Consiglio Nazionale delle Ricerche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA .
IST. EL. INEe
BIBLIOTECA

Posiz. 4"

A FAST DIGITAL CIRCUIT FOR
ITERATIVE ADDITIONS IN HNS

Giuseppe Alia and Enrico Martinelli

Nota interna B4-31
Settembre 1994

A FAST DIGITAL CIRCUIT FOR ITERATIVE ADDITIONS IN HNS

Giuseppe Alia” and Enrico Martinelli*

ABSTRACT
Repeated modular additions and overflow detection are practicable in Hybrid Number
Systems. In this paper, an adding, overflow-detecting procedure is described and evaluated by
statistical methods; a circuit is proposed allowing a mean addition time less than 8.9 gate

delays for numbers having a magnitude order normally distributed in [-233,233.1].

KEYWORDS

Combinational problems, computational complexity, computer arithmetic, weighted and

residue number systems, overflow detection, fast accumulator.

* Dipartimento di Ingegneria dell’Informazione - Facoltd di Ingegneria dell’Universita di
Pisa - Via Diotisalvi, 2 - 56126 Pisa - Italy
+

1 Istituto di Elaborazione dell’Informazione del Consiglio Nazionale delle Ricerche - Via S.
Maria, 46 - 56126 Pisa - Italy

1-INTRODUCTION

Recently, RNS arithmetic received a considerable attention. However, lengthy
intermodular operations are necessary to detect sign or overflow and to compare magnitudes.
Many solutions have been proposed to speed up intermodular operations [1, 2, 3, 4, 6].
Alternatively, several authors tried to add a “magnitude index” to the residue representation
[5, 7]. This approach is reconsidered here recalling the definition of Redundant Hybrid
Number System.

An adding, overflow-detecting procedure, strongly reducing the need for intermodular
operations, is described and evaluated by simulation in terms of mean rate of intermodular
operations. This procedure could be implemented fruitfully by a device cooperating with a
CPU when massive quantities of data must be accumulated, such as statistical computations.
In particular, even if an optimal design was not aimed, a circuit was devised for a specific-size
RHNS, featuring a mean response time from 8.9 down to about 8 gate delays/addition, for
iterative additions in the range [-233, 23313, against 14 gate delays for traditional 32 bit

adders, when integers have magnitude order values normally distributed, with the maximum

value of probability selected in the range from =3% to 1/128 =.8% (uniform distribution).

2 - ADDITION AND OVERFLOW DETECTION IN HNS

Residue addition and multiplication are very fast, but comparison and overflow detection
require the knowledge of the magnitude of results and time consuming intermodular
operations are necessary. In a Hybrid Number System (HNS) an integer X is represented as
{Rx, Wx}, with Ry= IXl,,, Wy = LX/u] and assuming that a) -P < Wy < P, where P is a positive

integer, locates X into the interval [Wy-u, (Wx+1)-1) and is represented in a weighred notation;

b) Ry is represented in a residue system of range 1. Then X = Wy -+ Ry,

In this section the properties of addition and overflow detection in HNS are recalled from

[11, 12] and well tuned procedures are presented for adding and normalizing in redundant

HNS. Consider ¢ integers X,={R,,W,},..,X,={Ry,Wy}. Their sum
1 xp "X, : x, Wx

S = Ry +1- Wy has the representation S = {Rg, Ws}, where Rg = ! Z RX’
i=1,¢t i=1,1 i=1,t |u
and W = | S/p] = WX.+K > RX.)/LLJ = 3 Wy +8; with
i=1,t i=1,t i=1,t
S (r(n—-1))/ul (D

To avoid the computation of g the residue range W is extended by a set of moduli whose
product mp is such that ump contains the sum of the residue parts of ¢ operands; \ and my are
relatively prime. The representation of X in a Redundant Hybrid Number System (RHNS) will
be X = {Ry, Wy}, 0 Ry <ump, Wy = (X - Ry) /U, respectively. Denoting R 'y = Ry
+kw, W'y = Wy -k, the same integer X can be also represented as X = {R 'y, W'k}, 0 R'y
<uwmp, W x = (X=R'y) /WU, with k is a positive integer, its maximum value depending on
(Wmp—1) — Ry. An RHNS representation will coincide with the HNS representation if 0 <

Ry < wand { Ry, W} = {Ry, Wy, } will be referred to as the normalized representation.

