|

Consiglio Nazionale delle Ricesche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

Adjudicators For Diverse-Redundant Software:
Problem Statement

F. Di Giandomenico, L. Strigini

Nota interna B4-43
Agosto 1989

- Generalized adjudicators -

ADJUDICATORS FOR DIVERSE-REDUNDANT
SOFTWARE

F. Di Giandomenico, L. Strigini
IEI - CNR, Pisa, Italy

Abstract

The adjudication problem arises when fault-tolerant components are realized
using replication. It consists in the definition of a mechanism for the choice
of a corrcct value as the output valuc for the redundant component, starting
from the individual results produced by the replicas of which the redundant
component is composed.

The purpose of this report is to investigate the use of probabilistic knowledge
about errors/faults among the components of the system to obtain good
adjudication functions.

First, a terminology for the specification of robust redundant componcnts is
introduced. Then, an optimal adjudication function is defined, which has the
highest probability of producing correct results, given the information
available to it. Last, a mecthod for the evaluation of different adjudication

functions, uscful for the choice of the best adjudication function for a real
application, is outlined.

- Generalized adjudicators -

CONTENTS
1 INTRODUCTION........otiittntineere et eese e e
1.1 Informal statement of the problem......ooeeeeeeeeeieeveon.,
2 DEFINITIONS ..ot
2.1 Need of realistic definitionsccooeevveeevevveevoviinin.
2.2 Component specificationccocoveeevvevvevveveereeoe
2.2.1 Input and OULPUL .eceovveeieiieieeeeeee e
2.2.2 Specification function of a componentcceeeuenenn..
2.2.3 Bchavior of a componentococooooiooioioioio
2.2.4 Additional propertics of software components
2.2.5 Termination and non-terminationo..oo....
2.2.6 Spccification of exceptional behavior ...,
2.2.7 SubSets 0f O .oceiiviiieeeeeeeeeceeee e
2.2.8 Subsets Of T .oooeeeeiiiiieeeeeeeee e
2.2.9 Subsets of 10 ..o
2.3 Evaluation of components: robustness
2.3.1 Logical rODUSINESS .ooveveeeieiieeeeeieeeeeeeee oo
2.3.2 Statistical robUSINESS ...coivvvvieveeeeeeeieeeeeeeeeeeoeseeess o
2.3.3 Generalized specification functionsoooooevoivi
2.4 Modular-redundant componentccccooooveiiiiiiiiiil
2.5 Stylized modular-redundant component
2.6 Adjudication functionccoecovveeeneieeeeeeeeeee
2.7 The optimal adjudication functioncco......
3 A SIMPLE ADJUDICATION PROBLEMcooooovomiremeeeeee
3.1 Hypotheses on the systemccccooveveemeeoveeiireenn
3.2 Hypotheses on the replicasc.coooeeeeveveeeeeeeeeeninn
3.2.1 DeterminiSIm coeeviveiiererrerieeiieeeereee oo e
3.2.2 Self-checking r1eplicasccooceevveveeeeeeeereeeeeeoeeseon,
3.2.3 NOD-triviality coooiivieiieiiiece oo
3.3 Information available to the adjudicator
4 EVALUATION OF ADJUDICATION FUNCTIONS ..o,
4.1 A method for a realistic evaluation of adjudication
TUNCLONS Lo
4.2 The probability assignment problemcooovon.l.
4.3 How to choose the best adjudication function
5 CONCLUSIONS ..ottt e e oo
6 REFERENCES

..

w W

OO 0G0 ~J O\ th a

20

21

21

- Generalized adjudicators -

1. INTRODUCTION

1.1. Informal statement of the problem

A technique to make a system capable of tolerating faults in hardware
and/or software components is to use replicated hardware and/or software
components in the system. A replicated component is substituted in lieu of an
ordinary component, and consists of:

1) a set of subcomponents (that we call "replicas"), each one implementing
the same function as the whole component, plus

2) some mechanism that obtains an agreed single result from the set of
results produced by the replicas.

In particular, when design faults (either in hardware or software) must be
tolerated, replicated components are often realized using design-diversity:
the replicas, although built to the same specification, have different
implementations in the hope that the design faults in different replicas will
have error behaviours different enough to permit effective error detection
and recovery or masking.

