS OF DYNAMIC OBJECT-ORIENTED LOGIC PROGRAMMING 2

programming is a well-tested technique for the development of modularized programs. On the other
hand, object-oriented programming lacks of a formal semantics, whereas logic programming has a well-
defined semantics.

A problem in object-oriented programming is the lack of a standard definition. Object-identity,
inheritance, and message passing are generaily accepted as basic features. However, there are vari-
ous interpretations of such features (e.g., inleritance can be seen as structural, anti-monotonic, or as
delegation-oriented), and different implerentations of object-oriented languages stress different aspects,
such as persistence or concurrency, depending on the application they aim to cope with. From a knowl-
edge representation perspective, a formalism capable of fully modeiing the dynamic and many-faceted
nature of real worid entities, should take into account the characterization of the various forms of object
dynamics - such as state and role evolution. The main problem to obtain such a characterization is that
in logic a formula is true or false, indipendently from the time it is evaluated, whereas object states are
time-dependent [And91, Aled3].

In our proposal we try to cope with this difficulty trying to mantain a logical semantics. We remark
that in a goal-directed interpretation of logic programming, a module defines a context in which goals
are evaiuated. Standard logic programming provides only a static context: the program. In an object-
based approach, the context of evaluation depends on the currently active object. Such a dynamics
may be simply one-dimensional, wlen the program is staticaliy partitioned into modules, or it may be
multi-dimensional in the case of an object-oriented system. In particular, we consider three dimensions
handling object identity and message passing, inheritance, and state updates and their sequentiality.

The basic choice in our approach is to consider objects and classes as theories in a multi-theories
environment [BT93, Kow90, Broy3]. Object-identity is simply modelled by attaching a unique identifier
to theories. State is represented as a set of unit clauses and it can be updated via a suitable metapredicate.
In order to support update, we need to introduce sequentiality in the evaluation of formuias. Classical
logic is unsuitable for providing a formal framework for sequentiality. Many solutions, however, have been
proposed to deal with this gap {e.g., logics of action and linear logic). Finally, inheritance is modelled by
metapredicates that relate an object to a class, or a class to another class. Such relations can be modified
by updating the metapredicates representing them.

The advantages of the approach are twofold. First, we can provide a logical account for our extension.
This is obtained directly via the definition of a suitable proof system, and, indirectly, via a metalogical
definition in pure logic programuming, on one side, and a translation into a fragment of linear logic, on
the other side. Second, we obtain a greater expressive power: we can model multiple roles and object
migration.

The structure of the paper is as follows. Tu section 2 we analyze how sequentiality and state update
can be espressed in a logical framework. Section 3 introduces the language OL, our proposal of object-
oriented logic programming based on the properties we have described. Subsection 3.1 describes the
operational semantics of (O£ by means of a proof-system, and subsection 3.2 shows how the formalism
can be extended to cope with roles. In subsection 3.3 an example is presented aimed at showing the
suitability of the @£ formalisin to build object-hased models. Section 4 gives two interpretations of 0L
by using meta-logic and linear logic and finally, in section 5 we discuss the approach.

2 Logical Foundations of Dynamic Object-Oriented Logic Pro-
gramming

A large amount of research has been devoted to the problem of expressing a notion of local state in
object-oriented logic programming. The main approaches we mention can be grouped in two categories:
the clausal approach and the concurrent approach. The definition of the operational semantics by means
of a sequent-like system can hLelp to capture the substantial difference between the two approaches.

In declarative languages the execution of a program coicides with the search for a proof. Proofs are
carried on in stages, i.e. they transform formiulas into formulas. This is the only dynamic component of
a logic system. We can expect that each computational model capable of providing a theoretical basis

2 LOGICAL FOUNDATIONS OF DYNAMIC OBJECT-ORIENTED LOGIC PROGRAMMING 3

for QOLP will have the structure of the proof as its basis. Let us consider an interpreter in which the
state of the computation is expressed by sequents of the kind '+ A. The interpreter can be seen as a
rewrite system in which transition rules are expressed by the inference rules of the logic. Our idealized
interpreter succeeds if the sequence of rewritings leads to an empty set of sequents, or it fails if there are
no applicable rules. So, inference rules can be interpreted, when they are read bottom-up, as actions that
lead to a state transition. It has been shown [HM94], that a proof-rule described by means of a sequent
system can be automaticaliy transiated into an abstract machine.

Consider the structure of a sequent '+ A, In the concurrent approach, the dynamic object can be
represented in the right part of the sequent, namely the succedent. The various properties of the object
can be expressed via logical formulas, which characterize its dynamics during the proof development.

In the clausal approach instead, an object is represented in the left part of a sequent, as a logic
theory that describes its methods and its attributes. An object can be seen as a program that interacts
with other programs and can change dynamically. The goals in the right side of the sequent represent
communication and methods activation.

In the concurrent approach, objects can be seen as processes that evolve during the computation.
It is the case, for example, of the pioneering approach by Shapiro and Takeuchi [ST87, Fos91, Dav0l,
KTMB87]. In this context an operational semantics for a simple concurrent logic programming language
can be given via the following inference riles:

— (1)
KT e T @
%égg A—AeAAI=mgu(A, AN A8=A (3)
Ai—Lt:-:F—?g,_F’ 8 = mgu(t,, t2) (4)

Such a concurrent tmplementation of logic programming expresses object-orientation as follows:
e an object 1s a process that retains its internal state by unshared variables;

e an object is represented as a recursive process. The internal state of a process is represented by an
atom which holds its private inlormation in unshared variables. Methods corresponds to recursive
clauses with the name of tlie process as predicate as in the following scheme.

Object([Msgi|In],State,Out) —
compute(State,Ans),
change(State,Statel),
Qut=[4ins|Quti],
Object{In,Statel,Outl).

Object{{Msgn|In],State,Out) —
compute(State,Ans),
change(State,5tatel),
Out=[Ans|Outt],
Object(In,Statel,Dutl).

¢ an instance of an object can be created by reducing a process to another: in the clause

A—.. B ..

object A creates an instance of object B.

2 LOGICAL FOUNDATIONS OF DYNAMIC OBJECT-ORIENTED LOGIC PROGRAMMING 4

This kind of formalization reaclies perhaps its best in the work by Andreolt and others [AP91a, AP91b,
And92], describing a concurrent logic language based on linear logic [Gir87, Sce94]. Object-orientation is
modeled by means of concurrency aud tlie iauguage permits a clear and simple specification of inheritance.
An object can be seen as a multiset of formulas, each of which represents either a property or a method
activaticn request. Non-overriding inheritance can be obtained by increasing or restricting the context
of properties, and by adding multipie-headed clauses. In this framework rule (3) is substituted by:

A A T8

AET T f=mgu(T, THYAYT —A€A (5

This rule shows the dynamics of the object (identified with a branch of the proof-tree), i.e. the transition
from a state T,T to a state A§, 8. Other proposals that improve the expressive power and logical
interpretation of message passing have been made [KY92, KY93, ACP92].

The concurrent approach has three main advantages:

o state-change is modeled in a very natural way;
s many techniques for implementing message-passingare are available,

e many higher level specifications (which improve the expressive power: see [Dav9l, KTMB87]) can
be easily compiled in the language, thus obtaining a simple implementation.

On the other hand, the concurrent approach does not seem so good for representing the “long-
term state-change” [AleY3]. In other words, the integration of such a language with a database is too
difficult. Furthermore, the specification of inheritance (as delegation or as non-overriding inheritance in
the examples above) is too restrictive to provide a good expressive power and a complete integration.
Finally, the semantics of languages based on this approach is quite complex, because of the interaction
between concurrency aud Horn clause logic.

In the clausal approach, an object can be identified with a logic theory in which each clause either
describes a method or an attribute (e.g., uuit clauses). In this context a goal in the right hand side of
a sequent represents a message sent to an object. The evolution of the state of objects is captured by
changes in the left-hand side of a sequent. The clausal approach has two main formalizations, one based
on higher-order logic and the other based on modal logic. Tn both cases all aspects of object-orientation
are handled in a uniform way, i.e., using a very restricting set of constructs.

Modal logics [Far86], with its possible-worlds luterpretation, is well suited for representing a concep-
tualization of multiple abjects. Consider the inference system T obtained by adding the following rules
to the inference rules of classical logic:

ATEA

[A,TFA)
' A

[T A v

where modality [i] refers to the i-th agent. Such an inference system allows us to represent a formalization
of a multiple-agent world, as it can be seen in the work by Baldano and others [BGM94, GMR9Z, BLM94].
Moreover, many other aspects of object-orieuted programming, such as inheritance, can be formalized in a
modal approach. Tt is the case of the approach proposed in [Uusd2], where inheritance and time-depending
change are modeled by making use of particular Kripke-structures.