Consider the addition in RHNS. Given the normalized representations of ¢ integers in

[-Pu, PL): X, = {RX; WXI} s oy X, = {RX,’ WX‘} , mp must satisfy the condition wmp-1 2

f(u-1)toobtain: Rg= > Ry = > Ry . We= 3 Wy = 3 Wy.

i=1,1 =1t i=1,1 i=1,t

It is easy to see that the following inequalities hold:
0 < Ry < Hu-1), -tP < W < 1(P-1) 2)

On the contrary, from the condition pmp-1 2 #(u-1), for given mp

o= mp+| (mp—1)/(n-1) | 3)

represents an upper bound to the number of normalized integers which can be added without

overflow from the extended residue range. Then, if conditions (2) hold and the weighted range
is assumed as [-zP, #(P-1)], an RHNS representation of the sum is S = { Ry, Wi}. Overflow
from [-PyL, Pl) can be checked by reconstructing the normalized weighted part W, as Wy =
“Ws+0g; an overflow will be detected iff Wy < -P or Wg > P-1, that is W <-P-85 or ‘W > P-

1-85. These conditions can be restated only as sufficient conditions, by means of (1):
We<—P—Lr(u-1)/p] or We>P-1. 4)

It follows that testing for overflow requires the knowledge of the number ¢ of added

normalized representations. Then a control part Cy is added to the RHNS representation. It
will be assumed that: a) any normalized representation has a control part Cy = 1; b) the control
part Cg of the sum is obtained by adding the control parts of the operands; ¢) all operands have
normalized representations or they result as a sum of normalized representations. Conditions
(4) will take the form Ws<—P—| Cg(n—1)/u | or We>P-1.

From (3), Cg cannot exceed the quantity C, . = mp+ L (mp—1)/(n-1) J These

relations are further simplified if the redundancy does not exceed the duplication of the

residue range (mp < W); in that case one obtains
Wg<—P— (Cs+|~Cs/n]) = -P-Cs+1 or Weg>P-1 (5)

andC,,,, = mg. Previous considerations prove the following procedures.
ADDING PROCEDURE (mostly parallel)
1. Add residue, weighted and control parts of operands to obtain R, Wk, Cs;
2. If condition (5) is satisfied an overflow is detected, else

3.If Cg < Gy then S = { R, W, G, else R may exceed the extended residue range

and a preliminary normalization of operands is required before repeating the procedure.
NORMALIZING PROCEDURE (intermodular)
1. Convert residue digits lﬂ?X|m back to the integer Ry in the range [0, wnp-11;
2. Update the value "W by an increment | Ry/u;

3. Restore the correct value Ry in [0, u—1] and evaluate [Ry| = IQ?X - l_ ‘(/?X/“‘_Jp“lmi .

3 - SOME CONSIDERATIONS ON PERFORMANCE

The model selected here to generate sequences of additions assumes that sequences of
normalized representations of integers in the range [-Pu, PU) with a given distribution are
summed up. Each sequence ends when an overflow is detected or a normalization phase is
necessary. Consequently, all the sequences which end with a normalization request have the

same length C,,,+1. The probability py of a normalization request has been computed for

several probability distributions, for mp = 2i, i=1,..,7and for2P = 2j, j=1,...,6.Thereason

for considering 2P is that overflow detection is related to this range when mp < | is assumed.

Consequently, for computational purposes, it is sufficient to process the weighted parts of

numbers only. In this case, Gauss-like distributions for the weighted parts of operands were

(W+05)2

(2P)2) with the following conditions: -P < W<

chosen, thatis p (W) = A- exp(—-B

P-1, ie. the mean 7)7= -0.5, and 2P < 64 to limit the number of simulation experiments.
Constant A was chosen to normalize the distribution, while B was given values in the set {0,
15, 30, 45}, to produce a wide set of shapes, as shown in Figure 1 for 2P = 64. The behaviour
of py is shown in Figures 2a-2d for the same values of B and of the weighted range 2P as in
Figure 1. It is immediate to see that the number of normalizations reduces to a negligible rate

as soon as m, takes non trivial values. Moreover:

» the probability py equals l/mR for 2P =2, whatever the distribution shape. This occurs as
the weighted part of operands can take only values -1 and 0, and neither positive nor negative
overflow can be detected before the mpth addition is performed.

 py decreases as 2P increases. This happens since the greater the value of 2P, the more
likely overflow detection is.

* py decreases for increasing values of mp and the value 1/mp represents a maximum for
pn- In fact, at least mp additions can be performed without normalization requests.

+ As parameter B increases, py tends to its maximum 1/myp, for any value 2P. In fact, as B
increases, the probability of weighted values near zero increases and, correspondingly, the
probability of overflow detection decreases.