A redundant component can be represented as a sct of replicas plus the
mechanism that select the result for the redundant component from the
results of the replicas. It is convenient to depict this mechanism as an
additional component called adjudicator [Anderson 86]. In general, the
adjudicator will receive a subset of the outputs due from the replicas, and
from these it must either determine a single result or, if this is not possible,
signal an exception. The result of the adjudicator becomes the result of the
redundant component.

replical \

replica 2

input output

AOoOH»O- DU >

- Generalized adjudicators -

The problem we consider consists in the definition of an adjudication
function (that is, a function implemented in the adjudicator) that, under

proper hypotheses on the system to which we refer, normally produces a
correct result.

The obvious problem for this adjudication function in the selection of the
correct value is that the results of some or all the replicas may be wrong (due
to hardware faults and/or software bugs). Besides, the problem becomes more
difficult when different correct values are allowed for different replicas
with the same input. This generally happens when design-diversity is used.
We will call syndrome the information that the adjudication function can see
(typically, the results of the individual replicas and possible diagnostic
information) and use to derive its output value.

The adjudication problem is not new, but the adjudication functions normally
used are generally quite simple, and try to select a correct value for the most
usual syndromes, using simple algorithms.

The simplest adjudication function is the "exact" simple majority voting: the
outputs of the replicas are compared for equality and, if more than half of
these outputs agree, their value is sclected as the output by the adjudicator. It
has a limited application area (for example, it isn't usable with diverse
software), so alternative algorithms have been investigated to cover the
problem of adjudication, trying to obtain reliable adjudication functions for
as many syndromes as possible. Examples are functions that realize "inexact”
majority voting (that considers as equal two values if they differ no more
than a quantity a-priori established), or generalized m-out-of-n voting,
median voting, etc...

In general, simple adjudication functions can be proven always to give
correct results if some fault combinations are assumed to be impossible. In
describing systems that use such adjudication functions, the adjudication
function is often left unspecified for these "impossible" syndromes. For
example, the 2-out-of-3 voting function, works well so long as two replicas
work correctly (and, indeed, the most probable syndromes in a System are
those where all the three, or two out of three, replicas are correct). But the 2-
out-of-3 voter is unable to give a correct output when three different values
are observed in the system. As this syndrome teally has a low probability,
this function can be adopted in most applications.

In our studies, we want to take into account all fault combinations, because
we are interested in problems of:

- ultra-high-reliability. The system failure probability is required to be so
low that, for example, the use of 2-out-of-3 voting cannot be satisfactory,
because when three different results are observed it doesn't guarantee a
correct result, but this event happens with a probability that is relevant to
obtain the required system reliability, and

- low-redundancy configurations. A low number of replicas are used to
obtain a fault tolerant component, but we still want to get the best possible
reliability from the redundant component: so, each possible configuration
must be investigated to try to obtain a correct result as much as possible.

If arbitrary fault combinations are allowed, there is of course no
adjudication function that can mask them all, and which adjudication
functions are better than others depends on the probabilities associated to
the individual fault combinations.

- Generalized adjudicators -

The aim of this report is to investigate the use of probabilistic knowledge
about component failures in defining the adjudication function.

This report is divided in three parts.

Section 2 gives a precise definition of the terms we use, and defines an
optimal adjudication function, based on the knowledge of the system failure
probabilities.

Section 3 states assumptions about a simple systems we choose for a first
study.

Section 4 deals with the problem of evaluating adjudication functions,
including the definition of tools for the evaluation of different adjudication
functions for realistic systems.

2. DEFINITIONS

2.1. Need of realistic definitions

According to a common definition, the specification of a program is seen as a

function defined on the state of the storage of the computer and producing a

new state of the storage. This definition has some drawbacks for the study of

redundant components, viz.:

- the specification of a program often describes a set of acceptable outputs
for every input value, rather than a single required output value. This
must be considered, since distinct implementations of the same
specification may yield different but correct results;

- the inputs explicitly considered in the specifications of a software
component are usually limited to the state of a small subset of the storage
of the computer: the required output is an invariant with respect to the
contents of most of the storage space. In reality, the output can be
influenced by the contents of the rest of the storage, but this appcars to an
observer as a non-deterministic behavior of the program;

- the programs are considered as strictly sequential. In reality, sequential
application programs usually share a physical machine, through an
operating system, and input/output activities proceed in parallel with the
execution of every program;

- erroneous behavior often appears to be non-deterministic, for all the above
reasons.

