

- Generalized adjudicators -

CONTENTS
1 INTRODUCTION........otiittntineere et eese e e
1.1 Informal statement of the problem......ooeeeeeeeeeieeveon.,
2 DEFINITIONS ..ot
2.1 Need of realistic definitionsccooeevveeevevveevoviinin.
2.2 Component specificationccocoveeevvevvevveveereeoe
2.2.1 Input and OULPUL .eceovveeieiieieeeeeee e
2.2.2 Specification function of a componentcceeeuenenn..
2.2.3 Bchavior of a componentococooooiooioioioio
2.2.4 Additional propertics of software components
2.2.5 Termination and non-terminationo..oo....
2.2.6 Spccification of exceptional behavior ...,
2.2.7 SubSets 0f O .oceiiviiieeeeeeeeeceeee e
2.2.8 Subsets Of T .oooeeeeiiiiieeeeeeeee e
2.2.9 Subsets of 10 ..o
2.3 Evaluation of components: robustness
2.3.1 Logical rODUSINESS .ooveveeeieiieeeeeieeeeeeeee oo
2.3.2 Statistical robUSINESS ...coivvvvieveeeeeeeieeeeeeeeeeeoeseeess o
2.3.3 Generalized specification functionsoooooevoivi
2.4 Modular-redundant componentccccooooveiiiiiiiiiil
2.5 Stylized modular-redundant component
2.6 Adjudication functionccoecovveeeneieeeeeeeeeee
2.7 The optimal adjudication functioncco......
3 A SIMPLE ADJUDICATION PROBLEMcooooovomiremeeeeee
3.1 Hypotheses on the systemccccooveveemeeoveeiireenn
3.2 Hypotheses on the replicasc.coooeeeeveveeeeeeeeeeninn
3.2.1 DeterminiSIm coeeviveiiererrerieeiieeeereee oo e
3.2.2 Self-checking r1eplicasccooceevveveeeeeeeereeeeeeoeeseon,
3.2.3 NOD-triviality coooiivieiieiiiece oo
3.3 Information available to the adjudicator
4 EVALUATION OF ADJUDICATION FUNCTIONS ..o,
4.1 A method for a realistic evaluation of adjudication
TUNCLONS Lo
4.2 The probability assignment problemcooovon.l.
4.3 How to choose the best adjudication function
5 CONCLUSIONS ..ottt e e oo
6 REFERENCES

..

w W

OO 0G0 ~J O\ th a

20

21

21

- Generalized adjudicators -

1. INTRODUCTION

1.1. Informal statement of the problem

A technique to make a system capable of tolerating faults in hardware
and/or software components is to use replicated hardware and/or software
components in the system. A replicated component is substituted in lieu of an
ordinary component, and consists of:

1) a set of subcomponents (that we call "replicas"), each one implementing
the same function as the whole component, plus

2) some mechanism that obtains an agreed single result from the set of
results produced by the replicas.

In particular, when design faults (either in hardware or software) must be
tolerated, replicated components are often realized using design-diversity:
the replicas, although built to the same specification, have different
implementations in the hope that the design faults in different replicas will
have error behaviours different enough to permit effective error detection
and recovery or masking.

A redundant component can be represented as a sct of replicas plus the
mechanism that select the result for the redundant component from the
results of the replicas. It is convenient to depict this mechanism as an
additional component called adjudicator [Anderson 86]. In general, the
adjudicator will receive a subset of the outputs due from the replicas, and
from these it must either determine a single result or, if this is not possible,
signal an exception. The result of the adjudicator becomes the result of the
redundant component.

replical \

replica 2

input output

AOoOH»O- DU >

- Generalized adjudicators -

The problem we consider consists in the definition of an adjudication
function (that is, a function implemented in the adjudicator) that, under

proper hypotheses on the system to which we refer, normally produces a
correct result.

The obvious problem for this adjudication function in the selection of the
correct value is that the results of some or all the replicas may be wrong (due
to hardware faults and/or software bugs). Besides, the problem becomes more
difficult when different correct values are allowed for different replicas
with the same input. This generally happens when design-diversity is used.
We will call syndrome the information that the adjudication function can see
(typically, the results of the individual replicas and possible diagnostic
information) and use to derive its output value.

The adjudication problem is not new, but the adjudication functions normally
used are generally quite simple, and try to select a correct value for the most
usual syndromes, using simple algorithms.

The simplest adjudication function is the "exact" simple majority voting: the
outputs of the replicas are compared for equality and, if more than half of
these outputs agree, their value is sclected as the output by the adjudicator. It
has a limited application area (for example, it isn't usable with diverse
software), so alternative algorithms have been investigated to cover the
problem of adjudication, trying to obtain reliable adjudication functions for
as many syndromes as possible. Examples are functions that realize "inexact”
majority voting (that considers as equal two values if they differ no more
than a quantity a-priori established), or generalized m-out-of-n voting,
median voting, etc...