In order to perform a quantitative evaluation in an example of specific size, let us consider

an RHNS with the weighted part in [-64, +63], the residue part expressed by means moduli 4

4
= 113, my = 121, m3 = 125 and my = 126, and by the redundant modulus mp = 127. As H m;

i=1
is beyond 215o106, the RHNS can represent integers in [-233, 233—1]. To evaluate sums in this
range efficiently, let us represent each residue digit modulo m; by means of an RNS of only

two moduli m,4 = 16 and mp = 15, so that residue digits 7;

ipi€ {1,2,3,4,R},je {A, B}, can

be processed by five 4-bit binary adders and by five pairs of 4-bit binary adders followed by a

2x1, 4-bit multiplexer with output clear, as shown in Figure 3. Consequently, any sum in the
range [-233, 233-1] requires a total of 8 gate delays (Ag), versus 14 Ag necessary to 32-bit

binary adders. (We assume an addition time of 6+4(4-1) Ag for operands of 4” bits, exploiting
carry look ahead techniques [8]). On the other hand it may be necessary to normalize operands
at a rate depending on the value of parameter B. From the shape of py in Figs. 2a+2d
normalization rates for this case are likely to be as shown in Table I, where the probability

values for the mean magnitude order of integers W = -0.5 are also reported ;

B Pw normalizations/additions
45 0.02957 ~2x107
30 0.02414 ~ 6x107
15 0.01718 ~ .3x10™
0 0.00781 =100
Table I

Referring to Figure 4, let’s evaluate the cost of normalization without taking care of the
possibility of designing special hardware optimally for this operation. First, 5 pairs of 4-bit
residue digits must be converted to five 7-bit residue digits. Furthermore, the 7-bit residue

digits must be converted to obtain Ry, in [0, Wwmp), according to the Chinese Remainder

Theorem Ry =

Z ﬁli'|ri/m"]mgum where 1, = H m. and

5
ie {1,..,4,R} se {1,..,4, R}, s#i

|1/7| is the multiplicative inverse of /%; modulo m;. For the whole conversion from r; j, j

e {A,B}tom ilri/ mi{m' five groups of nine 256x4 ROM'’s, obtaining a word length of 36 bits

sufficient to represent numbers in [0, mp), can be used. ROM’s such as MCM10150AL with

an access time as low as about 10 Ag can be chosen. The summation of these five values can

be carried out in less than 3x(14+2+14) = 90 Ag, including a further subtractions of wmyp,

possibly required after any summation to keep the result modulo pmp. Thus about 100 Ag are

necessary to obtain the value of Ry from r;;. Moreover, the increment of the magnitude

index, which is less than mp, must be evaluated by I_Y/?X/ u_l, that can be rewritten as

(T/?X—IY/?X[“) /U= U (Q?X—|9?Xlu)lmk I . To evaluate |f/?XIu, a mod [operation

i)
lmg| mp
can be carried out as in [9]. Since Ry is 35 bits long and assuming that fast multipliers are

available, consuming [8] about | 2><(log2n—1)/(10g23-1)—1+2+4><|_1/2><log2n-| Ag, about 87 Ag are
required to produce the value IY/?X|“. Furthermore, a 35 bit subtraction (= 14 Ag), a mod my,
operation (= 69 Ag) and a mod mp multiplication [10] which takes about 77 Ag must be

performed to obtain LU?X/ u_‘. Further 10 Ag to increment the magnitude index “W4 would be

accounted for, but such an operation can be performed in parallel with another one, so a total

of about 247 Ag must be spent to evaluate Wy from ZRy. Finally, the new residue rp is
evaluated as |RleR - “f/?X|mR -]LQ?X/LL_“mR . luImRImR ; in fact, residue digits r;, i = 1, ...,

4, remain unchanged, as a multiple of [is subtracted from Ry. This computation consists of a

7x7 binary multiplication (= 17 Ag) and of a 14 bit subtraction (= 10 Ag) from |9?X[m . The
R

obtained value must be converted to residue digits {R le by means of a mod mp converter in
R

about 59 Ag. Thus about 86 Ag are necessary to conclude the normalization. Before going on

to add input data, rp must be reconverted into a pair of residue digits, mod 15 and mod 16; this

can be obtained by two 128x4 ROM’s. Therefore, the normalization phase globally amounts
to about 100+247+86+10 = 443 Ag. Comparing this value with normalization rates of Table I
and with the saving amount (6 Ag/addition), it can be concluded that, in the worst simulated
case B = 45, the mean addition time, including the normalization, is about 8.9 Ag against 14
Ag for traditional 32 bit long adders. Note that in the sketched structure an increment of the
residue range obtained by adding further moduli of the same length slightly affects the
normalization time, increasing the depth of the adder tree and the length of its adders. In

particular, adding three 7-bits moduli in the example does not modify the normalization time

at all, while the range of integers is enhanced by a factor of about 220,

REFERENCES

[1] Alia, G. and Martinelli, E. A VLSI algorithm for direct and reverse conversion from
weighted binary number system to residue number system, IEEE Trans. Circuits and
Systems, Vol. CAS-31, 1984, pp. 1033-1039.