We shall try to define our terms in a way closer to their intuitive meaning in
common usage.

2.2. Component specification

A software component is defined in terms of its external behavior, i.e., the
values of the outputs it produces as a consequence of receiving inputs.

For our purpose, the life of a software component is seen as a series of one or
more invocations. During each invocation the component runs and interacts
with the rest of the world via inputs and outputs. We shall not consider the
exact sequence of interactions, but lump together all the information
received by a component during an invocation, and all the information
emitted by it, into two items of information called the value of the input
vector and the value of the output vector for that invocation.

- Generalized adjudicators -

2.2.1. Input and output

The input vector and the output vector of a component are each a set of
mathematical variables, obtainable by observing the system hardware
according to rules specific to each individual computer and software
component. E.g., the values of the output variables of a procedure may be
obtained by observing the state of the stack when control returns from the
procedure to the calling program. Input and output variables need not be the
contents of memory elements but can be arbitrary observable values, e.g. the
response time of a procedure. Of course, we expect the specification of a
component to define its input and output vectors in a way corresponding to
the intuitive meaning of such words. An input (output) value is a value of
the input (output) vector, ie. a set of one value for each input (output)
variable. In accordance with common usage, we shall often use the word
"input(output)" instead of "input(output) value".

For a generic software component, we shall call I and O the universes of the
possible inputs and possible outputs, respectively!.

We wish to describe the behavior of the component by a deterministic
function. Therefore, we describe the factors that may influence the behavior
of the component, and are not functions of the input vector, by an external
influence vector. The set of all the possible values of the external influence
vector define the external influence space, E. The vector obtained by
concatenating the input vector and the external influence vector will be
called the generalized input vector. The concatenation of two vectors i and j
will be denoted by (i conc j). The sets of all possible values for each of these
three vectors define three Cartesian spaces, and the generalized input space
is the Cartesian product of the input space, I, and the external influcnce
space, B: 1G = 1x E. ‘

2.2.2. Specification function of a component

The way a component must work is defined by a specification. This includes
(among other requirements) a function (specification function) that maps
elements of I into elements of the set of the subsets of O (which we shall call
Q):

F: [---> Q.

For each iel, F(i) indicates a set of correct outputs, contained in 02,

1Qur definition of "inputs”

1) allows one to consider as input variables only those variables that it makes
sense to mention in a specification to be delivered to a programmer; by
contrast, [Cristian 87] includes the whole of system memory, i.e. physical
variables that are not visible to an application programmer;

2) is not limited to memory contents at invocation time: it may include all
kinds of information made available to the component from the outside,
such as messages received during its execution, interaction with other,
concurrently executing programs via shared memory, hardware events
(e.g. interrupts). Of course, inputs to software components from other
software components that share the same CPU always take the form of
values written in memory (even timing information 1is obtained by
reading information in memory).

2 It is normal for the specification of a component to contain "don't care"
values for some variables, depending on the values taken by other variables.
E.g, when an error flag is 1 any value is acceptable for all variables except
some that are specified as error codes, and when the error flag is 0 any value

- Generalized adjudicators -

It is considered good practice for F to be defined for every ieIl. We shall
normally assume this to be the case. The usual real case where there is a

subset IY of I where F is not explicitly defined by the specifiers can be
described by saying that over I' any output is permitted, i.e. defining F(i)=0
for any i in I4,

It may be useful to consider the output vectar as composed of several subwvectors,
and split the specification function into several distinct functions, each defining
the desired values for ane subvector. So, if a component simultaneously performs

several tasks in a system, one can study its performance of each task
independently.

2.2.3. Behavior of a component

The specification function defines the ideal behavior of a component; a real
implementation of the component can deviate from its specified behavior,
due to external influences (that can lead to operational faults) and/or to the
implementation of the component (that can contain design faults).

Let us consider a component A, produced according to a specification with
specification function F. We can distinguish two functions describing the
behavior of the component A:

- the nominal behavior function: FIX (I ---->Q and

- the physical behavior function: F};h 116 > 0.