From a declarative point of view, niodeling local state-change in the clausal approach is a hard problem,
because it is necessary to perform an update of the static knowledge represented in the left side of the
sequent. The analogy of object representation with deductive databases, however, suggests us solutions
inspired by the theory of updates in databases. In fact, extensional databases can represent the internal
state of an object, while intensional databases can represent the set of methods of such an object. So, our
problem becomes the problein of updating the extensional database. For example, in [MW86, ?] updates

2 LOGICAL FOUNDATIONS OF DYNAMIC OBJECT-ORIENTED LOGIC PROGRAMMING 5

IAFA [AFB R A R4 TARRE _ Lar Alr/yl
AT 4as0 & LA AFAeB 2R T Arvea " 8
CAFT [AF 4 TAFA<B °°
LAt AFO LAA ARG [:BAFO TiAsFA
TveAdare "V L T AArG decide FAoB A, A Fe © L

Figure 1: The proof-system for the linear fragment used in the translation.

are formalized by the formulas assunme[p()]G and forget[p(3)]G. The modal prefix assume[p(t)] allows
the evaluation of the goal (¢ in an envirominent extended with the extensional predicate p(¢). Similarly,
the modal prefix forgeé[p(t)] causes the goal GG to be evaluated in an environment obtained by deleting
the extensional predicate p(t). Otler related proposals can be found in {BGM95, BK93, AK91].

The modal approach is uot, however, the ouly way to express object-orientation in the clausal ap-
proach. A different approacl hias been proposed by Miller and others [HM90, HM91, Milg89, Mil94,
MNPS91]. In their work, they extended Horn clause rules with implications in clause bodies, obtain-
ing a formalization for updates. The main feature of their approach is the use of a fragment of linear
logic [Gir87}. Unlike classical logic, linear logic regards formulas as resources which are consumed during
the inference process, and not as universally valid (or universally false) assertions. Following such a for-
malization, class specifications are represented by means of reusable formulas, and the states of objects
by means of consumable resources 11 the left side of tle sequent. So, instance creation consists in adding
new consumable resources (the attributes) in the left side of the sequent, and instance deletion consists
in consuming such fornmlas. Formulas are built with the following abstract syntax:

G TIA|G&G|GOG|YeG | CoC

C

The proaf-system for such a fragment ts given in fig. 2. Each proof is given for a sequent A; '+ A, where
the intended meaning is 'I', A+ A and A aud T are C-formulas and A is a G-formula. State transition is
obtained by means of nested hnplications. In such a coutext, the use of higher order logic can be useful,
as it is shown by the followiyg progran:.

ClAeG

make(y) o w01 <y
verify(s,g) o sw(s}
set(g) o .sw(Off) @ (sw(On) -0 g)
set(g) o sw(On) &y
reset(g) o sw(On) @ (sw(Off) —-yg)
reset(g) o sw(Off) &y

Figure 2 shows a process of computation for such a program {for more details see [HM91]).

In our opinion, the clausal approach is better suited than the concurrent approach to express object-
orientedness in logic programming. In fact, the various features of object-orientation can have a direct
logical interpretation aud 1t is easier a merge with deductive databases,

There are many other approaclies aimed at integrating logic and object-oriented paradigms. Ait Kaci
and others [AKN86, AKPY93, BJ94, KLWY3], for example, redefine the unification algorithm for letting
object-identity and inlieritance be implemented in a lattice of objects. This approach, however, does not
handle state-change.

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING f

switeh; sw(On) bk -
switeh; sw(Off)F sw{Off) switch; § F sw(On) - -
switch; sw(Of fYF sw(Of f) ® (sw(On) - -)
switch, sw(Of fy F set(---) (-]

o

[identity]

switch, = sw(Off} - set(-) [-o]
switch; b make(set(---}) [[:}

W0 switch = make(set(- - -))

Figure 2: A linear derivation for @, 8 b switch = make(set(...))(switch represents the program of the
previous figure). '

3 (L as an Object-Oriented Formalism in Logic Programming

In this section we present a formal description of our approach., With respect to the classification made
in the previous section, (O£ can be considered a language based on the clausal approach. As already
pointed out, such an approach is more attractive than the concurrent approach, because:

e it allows a more explicit semantic definition of the key features of OOLP

it has a greater expressive power, i.e. it allows us to capture all the dynamic aspects of the object-
oriented data model

s it is very simple and conservative, and is not coustrained to any implementation details.

The universe of discourse is represented by a language £ and a set of labels @, disjoint from the
Herbrand universe {/;. Consider the structure {2, £}, where £ = (II, Ty and QN E = §. The set of terms
for the system is built on tie alphabet QU (each symbol in Q has 0-arity), and the set of predicates can
be divided in two subsets: the set of predicates used to code state predicates, II,, and the set of method
predicates II,,.

The abstract syntax of QL is the following:

Program == LbClauses
LbClauses .= Label:Clause | Label:Clause A LbClauses
Clause = Atom — Body | Atotn.
Body = true | Atom | add(Atoms) | del{ Atom)
| update{ Atom) | Body A Body | Body @ Body | Label::Body
Atom n= plty, ... t,) | Label isa Label

where p is a generic predicate symbol, that 1s p € 1.

An OL program is a set of formulas similar to Horn clauses, with the difference that the atoms and the
clauses themselves can be labelled. Each label defines a world. According to a declarative interpretation,
each formula must be evaluated i a world and can be either true or false, depending on the degree
of knowledge of such a world. On tle other haud, according to a procedural interpretation, a clause
12 head — body has the {ollowing meauing: to evaluate the method head in the module T € Q, evaluate
the goal body in the environment determined by T. Notice that, differently from the procedural reading of
definite Horn clauses, the procedural reading for (O£ clauses needs an evaluation environment composed
by multiple modules (worlds).

The language allows us to support the most important features of object-oriented programming, i.e.
class, object-identity, message-passing, inlieritance and state evolution.

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 7

An object is a logic theory, whicli retains 118 tuternal state by meaus of private (labelled) formulas and
can be referred to hy means of a label associated to the theory. A label is unique and it identifies an
object. Unigueness of labels 1s guaranteed by a generator that exploits existantional yuantification as in
Kifer et al [KLW93]. A class can be modelled by a set of clauses sharing the same label. Therefore there
is ne real distinction between classes and objects, as in [Mal91, MLV8Y].

The formula Label :: Body is used to send the message Body to the object Label. According to [Mal91,
Kow80, B82, BRT95] and m the style of Smalitalk, we model message passing as the composition of
two primitive operations:

message passing = lockup o apply

When a message is sent to an object, the local environment lor the object is identified, and the method
corresponding to the message is applied. The application of a method is performed as a resolution step,
whilst the identification of the execution context is obtained by first looking for the object and then
exploiting the inheritance hierarchy. Moreover, self-communication is supported by the special label self,
which can be seen as a variable unifying with the active object in the context of evaluation. Actually, a
label for a formula can be considered as an extra argument for the predicates involved in the formula. So
labels can be considered and used as terms,

The inheritance hierarchy is modelled via the metapredicate isa, which links two labels. For instance

student isa person.

means that student luherits from person. We handle inheritance relations as generic attributes of the
objects, and provide an ad hoc inference rule for visiting the hierarchy.

We can also support conditional inheritance by allowing bodies specifying conditions about the hier-
archical relationship. Take for instance the following clause:

strudent . self isa teacher —
X X isa course
A X i Assistant(self).

It states that a studeut can be cousidered a teacher if there is a course for which he/she is an assistant.
Notice that the inheritance Hnk can be inferred only under certain conditions, that can be false or true
depending on the evolution of knowledge. So, if the course for which the student is an assistant terminates,
the predicate X :: X isa course can be inferred no longer aud therefore the inheritance link itself cannot
be inferred and the student cannet lnherit the properties of a teacher.

In standard object-oriented languages, such a situation is modelled with the introduction of a new class,
e.g. teacher — assistant, whicl inherits from both student and teacher. A student which is an assistant
is created by instautiating such a class. The drawback of such an approach, however, is that the sole
purpose of such an infersection cluss is to allow an instance to be of multiple types: it adds no new
state or behaviour. Moreover, the condition cau be temporary, as in the case of our example, where the
student could be an assistant only for a lituited period of time, and only under certain conditions. So,
the traditional approach can lead to a combinatorial explosion of sparsely populated classes [MZ86].