[2] Alia, G., Barsi, F. and Martinelli, E. A fast VLSI conversion between binary and residue
systems, Information Processing Letters, Vol 18, n. 3, 1984, pp. 141-145.

[3] Bayoumi, M. A., Jullien, G. A. and Miller, W. C. A VLSI implementation of residue
adders, IEEE Trans. Circuits and Systems, Vol. CAS-34, 1987, pp. 284-288.

[4] Jullien, G. A. Residue number scaling and other operations using ROM arrays, IEEE

Trans. Comput., Vol. C-27, 1978, pp. 325-336.

[5] Rao, T. R. N. and Trehan, A. K. Binary logic for residue arithmetic using magnitude
index, IEEE Trans. Comput., Vol. C-19, 1970, pp. 752-757.

[6] Taylor, F. J. and Huang, C. H. An autoscaler residue multiplier, IEEE Trans. Comput.,
Vol. C-31, 1982, pp. 321-325.

[7] Ulman, Z. D. Sign detection and implicit-explicit conversion of numbers in residue
arithmetic, IEEE Trans. Comput., Vol. C-32, 1983, pp. 590-594.

[8] N. R. Scott, Computer Number Systems and Arithmetic, Prentice-Hall International
Editions, Englewood Cliffs, NJ, 1985.

[9] Alia, G. and Martinelli, E. A VLSI Structure for X mod m Operations, The Journal of VLSI
Signal Processing, 1, 1990, pp. 257-264.

[10] Alia, G. and Martinelli, E. A VLSI Modulo m Multiplier, IEEE Trans. Comput., Vol.
C-40, 1991, pp.873-878.

[11] Alia, G., Barsi, F. and Martinelli, E., Addition and Overflow Handling in a Class of
Redundant RNS with Magnitude Index, Technical Report IEI-CNR B4-33, Dec. 1987.

[12] Barsi, F., Martinelli, E., A VLSI Architecture for RNS with MI Adders, INTEGRATION,

the VLSI Journal, Vol. 11, 1991, pp. 67-83.

-10 -

0.061
0.057
0.041

p(‘W) 0.03:

0.021

0.00 g T ,
-32 -24 -16 -8

Fig. 1 - Probability distribution of the weighted part“W of numbers

10° 3
E N~— mR=2
L \\
107" V
: 8
10725 16
..3_
10773 32
10743
] 64
107°3 B=0
] 128
10-6] 1 1 N ' 1] 1 1 2P
0 8 16 24 32 40 48 56 64

Fig. 2a - Shapes of the normalization request probability

mR=2
4
- \
101'E 8
10724 32
64
107%
] 128
10-4 ¥ L i] i 1 I2P
0 16 24 32 40 48 56 64

Fig. 2b (continued)

N
10° 1
m =2
R
4
10-1_: 8
| —_—
j 16
] — 32
1072 _\
B 30 128
10-3 T T T ¥ 1 Y T ' T T ! L 2P
0 8 16 24 32 40 48 56 64

Fig. 2c (continued)

10‘1—:

102+

1073

Fig. 2d - (continued)

X3 X2 X1 X0 Y3Y2Y1Yo

} '
® &
® ®
@ @
® ¢
® ®
4
I ' v Y A
binary adder co=1 binary adder o=0|le||l® ||® ®
€1 l C1
A4 Y A A 3
) control
multiplexer

/ clear

Fig. 3 - A scheme for a mod 15 adder

'R,A TRB
LA I',B |
i S o
3 4
9 ROM’s 9 ROM’s 2 ROM’s
10 Ay e o e
256x4 256x4 o5
v i/ 35 3 t Y 25 ,
Y 3 IR = |~(/?X| mR
30 Ag | modular adder modular adder
35 !
30 Ag | modular adder
35 /t
Y \
30 Ag | modular adder
Rx t 735 |
87 A mod 1 (T,
8 converter { .
28 35 Y
V_ 1“ 17 A multiplier
14 Ay | subtractor g p
14
35 Y \
:) " 0A
mod mp subtractor 1044
1 mg converter 69 Ag
! { 7 15 Y
. mod mg 50A
mod 1L : g
’WX multiplier 7 Ag converter
8 ,f t 7 7 R
®
y }
104 adder 104y | ROM ROM
l 128x4 1284
WX rR’ A rR,B

Fig. 4 - Layout of the normalization structure