The nominal behavior function represents the behavior of the component in
the absence of operational faults, and gives, for each input value, the set of
outputs possible for the program (it may describe a non-deterministic
behavior)2

The physical behavior function describes the actual output of an
implementation of the component for the generalized input value (i.e. the
values of the input and the external influence vectors). So, the physical
behavior of a component is determined by three factors: the program of the
component itself (source code or some other chosen representation), its

is acceptable for the error codes. So, the sets of outputs acceptable for a given
input value often have peculiar "shapes”, e.g. hyperplanes in a Cartesian
hyperspace.
1 It seems reasonable to request that the specification includes the definition
of the subset of legal inputs, and the outputs include error messages or
exception signals.
2Non-determinism in reality may be due to two reasons:
a) a component may be an inherently non-deterministic program, due to
al) a design error, e.g. because the programmer mistakenly used the value
of a variable before initializing it, or to
a2) some other reason, e.g. dependence on some external event (message,
interrupt) or non-deterministic function (random number generator);
b) an operational fault may cause a deterministic program to produce an
unpredictable result (this does not influence the function FN)y,
We shall call deterministic components those whose nominal behavior is
deterministic, i.e. a component may be called deterministic even when
affected by type b) non-determinism.

- Generalized adjudicators -

inputs, and all other factors, that we call external influences!. According to
our definitions, erronecous behavior can be caused -either by the program
(due to a design fault) or by external influences (due to an operational fault).
Since we assume the specification function to be defined over all I, inputs
can nof cause errors unless design faults are present. By definition,
a component which delivers an FPh(i)e F(i) is faulty, and FPh(i) is an
e€rroneous output.

The function FK is related toFih as follows:

F‘X(i) is the set of all the values ofP‘;h(l) for values of 1 of the form (i conc) with j
such that no operational fault exists:
Viel, FX(&) = {Fih(l) 1=(i conc j), je En}, where Eyg cEis the set of healty values

of the external influences, obtained by excluding all the values which implys the
presence of operational faults.

2.2.4. Additional properties of software components,

Among the requirements that are not part of a specification function, an
example is determinism.

It may be useful to require that a component behave deterministically, i.e.
that ‘

Vie I |FN()| =1

even if the specification function does not imply such a requirement, i.e.
Jie Isuch that |[F(i)| >1.

Requiring determinism implies that any individual component must always
produce the same result for a given input, without, of course, implying any
such similarities between two components built from the same specification.

For a component that is required to behave deterministically, non-
determinism of the nominal behavior implies a design fault.

Another important example is what we call robustness, which will be
discussed in paragraph 2.3.

2.2.5 Termination and non-termination
An interesting issue is termination. A program whose execution does not
terminate does not produce a result in any conventional sense2.But the rest

I The boundaries between the three factors are somewhat arbitrary: we only
request that they be defined precisely, for a given component. For instance,
the influence of a compiler could be included in the "program”, considering
the latter in its machine-code representation, or in the "external influences”
(considering the program to coincide with its source code). The value of an
uninitialized memory area could be considered as an input or as an external
influence. The wvalue of a configuration parameter could be considered as
part of the program or as part of the input. Operator errors that cause
component failures could be considered either as input values that trigger
design faults, or as values of external influence variables implying an
operational fault, that causes the failure of the component. As for the
tolerance of such an error, it would be labelled as the treatment of an input
exception in the former case and as robustness of the component (which is
treated later in this appear) in the alter. :

2The problem of non-termination cannot be solved by defining the
termination time as an output variable, since, if the component execution

- Generalized adjudicators -

of the system must be able to cope with the possibility of a non-terminating
program,

So, the specification of the component must include an output variable that
may be used by other components as a time-out signal: e.g., there might be a
boolean output variable TIMEOUT defined as "its value is 1 if the queue of
incoming messages from the component to some other component is empty
when the value of a real-time clock reaches a given threshold”. If such an
output is defined and used as input to other components, the non-termination
of a component becomes observable as an output of the component.
Otherwise, we could assume the existence of an output value called
NONTERMINATION, which is a possible output of the experiment "invocation
of the component", but is never observable by other components in the
system.

2.2.6 Specification of exceptional behavior

One normally tries to specify not only the ideal result that a component
should give if all goes well, but also the behavior required if the component
cannot deliver this ideal result.