In general, simple adjudication functions can be proven always to give
correct results if some fault combinations are assumed to be impossible. In
describing systems that use such adjudication functions, the adjudication
function is often left unspecified for these "impossible" syndromes. For
example, the 2-out-of-3 voting function, works well so long as two replicas
work correctly (and, indeed, the most probable syndromes in a System are
those where all the three, or two out of three, replicas are correct). But the 2-
out-of-3 voter is unable to give a correct output when three different values
are observed in the system. As this syndrome teally has a low probability,
this function can be adopted in most applications.

In our studies, we want to take into account all fault combinations, because
we are interested in problems of:

- ultra-high-reliability. The system failure probability is required to be so
low that, for example, the use of 2-out-of-3 voting cannot be satisfactory,
because when three different results are observed it doesn't guarantee a
correct result, but this event happens with a probability that is relevant to
obtain the required system reliability, and

- low-redundancy configurations. A low number of replicas are used to
obtain a fault tolerant component, but we still want to get the best possible
reliability from the redundant component: so, each possible configuration
must be investigated to try to obtain a correct result as much as possible.

If arbitrary fault combinations are allowed, there is of course no
adjudication function that can mask them all, and which adjudication
functions are better than others depends on the probabilities associated to
the individual fault combinations.

- Generalized adjudicators -

The aim of this report is to investigate the use of probabilistic knowledge
about component failures in defining the adjudication function.

This report is divided in three parts.

Section 2 gives a precise definition of the terms we use, and defines an
optimal adjudication function, based on the knowledge of the system failure
probabilities.

Section 3 states assumptions about a simple systems we choose for a first
study.

Section 4 deals with the problem of evaluating adjudication functions,
including the definition of tools for the evaluation of different adjudication
functions for realistic systems.

2. DEFINITIONS

2.1. Need of realistic definitions

According to a common definition, the specification of a program is seen as a

function defined on the state of the storage of the computer and producing a

new state of the storage. This definition has some drawbacks for the study of

redundant components, viz.:

- the specification of a program often describes a set of acceptable outputs
for every input value, rather than a single required output value. This
must be considered, since distinct implementations of the same
specification may yield different but correct results;

- the inputs explicitly considered in the specifications of a software
component are usually limited to the state of a small subset of the storage
of the computer: the required output is an invariant with respect to the
contents of most of the storage space. In reality, the output can be
influenced by the contents of the rest of the storage, but this appcars to an
observer as a non-deterministic behavior of the program;

- the programs are considered as strictly sequential. In reality, sequential
application programs usually share a physical machine, through an
operating system, and input/output activities proceed in parallel with the
execution of every program;

- erroneous behavior often appears to be non-deterministic, for all the above
reasons.

We shall try to define our terms in a way closer to their intuitive meaning in
common usage.

2.2. Component specification

A software component is defined in terms of its external behavior, i.e., the
values of the outputs it produces as a consequence of receiving inputs.

For our purpose, the life of a software component is seen as a series of one or
more invocations. During each invocation the component runs and interacts
with the rest of the world via inputs and outputs. We shall not consider the
exact sequence of interactions, but lump together all the information
received by a component during an invocation, and all the information
emitted by it, into two items of information called the value of the input
vector and the value of the output vector for that invocation.

- Generalized adjudicators -

2.2.1. Input and output

The input vector and the output vector of a component are each a set of
mathematical variables, obtainable by observing the system hardware
according to rules specific to each individual computer and software
component. E.g., the values of the output variables of a procedure may be
obtained by observing the state of the stack when control returns from the
procedure to the calling program. Input and output variables need not be the
contents of memory elements but can be arbitrary observable values, e.g. the
response time of a procedure. Of course, we expect the specification of a
component to define its input and output vectors in a way corresponding to
the intuitive meaning of such words. An input (output) value is a value of
the input (output) vector, ie. a set of one value for each input (output)
variable. In accordance with common usage, we shall often use the word
"input(output)" instead of "input(output) value".

For a generic software component, we shall call I and O the universes of the
possible inputs and possible outputs, respectively!.

We wish to describe the behavior of the component by a deterministic
function. Therefore, we describe the factors that may influence the behavior
of the component, and are not functions of the input vector, by an external
influence vector. The set of all the possible values of the external influence
vector define the external influence space, E. The vector obtained by
concatenating the input vector and the external influence vector will be
called the generalized input vector. The concatenation of two vectors i and j
will be denoted by (i conc j). The sets of all possible values for each of these
three vectors define three Cartesian spaces, and the generalized input space
is the Cartesian product of the input space, I, and the external influcnce
space, B: 1G = 1x E. ‘

2.2.2. Specification function of a component

The way a component must work is defined by a specification. This includes
(among other requirements) a function (specification function) that maps
elements of I into elements of the set of the subsets of O (which we shall call
Q):

F: [---> Q.