In order to support state change, we provide the metapredicates add(p(t)), update(p(t)) and del(p(t)),
that respectively add, modify and delete the ground atom p(t) to (from) the current environment, More-
over, to take into account updates, some form of sequentiality must be introduced. In the style of [BK93],
we introduce two fortns of conjunctions: a parallel one { A) and a sequential one (®). In the sequential
conjunction F @ G the right-lhand-side formula must be evaluated in the environment obtained by the
evaluation of the left-hand-side formula, whilst in the parallel conjunction F A G the formulas must be
evaluated in the same initial environment. Each formula has an interpretation as a transition from a
Herbrand interpretation to another. In particular, the resulting Herbrand interpretation of an update
formula is obtained by deleting or addiug the atom involved by the operation itself. A sequential con-
junction is interpreted as the transition from the initial interpretation to the interpretation resulting
from the evaluation of the right-liand-side formula in the interpretation obtained by the resolution of
the left-hand-side formula. On the oilier haud, a parallel conjunction is interpreted as a transition from

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 8

superclass

1atic isa

class

dyunamic iua

instance

Figure 3: Instantiation as dynamic inheritance.

an initial interpretation to the set-union of the interpretations resulting from the evaluation of the two
formulas.

The above features are enough to model object creation. In traditional object-oriented languages,
classes can be considered a prototype for object-instances. Classes specify the structure (state) and the
behavior (methods) of objects. A class is a type definition, and an object is a variable of that type. This
mode| is not, however, the ouly possible one. According to [Mal91], in fact, we can think of classes as a
collection of statically defined objects, that can iuteract and own a local state distinguishable from the
local state of their instances. [ustance creatlon cousists in creating a new, unique label and establishing
an inheritance link between the label and t)e label of the class.

In such a context, we can distinguish two kinds of links that are represented by way of the same isa
metapredicate (see fig. 3): a static one, and a dynaniic one. The definition of the inheritance link by
means of isa metapredicates allows us either to define the isa predicates by means of clauses, or to
dynamically change the inheritance relation, by updating on such a predicate. Such a formalization has
many advantages,

First of all, it is not coustrained to any implementation detail. It is not necessary to have ad hoc
constructs that express object creation and deletion sice they can be programmed directly. A natural
way to do this is to define a standard melanbject with the task of keeping track of the hierarchy:

object :t new(Q,CY —
T new dabel(Q)
Ot add(0 isa C).

object o delete(O) —
Ot update(O isa nil).!

where the resolution of newdabel(0) (yuale eticlietta ha...) binds O to a new label. object is a superclass

of each class defined by the programumer. {n this way, any class inherits methods to create and delete
objects from object!. Notice that this is not the only way to define new and delete: other approaches can
be easily implemented according to different strategies in storing and handling the primitive operations
over the hierarchy.

Ynil can represent any unilefined class

Such an approach is rather different, however, fron the OLj¥Lisp (and ObjVProlog: see [?, MLVB9]) approach. Here,
object is defined with the ouly aim to collect praperties comon Lo any class. There object and elass provide the prototype
of the structure of any ubject and class that can be created

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 9

Second, it provides a great amount ol expressive power, in particular it gives a natural way to deal
with object migration and roles (see section 3.2).

3.1 A Proof-System Semantics

We present the operational semantics of the (.0 language by means of a proof system. We will adopt
the following conventions. r,y,z (possibly with subscripts) will denote object-level variables, C, O, a,
T (possibly with subscripts) will dencte meta-level labels, s, t will denote object-terms, p, q, w, 5 will
denote predicate symbols, f, ¢ will denote function symbols and A4, B, € will denote object-level labels.

We are interested in the derivability of a formula from a program P. The successful evaluation of a
formula produces a new environment. We express this derivability notion by means of sequents of the
kind Super Self Env — {Goul, NewEnv) . Self is the label of the current active object and Super
is the label of an anchestor of such an object not necessarily a direct superclass. The evaluation of Goal
entails a state transition from the environment Env to the environment NewEnv.

Formally, sequents are represented by the ground formula? ¢ O v — {g,w), where v,w € Env =
Q — 2% and State is the [lerbrand base for the language (I, , S UQ). A proof-tree for a sequent
COy — (Gw) Is atree with the following properties:

e the root is labeled by the sequent;
¢ leaves have empty labels;

¢ new nodes are generated by instantiating the following rules:

(1)

COw — (true,w)

GOy — {y1.w1) COy — (42,ws)

GOy — (nAgsw) v = e @
Oy — o) «(0) = y(O)u {p(1)} (3)
C Oy = [update i)y <) =)} U ((0) < {p(t)}]) (4)
COy — @lpnyey 4@ =710 = {pt)) (5)
COy — {y,w1) COw — (m,w) (6)

GOy — (g1 @ge0)
0i 0; v — {y,w}
COy — (0 ny,w)
00y — (bw)
COy — {(a,w)
Ci Oy — () isa Cj,v) C, Oy — (a,w)
Ci Oy — {a,u)

iF e (a) @ de f(C U (C3)*)

ca—b e [Clu(y(C))® (8)

ZFor the sake of simplicity we do not consider nou-ground goals. However, it is not so difficult to relax the groundness
condition in order to provide computed answer substitutions.

Hun Wuwg)(7) = wif{r) Uwy(r)

to® = (A — true | A € o}, [O] is a sulwet of growwd{C) sucl that the occurrences of the self keyword are replaced with

o.

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 10

AAd — w (é;
S T N)
A A — true (3 AA — A w (8)
AA"""'""AiSﬂB L‘;A—-—»q

_— 11
(U} C{ — true %8;

Ad — g CC — s
AAd — Ay (7} .A_A——»C::s(;}
AAd — Augnalus 8) (2)
AA —p (

(M

P — Aup

Figure 4: A Proof-tree for P+ A :: p.

In each step of the computation the sequent i C; ¥ — (F,w} represents the computation state
of an abstract interpreter. The true coustant is always provable (rule (1)) without causing any state
transition. A deductive step (rule 8) is made with respect to the current context identified by C and 7,
while context changes are obtained via rules (T) and (4). These rules implement the lookup function,
while the apply function ts implemented by rule (8). Rules (2) and (6) express sequentiality, by letting
the evaluation of the conjunction of fornwlas to be done either in parallel or in sequence. An update
(rules (3), (4), (5)) for a predicate symbol p € II, causes a state transition in which the value for that atom
changes. Sometimes we will write (¢ O —— g if the derivation does not produce any state update. We
say that a formula G is derivable from a program P and from an initial state y producing an environment
w (P F, G) if there exists a prool-tree # # y — (G w}.

EXAMPLE 1 Consider the program P composcd by modueles A, B and C.

A Aisa B Bog—selfw Cos.

Acp—selfuignlas

Aw
Figure § describes a proof tree for P A p. Notice the use of the self-label when A inherits from B
during the proof of 4. o

The next example shows both an object instantiation and an update operation.

EXAMPLE 2 Consider the program P composed by modules A, B and C.

A Aisa B, B: g —update{w(l)). C:s— A ww(l)

A create(X) «— object = new(.X, self).

Acpe—self:qal s
Figure 5 is a proof-tree for Pry A o ocveate (A1) @ Ay o p. From the tnitial sequent we con consiruct,
by rule (6), the sublrees 2y and Ty, Zy further develops imlo the subirees =3 and Z4. Finally, we obtain
W = wa, where:

_f {w(l), Ay isa A}, if T = A
wy{T) = { “, otherwise

_ [{Aiisa A}, ifr=4
ul(r) =

. otherwise

Subtree =, shows how the instance is oblained (the environment created is wy). In subiree 2y the evalu-
ation of the formula Ay = p is made. fn subtree Ty the new environment wy s created. Finally, notice
that in =y both the dynamic and the stalic isa {ink are used. (]

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING Il

FH

L =
PO —— (A cereate(Ao A p W)

GH

€8]

Ay Ay b — (update({A; isa AP, wy) .
objece ohject # = (4] 2 update(() isa A})uwn) :;i
uhjeet object § — {mew{dy,)}

A AW — twhject znew{ Ay, Al w1}

A AW — {ereatefAy). o) _

DR — (A ereate(AL, wy) (M

1

{7
(3

B
Ay Ay wyp o (g @ C e W)
A .Al)| — {.’..J,p)

(6)
(&}

L)

Ay Ay own — {trie, w) {)

A Ay oy o= (g fwa)
A A — {poud

)

w

(9)