We can distinguish here (along with [Anderson 85]) between "interface
exception” and "local exception”.

The former are said to occur when the component is invoked with illegal
inputs. These cxceptions are easily included in the specification function:
the specification function maps illegal inputs into specific exceptional
outputs.

All other exceptions are called "local exceptions”: they are caused by, e. g,
internal failures, or undesired conditions (overflows, refusal of service
component).

Two typical ways for dealing internal exceptions are:

- for ecach input value, not only the normal desired result is specified, but
also alternative, exceptional results. There is an implied preference for
successful results, and the circumstances in which the exceptional results
should be produced are not detailed;

- the input variables considered include a number of observable indicators
of exceptional situations (e.g. an overflow flag), and the specification
function indicates in detail which circumstances should produce which kind
of exceptional results. A "catchall" clause is often included, viz "if it is clear
that the ideal services can't be delivercd, and none of the detailed exceptional
condition in a list is verified, an "unidentified exception" output is required”.

2.2.7. Subsets of O
The universe O of possible outputs can be divided into convenient subsets,
defined together with the specification of the component. First, based on the

specification function F, the subsets Ol of legal outputs (i.e, thosec output
valucs that are allowed by the specification for some input value) and O! of

does mnot terminate, the value of this variable can never be observed, In
gencral, our definition of output variables as results of physical observations
always implies the possibility that the conditions specified for the
observation procedure to start never get satisfied: e.g., if we call "outputs" of
a procedure the values observed on the stack when the procedure returns, it
may happen that the procedure never produces outputs.

- Generalized adjudicators -

illegal outputs (i.e, those output values that are not allowed by the
specification for any input value) can be defined as

ol= k{ F(@i) and 0i=0-0l,
i€

Only faulty components can produce illegal outputs; of course, a faulty
component may also ‘produce legal outputs,

Typically, Ol is further divided into at least two subsets, to specify the relative
desirability of different outputs, or equivalently, the degree to which an
output satisfies the intents of the specifier. This minimum subsets of O! could
be called OS and O€, the successful results and exceptional results!. Their
intuitive meaning is: if the component actually accomplished what it was
requested to do, it should produce an output value belonging to OS; if it could
not do it (due to some exceptional situation taken into account at the
specification definition), it should produce an output value belonging to O°¢
(and the rest of the system must take into account this failure2). The actual

worth of results in the operation of a system depends on how the
component is employed in the system.

Figure 2

2.2.8 Subsets of 1.

For the evaluation of how good a component is, it is interesting to define
subsets of the input universe I.

Conventionally, ([Cristian 871), if the software component is seen as a
deterministic function of its input values, an input value belongs to one, and
one only, out of four partitions, as follows.

I. the subset for which the specification function is not defined, IV:

’

2. the subset on which the software component produces a wrong result, If;

y

1 Of course, a (usually bad) specification may have an empty OF€.

2In a well-designed system, it is usually possible to designate, in the output, a
bit of information that we shall call an error flag, which specifies whether
the operation of the component was normal or "exceptional” (and takes the
value 1 in this latter case). We shall sometimes consider this bit of
information separately from the other information designated as output of
the component.

10

- Generalized adjudicators -

3. the subset on which the software component produces a correct, successful
output, IS5;

4. the subset on which the software component produces a correct,
exceptional output, I€,

By assessing the size of these subsets, we can assess the quality of the
component.

Two problems arise:

1) with our non-deterministic model of a software component, the definitions
above no longer define a partition on I;

2) to determine the actual worth of a component in the system that includes
it, the output must be classified in a way that depends on the system and
may lead to different relevant partitionings of the input space (with
fewer, more, or different subsets).

Problem 1) is easily solved if for our system the relevant classes of outputs
are indeed: "correct, successful”, "correct, exceptional”, and "wrong". A
convenient definition of the partition would be:

I =185+ 1€+ If 419, where

- 18, the successful domain, is the set of all i such that FN (i) consists of
correct, successful outputs:

IS=(il ie1, EN(i) ¢ (F(i) n 0%)};

I¢, the exceptional domain, is the set of all i such that FN (i) consists of
correct outputs, including at least one exceptional output:
1e=(ilie1, FN@G) ¢ F@), FN(G) A 00) 22);

if, the failure domain, is the set of all i such that FN(i) either includes at
least one erroneous output, or violates some other requirement of
the specification (e.g., determinism):
={i 1ie 11 (FN(i) ¢ F(i)) or (some other requirement is violated)))
IY, the undefined domain, is the set of all i for which F(i) is undcfined:
IS=(i liel, F(i) = O}.