For each iel, F(i) indicates a set of correct outputs, contained in 02,

1Qur definition of "inputs”

1) allows one to consider as input variables only those variables that it makes
sense to mention in a specification to be delivered to a programmer; by
contrast, [Cristian 87] includes the whole of system memory, i.e. physical
variables that are not visible to an application programmer;

2) is not limited to memory contents at invocation time: it may include all
kinds of information made available to the component from the outside,
such as messages received during its execution, interaction with other,
concurrently executing programs via shared memory, hardware events
(e.g. interrupts). Of course, inputs to software components from other
software components that share the same CPU always take the form of
values written in memory (even timing information 1is obtained by
reading information in memory).

2 It is normal for the specification of a component to contain "don't care"
values for some variables, depending on the values taken by other variables.
E.g, when an error flag is 1 any value is acceptable for all variables except
some that are specified as error codes, and when the error flag is 0 any value

- Generalized adjudicators -

It is considered good practice for F to be defined for every ieIl. We shall
normally assume this to be the case. The usual real case where there is a

subset IY of I where F is not explicitly defined by the specifiers can be
described by saying that over I' any output is permitted, i.e. defining F(i)=0
for any i in I4,

It may be useful to consider the output vectar as composed of several subwvectors,
and split the specification function into several distinct functions, each defining
the desired values for ane subvector. So, if a component simultaneously performs

several tasks in a system, one can study its performance of each task
independently.

2.2.3. Behavior of a component

The specification function defines the ideal behavior of a component; a real
implementation of the component can deviate from its specified behavior,
due to external influences (that can lead to operational faults) and/or to the
implementation of the component (that can contain design faults).

Let us consider a component A, produced according to a specification with
specification function F. We can distinguish two functions describing the
behavior of the component A:

- the nominal behavior function: FIX (I ---->Q and

- the physical behavior function: F};h 116 > 0.

The nominal behavior function represents the behavior of the component in
the absence of operational faults, and gives, for each input value, the set of
outputs possible for the program (it may describe a non-deterministic
behavior)2

The physical behavior function describes the actual output of an
implementation of the component for the generalized input value (i.e. the
values of the input and the external influence vectors). So, the physical
behavior of a component is determined by three factors: the program of the
component itself (source code or some other chosen representation), its

is acceptable for the error codes. So, the sets of outputs acceptable for a given
input value often have peculiar "shapes”, e.g. hyperplanes in a Cartesian
hyperspace.
1 It seems reasonable to request that the specification includes the definition
of the subset of legal inputs, and the outputs include error messages or
exception signals.
2Non-determinism in reality may be due to two reasons:
a) a component may be an inherently non-deterministic program, due to
al) a design error, e.g. because the programmer mistakenly used the value
of a variable before initializing it, or to
a2) some other reason, e.g. dependence on some external event (message,
interrupt) or non-deterministic function (random number generator);
b) an operational fault may cause a deterministic program to produce an
unpredictable result (this does not influence the function FN)y,
We shall call deterministic components those whose nominal behavior is
deterministic, i.e. a component may be called deterministic even when
affected by type b) non-determinism.

- Generalized adjudicators -

inputs, and all other factors, that we call external influences!. According to
our definitions, erronecous behavior can be caused -either by the program
(due to a design fault) or by external influences (due to an operational fault).
Since we assume the specification function to be defined over all I, inputs
can nof cause errors unless design faults are present. By definition,
a component which delivers an FPh(i)e F(i) is faulty, and FPh(i) is an
e€rroneous output.

The function FK is related toFih as follows:

F‘X(i) is the set of all the values ofP‘;h(l) for values of 1 of the form (i conc) with j
such that no operational fault exists:
Viel, FX(&) = {Fih(l) 1=(i conc j), je En}, where Eyg cEis the set of healty values

of the external influences, obtained by excluding all the values which implys the
presence of operational faults.

2.2.4. Additional properties of software components,

Among the requirements that are not part of a specification function, an
example is determinism.

It may be useful to require that a component behave deterministically, i.e.
that ‘

Vie I |FN()| =1

even if the specification function does not imply such a requirement, i.e.
Jie Isuch that |[F(i)| >1.

Requiring determinism implies that any individual component must always
produce the same result for a given input, without, of course, implying any
such similarities between two components built from the same specification.

For a component that is required to behave deterministically, non-
determinism of the nominal behavior implies a design fault.

Another important example is what we call robustness, which will be
discussed in paragraph 2.3.

2.2.5 Termination and non-termination
An interesting issue is termination. A program whose execution does not
terminate does not produce a result in any conventional sense2.But the rest

I The boundaries between the three factors are somewhat arbitrary: we only
request that they be defined precisely, for a given component. For instance,
the influence of a compiler could be included in the "program”, considering
the latter in its machine-code representation, or in the "external influences”
(considering the program to coincide with its source code). The value of an
uninitialized memory area could be considered as an input or as an external
influence. The wvalue of a configuration parameter could be considered as
part of the program or as part of the input. Operator errors that cause
component failures could be considered either as input values that trigger
design faults, or as values of external influence variables implying an
operational fault, that causes the failure of the component. As for the
tolerance of such an error, it would be labelled as the treatment of an input
exception in the former case and as robustness of the component (which is
treated later in this appear) in the alter. :

2The problem of non-termination cannot be solved by defining the
termination time as an output variable, since, if the component execution