Wil — (A opuw) o
() Ay Ay wp — (update({w{ i}, wm) (4'}(7}
" Al Ay oy — {trae,uy) @) A Ay wy — (A update({w(1)}, wy) (8)
= Ay A e — ey brne} o) Ad o) — idisa Ba) 8 Ay wy = (g.w) (91
Ay Avwr — (A e Ao Adia — oo o
A Ao — {fen) (1)
AL Ay ey — (g}
A A W w— {true.w) :;:
~ A1 .«-l_ Wiy — ('ll'(l]>-") (Tl
=4 Clwy =— Ly o wld),w)
U0 ey — (5w} (_Bl
Ay Ay — {C::.s',‘...') n

Figure b: A Prool-Tree for PF, A new(A)) @A) = p

3.2 Role Dynamics

The formalization of ohjects as theories combined with the notion of programmable isa provides a natural
way to deal with object migration and roles. Traditional object-oriented languages are not able to fully
model the dynamic nature and the many-faceted nature of common, real-world entities. The intimate
and permanent binding of an object’s identity to a siugle type inhibits most object-oriented systems to
track accurately a real-world entity over time, Take the case of a person, who can become first a student
and then change its status to being a worker (migration of an object from a class to another), or a teacher
who can simultaneously he a professional {(multiple roles).

On the contrary, the Q£ formalisin can easily model these features, by allowing a direct manipulation
of the isa metapredicate. Since ohjects are bound to classes by means of the isa predicate, we can
update, delete and add new links, thus realizing object-role dynamics.

To handle role-dynatnics we can define a metaohject dynamics as follows:

dynamics ;. extend_object(O, R) — d
O :: add(O isa R). '
dynamics > droprole(O, R) — d
2

O : del(0 isa R).

Method d; allows us to add the role R to the object O, by adding an inheritance link between O
and R. In such a way, the object O inlierits all the properties of the role R, and consequently its
behaviour. Conversely, method dy deletes the link between O and R, and consequently O looses the
behaviour described by R. For example, suppose that ginseppe isa student is provable in the current

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 12

state. The execution of the method dynamics o extend_object{giuseppe, employee} adds the predicate
giuseppe isa employec in the current state. Now, giuseppe can behave both as a student and as an
employee.

However, problems concerning the maiutenance of consistent information can arise. Since the role of

an object is updated by simply handhuy the isa metapredicate, no effective deletion of the attributes
of the object referring to the updated role is made. Such a situation can be very attractive on one
hand because it allows the maintenance of a sort of history for the object life-cycle, but it can lead to an
inconsistent situation on the other hand. Suppose that giuseppe has an attribute code whose value is 12ad
as a student, that is code(12ad) is in yiuseppe’s current state, and that the class employee has, among
its attributes, the code attribute, too. Cousider now the goal dynamics :: drop_role{giuseppe, student).
giuseppe looses the role student, but the state attributes of the previous role are mantained, and therefore
if somebody asks giuseppe what is his code, he can answer with the student code instead of the employee
code.
To face this kind of conflicts, we need a more structured approach. Since an object can assume a set of
roles, it is natural to refer to such an ohject only with respect to a certain role. So, the attribute code is
referred in the current object witl respect to oue of the roles the ohject assumes, and it is meaningless to
query the object for code indipendeutly from the role. Moreover, we need to distinguish the isa predicate
from the other state predicates, hecanse the isa predicate specifies the actual properties of an object with
respect to the schema, whereas the state predicates are related to all the roles the object has assumed.
We can extend the proposed formalization by giving each state predicate an invisible label representing
the actual role in which the object finds the state predicate definition. The idea is to exploit these labels
when solving a goal, choostug only the state predicates related to the current role of the object. In our
example this will allow us to discard the clause student : code(12ad) in the state and to select the right
definition for code, that is emplogyee o code{empil).

The role an object assumes is made explicit by the new prefix O as C, where O is the object-identifier
for the object and C is the role which O asswmes. The formula O as € @ ¢ means that G must be
evaluated in object O that hehaves as (. Now, the proof-system has to be modified in the following way:

C; €5 Ow — {true,w) (10)
Ci G Oy — {n,w1} ¢ O Oy — {g2,ws) 3
= 1w 11
CiCj Oy — (g Agnw) = R (11)
s C“j O v — (flff(i(p(f,)),u.’) ' “"(O) = 7(0) U{Cj Ip(t)}vp# 15a (12)
Ci Cj O~ — (udd(‘r 154 J),w) » w(O)=y0)U {T 154 (r} (13)
Ci C; Oy — {Gi,wi) Ci G Owy — (Ga,w) 1)
CC Oy — {GLo Gy, w)
O, O Op v — (O 1sa %) CCOy — (Guw) (15)
CiCi 0y — (Op as C 1 GLw)
0; 0; 0 v — {(G.w} (16)
CiC; Oy — {05 G w)
C; CG; Oy — {G,w)
A—GelC 17
GG 0y — (Aw) AT OE an

, (A€ y(0) or name(A) = isa and A € y(O)

C,‘ CJ' 8] Y — (‘4,7)

¥

3 L AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 13

C-'[Cj O ¥ (C;‘ ih‘i\ C", 7‘) ' ("j 0 Y — (4.;.')
Ci 0y — (A w)
if name(A) & de fs(Cy UA{0))

(18)

Each sequent specifies also the current role of the object, that is in a sequent C; C; O v — (G, w)
O specifies the current object, C; the current role, C; an ancestor of the role or the role itself.

Rules (10}, (11), (14), (16), {18) differ from the corresponding (1}, (2), (6), (7) only for the role
component in the sequent.

Rule (7?) allows us to add a state predicate with the right invisibie label. This label is the current role
of the object, that is C;. Since the isa predicate is a predicate wherever visible, in the state of objects
it is not labelled by an invisible label (rule (77)). Rules (4) and (5) must be replaced in an analogous
way as rule (7?). Rule (8) is divided in two rules to deal with clauses and state predicates respectively.
If name(A) is a state predicate, the current value of this predicate is in the state of the object bound to
the current role of the object (rule 18).

Since an object can see only the classes it is linked to, the set of attributes and methods, it can use
to solve the goal, are only the ones reachable by following the actual inheritance links. Rule (?7) defines
a deductive step for methods and isa predicates, whereas rule (?7) defines a deductive step for state
predicates. In this way, if the ohject has assumed different roles, we select the state predicate values of
the current role.

3.3 An Example

Suppose a high school office is coposed by the following entities (see fig. 6):

o the entity school with properties curricula;
e the entity course with properties name and term;

e the entity person with properties name, sex, age, birth, livesin; this class has two subclasses,
student and employee, that are not disjoiut;

e the entity student with properties passed_exaum, exams.to_take, add_exam, average, studies.in, de-
gree, code, info;

o the entity employee witl properties works_in, code; teacher is a subclass of employee;

o the entity teacher with properties e_mail, info;

The relationships among the entities are:

o the relationship between school and teacher, that represents the fact that a teacher works in a
certain school;

o the relationship between school and student, that represents the fact that a student attends a
certain school;

o the relationslip between school and course tliat represents the courses provided by a certain school;

o two relationships between course and teacher representing the teacher and the assistant of a course

respectively.

Figure 7 presents the (2L program modeling the school office in an object-oriented style. Each class is
represented by the set of clauses with the sanie label: student, teacher, school, person, employee, course.
Notice that each class is characterized by two different kinds of clauses. The definite clauses define the
methods, and the unit clauses define the attribute predicate, representing the state predicates for the
class. It is worth noting that eveu if the state predicates name and age are used inside student (info

3 OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING 14

studente courses

teaching [pacpls \(

asgistant

student COUTES
O

parson L teacher

smployes teacher %_;

Figure 6: A graphical representation of the school office.

method), there is no attribute clause for them because Lhese predicates are inherited from person.
Consider for examiple the following clanse for the computation of the exams still to be passed by a
student.
student = exams_totuke{ Xs) —

degree(S)

A S teurriculu(self, Ys)

Abugof(E self : exam(E,V, D}, Zs)

Adif ference(Y s, Zs, Xs).

Intuitively, in order ta find the exams the student Las to take, we need to look for his/her curriculum, and
then compute the difference between the exatus lie/she lias chosen and those he/she has already passed,
degree(S) is a state predicate defining the school that the student attends. Notice that, the literal is not
labelled, and therefore it has to be solved in the local environment of the object representing the student.
The value bound to § is the object identifier of the school, Such a label is used to send a message 1o
the object itself, in order to find the curriculun chosenu by the studeut. Finally, the predicates bagof
and dif ference compute the list of exams passed by the student and the difference between such a list
and the list in curriculuin respectively. It is worth remarking that self is used as an argument of the
predicate curriculu, and as a label for a formula in the predicate bagof, too. In both cases it is bound
to the active object.