)

2.2.9 Subsets of IG,

To take into account all kinds of faults, we can also define subscts of 10 with
respect to the physical behavior of the software component. This is
deterministic (as it is the actual behavior, taking into account all ecxternal
influences), and he same four-way partition can be applied as defined over
the input sct in [Cristian 87].

11

- Generalized adjudicators -

ordering on all the implementations of a specification. The Figure 4 shows
this with reference to an example of 3-subset partition of I.

The partition marked with the dotted line corresponds to
an implementation less robust than the one marked with
the solid line.

Figure 4

2.3.2. Statistical robustness

Statistical robustness gives a total ordering among components built to the
same specification.

To state statistical robustness properties of a component, one must first
specify an experiment, i.e. a given distribution of generalized input values.
If 1IG is considered partioned in only two subsets (e.g.: inputs for which
correct results are produced and those for which wrong results are
produced), then statistical robustness has an intuitive meaning: A is more
robust than B iff the probability mass associated with the "better" input
subset is greater for A than for B.

If more subsets are of interest, as in our example above, then several
orderings become possible.

In our example, we could define two orderings, that is A can be called
statistically more robust than B if:

1) the probability that an input i belongs to the set of input values ICf, for
which an erroncous output is produced, is greater for B than for A, that is:
P(ie I(;’f)< P(ie I%f); this could be called statistical safety; or

2) the probability that an input i belongs to the set of input values 1GS, for

which a correct, successful output is produced, is greater for A than for B,
that is:

P(ie 1(};) > P(ie IGBS).

Statistical robustness is normally measured experimentally, with the
distribution of generalized input values dcfined as part of the experimental
set-up. In theory, if one knew the FPh of 2 component, onc could define the
distribution over 1C, and derive the probabilities above analytically.

The experimental hypotheses must include (implicitly or explicitly) the
probabilities of the different kinds of operational faults. Tt is normal to restrict
these by simple assumptions, even with extreme hypatheses as the.absence of all
operational faults.

13

- Generalized adjudicators -

With our definitions, if A is logically more robust than B it is automatically
more robust statistically (provided the input set considered in the
experiment is a subset of that used in evaluating logical robustness). This
cstablishes the importance of the concept of logical robustness: if A can be
proven to be logically more robust than B, it is proven to be more robust
statistically as well, for all experiments over the same input set.!

To obtain global "statistical robustness" ordering among implementations of
a component, one must assign "worths" to output subsects, rather than just an
ordering. Then, the worth of a component is the expected value of the worth
of its output for the experiment of interest.

2.3.3. Generalized specification functions

Let us give an example of the sct of subclasses of outputs, that may be of
interest for an ecvaluation. Assume that, for a given input, both a successful
and an exceptional result are allowed. A possible ordering, by worth, of the
subsets of O is:

1- a correct, successful result;

2- a correct, exceptional result;

3- a wrong, cxceptional result;

4- a wrong, successful result.

One could further refine this subdivision by observing that some exceptional
outputs arc better than others, and some successful outputs better than
others as well, and some wrong outputs are worse than others.

An extreme point of view is that, knowing the application of a component, its
specification function should be defined as mapping cach input value into a
fuzzy sct of "desired outputs™: an output can be desirable in degrees varying
from 0 (totally undesirable) to 1 (the best result for that input). Equivalently,
the specification function could map each input point into an objective
function over the space O, indicating the value for the cnterprise of each
possible output for that input. Statistical robustness would be given by the
expected value of these functions for the cxperiment given.