In order to establish the hierarchical links amoug classes, we introduce the clauses defining the
isa metapredicate. For example, the links for a student are described by the following clauses already
presented in section 3

syt student o student isa person.
student o self isa teacher —
Sy X o X isa course
AN 5 assistant(self).

‘The method for adding new exams to an instance of the class student is modelled by the following

clause
student 2 ins_eremn(E V, D) —

o3 add(e ram(E, V, D)).

{t defines a transition from the initial database of exams of a student object to the final database in
which the information related to the new exam is added.

OL AS AN OBJECT-ORIENTED FORMALISM IN LOGIC PROGRAMMING

i5

% cluuses for the cluss student

student :: average(X) —
bage f(V, self :: pussed_exam (£, V. Y), V)
A count(Vs, X).

student :: ezamstotuke(Ns) —
degree(S) % clauses for the class person
A S i curricula{self, 1s) - livesan(X) —
A bago f{E, self .2 pussed_exam(E,V, D), Zs) person “k”-' (J‘{ '
Adif ference{Ys, Zs, Xa). works-in{.X).

i . v livesaan(X) —
student i info(Nume, Age, Code) ~— person :: livesin(X)

studies_in{X').

1?':;23;‘;:‘;) person i age{ X)) o
A code(Code) this-gear(¥)
R Abirthi_, ., 2)
student ; student isa person. A minus(Y, Z, X).
student 1 self isa fewcher — person : name attribute person.
A X dsa course person o sexr attribute person,

A X i Asstalant(self).

student :: add_exam(E,V, D) —
add(ezam{E, V., D)). person i lives_in attribute person.

person i birth attribute person.

student :: pussed_exam attribute student.
student :: degree attribute student.
student :: code attribute student.

student :: studies_in attribute siwdent.

% clauses for the cluss teacher

o .
teacher - in fo{ Name, Age, Addr) — % cluuses for the cluss employee

age{Age) A Lives_in(Addr) employee 1 works_in attribute employee.

A name(Name). employee - code attribute employee,
teacher :: teacher isa employer. \
) . employee :: eployee isa person
teacher e anail attribute teacher,

W clauses for the cluss course

% clauses for the cluss school
course :: neme attribute course.

school . curricula attribute school. .
course ' term attribute course.

school i teaching _people attribute school. . .
course : assistant attribute course.

school :: courses attribute school .
course :: leacher attribute course,

Figure 7: L code for the schiool office.

4 LOGICAL ROOTS OF OC 16

Finally, consider the following clauses for the class person

person o lives_in{X) —

b worksan(X).
., . personu lives_in(X) —
Pz studies_in{ X).
Suppose that the following iustauces of student and teacher are available in the current state.
wlgiuseppe) = {giuseppe isa student. w(franco) = {franco isa teacher.
studies_in(pisa). lives.in{livorno).
deyree{computer science). works_in(pisa).}

natne(yluse ppe muanco).}

Consider now the query «— giuseppe o lives_in(X). The inference system takes all the clauses asso-
ciated with the object yiuseppe as the actual context of evaluation. Then the lookup function is applied.
Since no definition for fives.in is in giuseppe, an inberitance link is looked for, that 15 an attempt to
prove the query «— yiuseppe isa Super A Super u lives_in(X) is made, and a link is established with
the class person because of clause). Now, clause py unifies with the second atom of the query. Then the
original query is reduced to — giuseppe = studies_in{.X), and is solved with correct auswer substitution
X = pisa. On the contrary, the query — franco = lives_in{pisa) fails, because the predicate lives_in is
defined in franco itself and so, by way of the overriding mechaninsim, the clause p, cannot be applied.

Finally, fig. 8 shows au exatuple of computation of role-change for the ohject . The figure shows the
5 branches of the prool-tree for the sequential conjunction

object = newly, studenty & g o add(code (a)) & g 2 add(y 1sa employee) @ g @ del(g isa student) @ g =
add(code(b))

Notice that, after the evaluatiou of Zu, the local state for g contains the fact student : code{a), visible by
rule 77 since g isa student is provable. After the addition of the new role employee an he deletion of
the originary role student, the addition of the attribute code is made with respect to the role employee,
and the fact student : code (1) is no more visible.

4 Logical Roots of OL

From a proof-theoretic point of view, the (3£ formalism is a conservative extension of logic programming.
Consider for instance a traditional logic program, that is a set of Horn clauses without update atoms nor
labelled atoms. Such a progrant can be considered as an QL program composed by a single module and
in which the conjunction of atoms is interpreted as the parallel conjunction in OL. Then the operational
semantics of QL is equivalent to the traditional operational semantics of logic programming,.

Here, we show the rooting of (2L in logic in two other respects: by axiomatizing the proof-theory of
OL via a metainterpreter written in logic programming, aud by showing a direct interpretation of OL in
terms of linear logic. The reading of the metainterpreter is straightforward and, most importantly, the
meta-logical definition shows that (L can be expressed within logic programming itself. The semantics
characterizations of logic prograis can be applied to €L programs by applying them to their metalogical
definition.

The interpretation of QL in termis of linear logic shows how it naturally fits into a theoretical frame-
work explicitly designed to provide an account for state change.

4.1 Meta-logical definition of OL

We present a meta-logical definition of the language QL. The meta-logical definition is obtained by
adding new clauses to the vanilla imetainterpreter {SS86]. It is worth noting that meta-logic provides an
executable specification of OL.

LOGICAL ROOTS OF OL

w =y {u s isa studeni}}}
g4 B — (updule{{y isa studeni}), w)

11

1 object vhjrel 8 — (g @ wpdule({q isa sludend}), «) 7

12}

abjeel object 8 — (new(y. sludend).)
DY — (object = new(y. studend),)

wi = {{y.{y : g isa student. sludend : code(a)}}}

student student w — (true,w))

_ 44w — {true.) L student studenl w — {code attribute studend. o)) 12
= o w —— {g ixa sl udrni. w) i 4w — {sludent 1 code attribube sludeni. o)
ot w — (update(udd{code(u}}). o) 7
W — (o updute(udd{code(a)}), w1}
wo = g gy isa sladend g« g isa eomplogee. studend - code(a) P} I
e g g w1 = {npdade{add{y isa conplogee)). wa)
W wr — (oo apdate(add{y isa roployee). wa)
wa = {{a.{n g sa emplogee, stedent @ code(a)}}) .
=4 g 0wy — {update(del{y isa studeni}), wis)
B wy — (g0 wpduie{det{y isa student}), wa)
wa = g {a 0 g isa studend. studend : code(u). ernployee - cade(0)})}
: erplogee eruployer wy —— (true. ws) 1
- # i ws — (brue wy) 1 vinplugee viploger wy —— {eode attribuate siadend, wa)
=6 '

ot wy — [y i cinplogee. i) o wy — (rinployee o rode attribute siudend. wa)
gt ws — {(spdobe{udd {code(8)}). wy)
0w — (g apdule{add{code(0)}). wq)

Figure 8: A fragimeunt of proof-tree for the computation of the change of a role.

4 LOGICAL ROOTS OF 0L 18

We extend the basic framework of logic progranuming by considering a collection of logic programs
and a union composition operator defined over them. The union operator (denoted by U} allows one to
compose theories into a single theory according to the following definition.

Definition 4.1 Given {wo theories P and Q, P UQ denotes the theory obtained by putling the clauses
of theories P and Q logelher. O

This approach is developed in [Bro9%3, BTY3, BMPT94]. In the following we use the U operator to
represent the state of an object.

We employ a five arguiment predicate demo to represent the provability relation. Namely, demo(€, C, 045.G, €")
states that the goal G has to be solved by using the clauses of C' and the multi-object environment £.
The resolution of G can modify the multi-object environment and the resulting environment is £'.

The multi-object environment represents the set of objects that have been created up to now. For
each object, we are interested in its naune and its current state. This set is denoted by a sequence defined
by the following abstract syntax:

Env = A ([dO,5) | Fuv & Env

where 7dO is an object identifier and S is a theory formed by theories defining only state predicates and
composed together via the U operation. &£,&' € Env are sequences constructed by & operator, and they
give all the information we need about objects. A represents the empty sequence: no object has yet been
created. Via the update predicate we replace tuples of the environment with new ones, where only the
state has changed. In order to select the state associated with an object identifier /dO in an environment
£. we provide a predicate seleet([dO, €, 8, E\, Ey).

select(IdO, €, 5, E,, Ey) — & = E&(1dO,S)VE;.
select(1dO, &£, {} A €) — & # EW&(1dO, J&E,.

The clauses state that if the object 7dQ has been created (i.e., it belongs to the environment £), then §
is its current state. Otlerwise, the object JdO Las uot yet been created, and therefore its state is empty.

The second argument of the deme predicate is the name of a class or an object {remember that there
is no difference between these two notious in our model). This name refers to the set of clauses of the
kind C :: clause where C' 1s sucli a name.

The third argument of the demo predicate is the identifier of the active object. Any change, determined
by the resolution of the current goal, affects the state of such an object.

The fourth argument of the demo predicate is just the current goal.

The theory associated with a class [de 1 is named by [deCland it is represented at the meta-level
by a set of axioms of the kind clause (IdeC'l, X, 4 — B) —, one for each object level clause of the kind
IdeCl :+ A" — B* where the self keyword i A’ — B’ is replaced by X. X is a variable not occurring in
A — B
The possibility of changing the state of objects imiplies the dynamic construction of theories. The following
axiom extends thie representation of object level theories by means of constant names by supporting the
reference to unnamed theories,

cliuse({X —~ Y}, 0, X —7Y) — _ Unnamed theory

The state of an object can be cousidered as a kuowledge base Kb consisting of unit ground clauses
only. Basic updates on a knowledge base are the insertion and the deletion of formulas. The predicate
update(Kb, U, Newkb) states that knowledge base Wb evolves into Newkd due to the update U/, The
following axioms formally define the three kinds of updates.

update{ Kb, insert(4), {A —JU Rb) — insert

update({}, delete(A), {}} — dell

4 LOGICAL ROOTS OF OL 19
update({4 —} U Nb, delete{A), Newkh) — update (N delete(A), Newhd) del2
update({B —} U RN delede{(A), {B —JUNewkd) — 4 # B, del3

updutf([\ cdelete(A), Newkd)

In the above axicins, a knowledge base 1s represented by the union of its clauses. The axioms rely on
the basic properties {idempotence, associativity and communativity) of the theory-composition operator
union.

The axioms modelling the union operator are the following:

clause(PUQ 067, A —) — clause(P,0bj, A — () Unionl
clause(PU Q,005, A — G) — clause(Q,0bj, A — G) Union2

The above clauses state that au OL clause A «— belongs to the union of two programs P and @, if it
belongs to either P or Q.

The following four clauses extend the standard vauilla metaluterpreter for logic programs with extra
arguments.

demo(&,C, 0y, true &) — true
This clause states that the goal trie is solved 11 any class and it does not change the environment £.

demo(E,C, 005, (G A Ga), EY — demo(E, C, 007, Gy, £, .. .
demo(E", C, 005, Ga, £ Conjunction |
demo(€,C,0b), (1 3 (4), E') = demo(E, C,0bj, G, E),
denw(E, C, ObJ,G;,Z"”), Conjunction 2
L *fH -
merge (&, &N,
Thase clauses deal witii conjunctive parallel and sequential goals. A conjunction &y A (7 1s solved by
proving G| and Gy starting with the same environwent £, and merging the resulting environments (the
predicate merge returns the set-union of the related environment). A conjunction (G ® Gy) is solved in
C i () 15 solved in ' and (4 is solved 1 C and with respect to the new environment £”, obtained from

the computation of Gy,

demo(E,C, 007, A, &) — clause{(C',0b), A —),

1 . . 15 ti
demo(£, Ob, Obj, G, &1 Atom resolution 1

demolE,C,0bf, A, E) — select(OL],£. 5, E\, Ev),

. t s 1
clause (S, 0b), A — enpiy) Atom resolution 2

These clauses state that an atomic goal A is provable if a clause A — G belongs to either the class ¢ or
to the environment &, and ¢ s recursively solved m O
The following clause models inhentance:

demo(E,C,0bj, A, £ «— unde fined(&, (', A),
demo(E,C,0bj, C isa K, £"), inheritance
dewmo(E", N, 0hj, A)

This clause enriches the set of atoms provable it C' by exploiting the hierarchical link between classes.
The predicate undcfined expresses the condition nume(A4) € defs(C U S), such that £ = £,&(C, S)&E,.
Notice that we exploit backtracking to visit all the superclasses of €'

The next clauses deal with npdaete.

demo(€, C, O], add{A), &Y — select{Obj £, 5, FE\, Ey),
update (S, insert(A), 8, update 1
8" = El&’(O’)j, S’)&Ez

&

4 LOGICAL ROOTS OF 0L 20

demo(E, C, Qbj, del(A),E) — select{Ohj &, 5, Ev, Ev),
apdite{ S, dedete(A), 57, update 2
&= B &(Ob], 8"V E,

Handling the update of existing atoms implies the definition of another composition operator. We omit
this extension here, also because from a programuuing view point update can be substituted by use of
insert and delete. _

This clause states that solving an update goal in the object Obj entails knowledge assimilation oper-
ations.

demo(E,C,005,0 :: G, &Y — demo(€,0,0,G, &) msg

This clause states that a goal of the form O 1 G is provable in C' if the goal G is provable in O.

By exploiting unification and backtracking, we can use the above clause to search for an object where the
goal G can be solved. This exploitation of the logical variable offers a mechanism much more powerful
than the ones supported by traditional object-oriented languages.

4.2 OL and Linear Logic

In this section we will provide another {formal viewpoint on the evalution of sequentiality and assignment
in OL. We will show how the core properties of (2£ can be expressed in a first order fragrent of linear
logic. For the sake of simplicity we will deal with the fragment of the language in which only the use
of sequential conjunction and of the metapredicates add(p(1}) and del(p()) are allowed. In such a way,
we will not deal with multiple objects and therefore either message passing or inheritance. Moreover,
method predicates liave to he distinguished from state predicates, Le., the sorts [I, and II,, are disjoint
(clearly such a restriction is not substautial),

We will follow the hasic concepts of [BGYA] in formalizing the interpretation, properly extending the
underlying ideas in order to madel state update. Suppose we have the ciause

.Jn(: —_ Al)L @ A,;

where 7 > 0. The idea is to delay the evaluation of A; until A;_; is not evaluated, by means of a new
predicate symbol undefined in the program. The new predicate is bound to the evaluation of A;-1 by
means of an extra variable. The role of the new predicate is to “witness” the successful evaluation of
Aiy.

We now provide the notation that will be used in the translation of OL programs. A sequence is
defined as usual, and the concatenation of two sequences & and A is written as k- h. Suppose that the set
V of variables is numerable, aud that there is a bijective map from sequences k to natural numbers k.
So, given a sequence &, it is possible to associate to it a variable iy. We now define the functions bot[G]x
and tot[G)g, which associate to each goal the last and the eutire set of variables respectively, according
to the sequential order in which the atoms appear,

Definition 4.2 Let G be an OL goul. Then bot[G)y and tot[Gx ere recursively defined as:
o bot[A]y = tot[A]x = iz, where A Z p(t) or A = true;

. bot[(,h ®Gg]k = bat[G-_;]k.-_:, t()i[Gl ny] Gg]k = ic’)t[Gl]k.; . tOi[Gg]k‘z.

The translation is defined as follows.

Definition 4.3 Let G be a goal formule. Then the trunslution of G, denoted as [G]y, is defined recur-
stvely as:

o [p(O)], = plt, ix);

4 LOGICAL ROOTS OF OL 91

o Jtrue], = v(iz);

. l[Gl@G'—’]ik = ([[Gg]lk.!—o Gbot[(F]e1)) = 1G], -
O

Intuitively, in a sequential conjunction 71 & G Gy must be evaluated only after the successful evaluation
of the last atom in ;. The translation binds the resolution of G to the resolution of the witness predicate
Y, that, in turn, is bound to the last atom m () by means of the last variable associated to G. Clearly,
if the goal is an atom, the vaniable must be bound to the resolution of the atom itself, and if the goal is
the constant true the goal is automatically solved.

Definition 4.4 Consider ¢ program P and o clowse A —G. Then
o [A—G]=V bot[Alox1. . .20 {[A]l, o= Ytot[G]1.((0({bot{A]n) = d(bat[G1)}) = [G],).

where ¢y, ..., &n are the variables oconrring in A — G

o [PI=Ucer [CT
.

In a generic clause, the head is solved ouly it the bottotn of the body 1s solved. Notice that the universal
quantifier Y{ot[G]) is uecessary to guarantee standardization apart during the inference process.
Let us see an example.

EXAMPLE 3 Consider the following program P

plz,y) —q{z) & r(y)

The result of the transformation [P] is the following:
Yigey. (plz, y, 1) o
(Viviy.(0{i0) o 0{in)) o ((r(u i) o d{di)) o q(£,41)))))
Yig.(¢(a, i0) o= (Vi {(in) < (i) = 0(i))

Vig.(r(b, io) o= (Viy .(0(in) — #(i1)) = d(i1))) -

Notice that the transformation can be optimized, in order to avoid the generation of unuseful. For
example, the second and third clauses cau be easily rewritten as follows:

Vio.(q(a,10) o= D(in})
Vi().(‘i‘(b, i':n) o 1,(1:(;)}

Definition 4.5 Consider o program P and ¢ goul formule G. Then the transformation of the sequent
PPy — (Guw is [PIT, T-o d(bot[Glo) - [(7],, where T = {Ve.T o p(t, r) Ep(t) € v}]

The T —o 9(bot[G]o) formula in the consumable part of the sequent states that the proof tetminates
only when the last atom in the goal G is solved (and consequently its witness is made available). The un-
derlying idea in the transformation is to obtain the sequentialization of the sequents by a sequentialization
of the proof. Given a proof

we want to translate such a proof in the fullowing

b

4 LOGICAL ROOTS OF OL 22

PPY — (trne, B () PPU — (true, i) Eé;
PP — {q((&),@) PP — {r(b), 0 (6)
PP — (gla)@r(h), D (8)
PP — {pa,b),)
m T:R
AT 0(h) - a(z) deduce
AT o d(i),)i} - 9(y) F 9(y) deduce
AT o 9(i), 9i) — 0(y) F (b, g deduce
AT o 001), 9(3) = 9(g) . r(b, y) = O(z) F 9(z) Prruee
AT 000, 90) < 905, 1 (b,) = 9(e) F gl 2y Feebnee
AT o 001}, d(i) = 9(y) = (r{h, y) = O{x)) = ga, x) RA
AT o (i) F (1) 0 U(y)) o ((r(b,y}) o 0(x)) o gla,z) 'i_R
AT o (O F (Vi do (i) o (1)) o ({r{b,in) o 0(Z) o gla, 1))}
AT o (i) F pla, b, 1) deduce

Figure 9: The proof-tree for ©; and the corresponding proof-tree for O,

[=:]
[=.]
I=]
That is to say, the sequent =y must he evaluated ouly after the successful evaluation of the sequent Z;.

We introduce the deduce uference rule, in order to abbreviate the instances of the following proof-
trees:

inttial

U Ale /i F At/] ;AR Gle/t)
U Aleft] o= Gl ft], AF At/ x]
Civr (Ao G), Al Alt/x] dcci;le
FAF Alt/n) '

- : L

Where Vr.(A o~ G) € I The subtree 15 simplified by omitting the ¥ : L inference rule if the clause is
not universally quantified, or the decide inference rule if the clause r is chosen in the consumable part of
the sequent. Notice how the deduce rule plays a fundamental role in the evaluation of the sequentiality,
because a wituess is made available and consequently a new formula can be evajuated.

EXAMPLE 4 Consider the sequent ©1 =2 PP 0 — {(p(a,b),8) and the corresponding translation in the
fragment of linear logic @y = A, T - d{i) F pla, b, 1), where P is the program of the previous example and
A the transformed linear program. The proof-trees for ©1 and ©2 are shoun in fig. §.2. Notice that in
the leaf of the proof-trec for ©y the conswmable part of the anlecedent 1s empty, because no update s in

P
]

ExaMpPLE & Constder now the nert QL programn:

5 CONCLUSIONS 23

viz,y) —a(x) @ r(y).
g(u) — add(p(a)).
r(a} — p(a).

Notice that the evaluation of q(a) eniuds the modification of the context. o
Now we provide a transformation for the stuteupdate metapredicates and for the state predicates.

Definition 4.6 Consider [G], defined in def. 4.3 Let us extend the definition as follows:
o [A;], = (ViT ~o p(t,4)) = 0(iz), when A; = add(p(t)) with t ground term;
o [4;], = p(t iv) @ V(ix) when A; = del(p(t)) with t ground term;

o [A;], = p(t, &) & 9(iz), when A; = p(t) and p is a state predicate.
o

The linear implication allows us to add ew consimable formulas to the actual state. Such formulas can
be consumed (and so deleted) by means of the & linear operator, because it splits the context in two
subcontexts in which the cousumable part is used to solve the p(t) goal. Finally, in order to solve a state
predicate we need to duplicate the context of evaluation.

r

EXaMPLE G The transformation for the program of the cxample 3 is
Vryio (‘U(T Y, ?.[))
(Vivia (i) = 0(iz)) = {(r(y, i) = #(i1)) o q(e, i1))))).

Vig.(¢(a, iu) o= Vi ({#(iy) 0 ?(i))) o (V1. T -0 pla, 21)) — 9(4))))

Vin-(r(e, fo} o= i (200} — 0(i)) = (p(a, i) & L))
0

ExaMpLe 7 Consider the sequent ©p = PP O — (v{a,a), {pla)}} and the corresponding translation
in the fragment of lincar logic @4 = AT - J(i) = w{a, a, 1), where P is the original program and A the
transformed linear program. The proof-trees for @ and Oy are shown in fiy. §.2. O

5 Conclusions

We have examined the role of state update in expressing integration between object-oriented programming
and logic programming. As remarked, it is an important feature in proving the applicability of logic
programming to interesting software-engineering problems [CL94].

We have recalled the importance of computation-as-proof interpretation in expressing dynamics in
logic programming. The two approachies we Liave considered express a different philosophy of approaching
the problem. It is clear, in fact, that a concurrent approach, though very elegant, does not allow to cover
the problem of constructing large software systems, and so it has to be cousidered a “logic programming
emulation” of object-orientedness. Moreover, a clausal approach allows covering such problems, and
allows us to express a clean semantic interpretation of OOLP. It “only” remains to logically formalize the
concept of assignment.

We have discussed the main properties of local state in QOLP: local state derives directly from
the dynamics of the context of evaluation, and one of the dimensions of such dynamics is assignment,
which can be formalized via computation-as-proof. The fundamental requirement consists in expressing
inheritance via updatable metapredicates: the local state problem then reduces itself to the assignment
problem. Notice also that data-encapsulation can be unplicitly modeled by letting non-labelled predicates
to be expressed in the program clauses: the non-labelled predicates can only be evaluated in the context
of the object that received the message first.

5 CONCLUSIONS

? Gl — erwe, o) o
P PO — (add(pla) {p ()} PP Apw)} — {pla), {p(a)}) (8)
P — Tala), 0] AT GO RTIT

PP — {qla)@ r(a), {p(e)})

8
PPN — (o, ()
AVa, Tople.) F T T;Rd e
- AT o i) ¥y Toplu. e F (D)
AT o (i} J(i) o U(y). {y) o u) = T oA ‘ AT o d{3), H{i) = d(y). Vi, T o pla, £1) F 3(5) deduce
A Tl d(i). i)y o (). Yer. T —o plu.ry). gy o Hupb lu. u) deduee AT — (i), d{i) o My} Yoy . T — plu, 1). Hy) < ?(u) - Hu) t:d?u:

AT —odi). i) o (g Vo . T —o e a0y). i g) —o Hu) = plu. u) & U{u)
AT (). H) = N y) Yy T plu. ey) {4 g) o Hu)) —o (plu. u) & d{u))
A: T - i) i) o) V. T =0 pluay) Vi (0 y) -0 0(ir)) = (pla.ir) & (i)
ATl @) o) Ve, T o plu.oy) - rla.)
AT =). i) o). rlu. g) o &) Y, T o plu. o) - d(2) Feduce
AT =0 (i), () = digy . y) o V(). Ha) o M=) Ve T —o pla,) J{2)
AT o i) 1) o Hy) r{u, g) - o). d(x} = 0(z) F (Va1 T o pla.21)) o He) © ”Lf
A1 T - i} J(E) o vl r{u) o d{e}E (V) o 2)) o {({Vay T = pla. 213} — 3{z})) on K
AT o (i), i) -0 d{y), rlu, §) o d(&) F ¥ip L{d(2) 0 (i) o ((Fa;. T e plu.wq)) = d(i))) K
AT 0 d(i). i) o Jl) rln) Wz F glwx) - deduce
A T o d{i), iy d{y) - (rle. y) o)} o g(a. x) '
AT o u(i)F (i) o {y)) < ({r(o. g} = da)) < gla. eI - .VH' p
AT o i) (Vipie (V) o (i)} = ({rlu. ig) = d{i)) o qla. i)} u’t'.duc'e
AT = d{i)F e{u. u. é)

o R
YR

deduee

deduce

Figure 10: The proof-tree for ©; aund the corresponding proof-tree for ©

REFERENCES 25

The OL formalism is defined by looking explicitly at the described properties, thus allowing a formal-
ization of object-oriented prograunning in a logic progratnming context. As a matter of fact, the very
attractive point is that the expressive power of OL is much more than “simply” object-oriented: the way
of representing inheritance, object-identity and assignment allows us to establish dynamic links between
classes, or multiple links between an object and many classes. We can also establish conditional inher-
itance, by treating clauses expressing the isa hierarchy as definite clauses, or consider parameterized
modules, by relaxing the condition that tabels must have (-arity. All these aspects formalize in a very
elegant way the concept of role-dynamics in a logic programming framework. The logical foundation of
the approach is shown by its definitiou via metalogics, and its mapping nto linear logic features.

We have ignored a model-theoretic approach to the problem. This choice is due to many aspects
we have looked at. We agree with [Kow90] in observing that the algebraic models we can give for the
language are not enough to capture a declarative approach to programming. The declarative style of
programming is influenced over all by the possibility of making computationally tractable and innovative
the process of deduction of a fragment of logic we aim to implement. Clearly, locking at a model theoretic
semanties does not lielp us too muel in isolating the computational properties of such fragment.

References

[ACPY2] J. M. Andreoli, P. Ciancarint, aud R. Pareschi. Interaction Abstract Machines. In G. Agha,
P. Wegner, and A. Yonezawa, editors, Rescarch Directions . Concurrent Object Oriented
Prograanmang. 19492, To appear.

[AK91] Serge Abiteboul and Paris C. Kanellakis. Oun the Formalization of Object-Oriented Databases
Models. In Proceedings of the ICLP'91 Workshop on Merging Object-Oriented and Logic
Programmung, 19491, Position Paper.

[AKN86] H. Ait Kaci and R. Nasr. LOGIN: A Logic Programming Language with Built-in Inheritance.
Journal of Logic Programuuang, 3(3):185-215, 19386,

[AKP93] H. Ait Kaci and A. Podelski. Towards a Meaning of LIFE. Journal of Logic Programming,
16(3):1485-234, 1993.

[Ale93] V. Alexiev. Mutable State for Object-Oriented Logic Programming: A Survey. Technical
Report 93-15, Departiient of Clomputer Science, University of Alberta, 1993.

[And91] 1. M. Andreoli. For a Logic of Action. In Proccedings of the ICLP'81 Workshop on Merging
Object-Oriented and Logic Programaning, 1991, Position Paper.

{And92] J. M. Aundreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic
and Computation, 2(4):297-347, 1992,

[AP91a] J. M. Audreoli and R. Pareschi. Counnunication as Fair Distribution of Knowledge. In
proceedings of the International Conference on Object-Oriented Programimming Systems, Lan-
guages and Applications (OOPLSA'01), pages 212-229, 1991

[AP91b] J. M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in Inheritance.
New Generalion Compuiing, {3):359-483, 1991,

[Ber91] H. Berse. Integrating Object-Oriented Programming and Logic Programming. In Proceedings

of the ICLP'91 Workshop on Merging Object-Oriented and Logic Programming, 1991 Position
Paper.

[BG95] P. Bruscoli and A. Guglielmi. A Linear Logic Programming Language with Sequential and
Parallel Conjunction. In Proceedings of the GULP-PRODE'95 Joint Conference on Declara-

tive Programming, L1395, to appear.

REFERENCES 26

[BGMO4)

[BGMO5]

[BI94]

(BK82]

[BK93]
[BLM94]
[BMPTY4]
[Bro93)]

[BRT95]

[BT93)

[Cas91]

[CL94]

[Dav9l]

[Far86]
[Fos91]

[Gir8T7j
[GMR92]

M. Baldano, L. Giordano, and A. Marteili. A Modal Extension of Logic Programming.
In Maria Alpuente, Roberto Barbuti, and Isidro Ramos, editors, Proceedings of the GULP-
PRODEW4 Joint Conference on Declaralive Programamang, volume 2, pages 324-335, Septem-
ber 1994.

Elisa Bertino, Giovanuna Guerriut, and Danilo Montesi. Deductive Object Databases. In
Proocedings of ECOOP’95, 1995,

M. Bugiiesi and H. M. Jamil. A Logic For Encapsulation in Obiect-Oriented Languages.
In Maria Alpuente, Roberto Barbuti, and Isidro Ramos, editots, Proceedings of the GULP-

" PRODE'94 Jonl Conference on Declurative Programming, volume 2, pages 161-173, Septem-

ber 1994.

K. A. Bowen and R. A. Kowalski. Amalgamating Language and Metalanguage in Logic
programming. In K. L. Clark and S. A. Tarnlund, editors, Logic Programming. Academic

Press, 1982. E

A. J. Bonner and M. Kifer. Transaction Logic Programming. Technical Report CSRI-270,
Computer System Research Tustitute, University of Toronto, December 1993,

Michele Bugliesi, Evelina Lamima, and Pacla Mello. Modularity in Legic Programming.
Jouwrnal of Logic Programmany, 19,20:443-502, 1994,

A. Brogi, P. Mancareila, D. Pedreschi, aud F. Turini. Modular Logic Programming. ACM
Transactions on Programucing Languages and Systems, 1994,

A. Brogi. Program Construction in Computational Logic. PhD) thesis, Dipartimento di Infor-
madtica, Universita di Pisa, 1993,

A. Brogi, C. Renso, and F. Turini. Amalgamating Language and Metalanguage for Composing
Logic Programs. [u M. Alpuente, R. Barbuti, and I. Ramos, editors, Proceedings of the GULP-
PRODEY] Juint Conforence on Declarative Programmang, volume 2, 1995,

A. Brogi and F. Turini. Metalogic for State Oriented Programming. In E. Lamma and
P. Mello, editors, Estensions of Logic Programming, volume 660 of Leciure Noles in Artificial
Intelligence. Springer-Verlag, Berlin, 1993.

Y. Caseau. Mixing Objects and Logic: Au Experimental Point of Wiew. In Proceedings of
the ICLP'91 Workshop on Merging Object-Oriented and Logic Programming, 1991. Position
Paper.

P. Ciancarini and G. Levi. What is Logic Programming Good for in Software Engineering.
Technical report, Departnient of Computer Science University of Bologna, 1994.

A. Davison. From Patlog to Polka in Two Easy Tteps. In J. Maluszynsky and M. Wirsing,
editors, Third International Sympostun on Programming Language Implementation and Logic
Progremming, munber 528 in Lecture Notes in Computer Science, pages 255-274, 1991

L. Farinas Del Cerro. Molog: A System that Extends Prolog with Modal Logic. New Gener-
ation Computing, (4):35-50, 1936.

I. Foster. A Declarative State Trausition System. Jowrnel of Logic Programming, pages
45-67, 14991,

J. Y. Girard. Linear Logic. Theoretical Computer Science, 50, 1987.

Laura Giordano, Alberto Martelli, and Gianfranco Rossi. Extending Horn Clanse Logic with
Implications Goals. Theoretical Compuier Science, 95(1):43-74, March 1992.

REFERENCES 28

[MZ36) D. McAllister and R. Zabil. Boolean Classes, In Proceedings of the ACM Conference on
Object-Oriented Progranummy Systeins, Languages and Application, pages 417-423, 1986.

[Sce94] A. Scedrov. Linear Logic and Computation: A Survey. In H. Schwichtenberg, editor, Proof
and Compulation. Springer Verlag, 1994. To appear.

[5586] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986,

[ST87] E. Shapiro and A. Takeuchi. Object-Oriented Programming in Concurrent Prolog. In
E. Shapiro, editor, Concurrent Prolog, volumme 2, pages 261-273. The MIT Press, 1987.

{Uus92] T. Uustalu. Combining Object-Oriented and Logic Paradigms: A Modal Logic Program-
ming Approach. In Procecdings of the Ewropan Conference on Object-Oriented Programming
(ECOOP'92), nunber 615 i Lecture Notes in Computer Science, pages 98-113, 1992.