Such descriptions of what is desired from a software camponent, though appealing,
for systems with complicated interactions with their environment, scem to have no
practical value for "small" software modules (such as procedures and functims),
because: 1) such descriptions are not usually available in practice; 2) sensible
software devclopment practice often aims at determinism, and the behavior
expected for a given input is usually limited to some small sct of values (under no
or limited faults) or tatal unpredictability (under more general fault hypatheses):
knowing the relative undesirabilities for the user of all possible
errors is of little use to the developer; 3) for small components, the
"worth” of the output would change with the use of the compenent: cg, for a
procedure, the specification would depend on the point from where the procedure is
called; this is no use to a developer that must produce standard re-usable
components,

2.4. Modular-redundant component
Given a specification S for a software component, let us scparate the output
vector into a functional output part and all the other output variables

1 Of course, statistical robustness relationships among components of two

systems have no direct bearing on the overall robustness of the two
sSystems,

14

- Generalized adjudicators -

(typically, diagnostic outputs). A component C built to specification S is called

a modular redundant component (MRC) if it contains as subcomponents more

than one SCs (replicas), such that:

- all replicas are built to a same specification S';

- §', limited to the functional outputs, has the same specification function as
S.

In particular, the replicas have the same input and output vectors as the

MRC, limited to the functional parts of these vectors. The specification of the

MRC may differ from that of the replicas in the diagnostic outputs, the

performance requirements, and such; besides, the MRC is usually required to

be more robust (in some sense) than each of the individual replicas.

If two or more replicas are copies of a same software component they are said
to belong to the same variant.

2.5. Stylized modular-redundant component

We define a stylized MRC as depicted in Figure 1:

-there is one adjudicator component, receiving the outputs of all the
replicas;

- the inputs to the MRC are used as inputs by all the replicas; i.e., the

underlying system guarantees that all the replicas normally reccive
identical inputs. ‘

The outputs of all the replicas are fed as inputs to the adjudicator. The output
of the adjudicator becomes the output of the MRC.

2.6. Adjudication function

The adjudication function is the function implemented in the adjudication
mecchanisms (or, the specification function of the adjudicator module when
considering a stylized MRC as in Figure 1).

This function is defined on the input universe constituted by the output
values of the replicas.

The output of the adjudication function is a single value that becomes the
output of the MRC. It is either an agreed successful value or an exceptional
value when no agreed value is found.

The purpose of the adjudication function is to sclect a correct output for the
MRC, i.e., a value that satisfies the specification function of the MRC.

Let F: I----> Q, be the specification function for the MRC.

To avoid confusion, we will call syndrome the argument of the adjudication
function. Let SYN be the input universe for the adjudication function. An
element of SYN is a tuple composed of the results of all replicas for a given
input to the MRC.

For each input i € I to the MRC, a tuple exists in SYN composed of the results
of each replica for the input i. Let Tr(i) be such tuple of n elements (n is the
number of replicas in the MRC) relative to the input i, where the k-element
Tr(i)lk] is the output produced by the k-th replica of the MRC on the input i,
Then, a specification for the adjudication function could be:

the adjudication function for a given syndrome s must produce an output
that, according to the specification function of the MRC, is produced by the
MRC for that input i for which the output of the replicas constitute the
syndrome s to the adjudication function, that is a function

15

- Generalized adjudicators -

Fadj: SYN ---> O such that,
Vse SYN, if (Fadj(s)zo) then (3ie Il (oeF(G) and Tg() = 8))

We will call an adjudication function that behaves according to this
specification the idealized adjudication function.

The degree to which a specified adjudication function meets its idealized behavior
depends, amang other things, on the additional information available toit, beside
the outputs of the replicas.

In general, given the specification function F for the MRC and an input i,
the output produced by the implemented adjudication function can be:

- a value o such that oe F(i), that is a correct value (successful or
exceptional);
- a value o such that og F(i), that is a wrong value, successful or exceptional.

Clearly, a correct value is "better" then a wrong value, and a wrong,
exceptional value is "better" than a wrong successful value.

2.7. The optimal adjudication function.

As said in the Introduction, the problem of defining an adjudication function
has been addressed in the literature, and a set of solutions have been
investigated. They consist of generally simple adjudication functions that
work well under limiting hypotheses about failures in the system.

In reality, some applications (such as critical applications) may require that
every fault combination be taken into account, because their effects are
relevant to obtain the required reliability.

There is no adjudication function that can mask all conceivable
fault combinations. This is casily proven by considering that different
possible fault configurations can lead to the same observed syndrome. Which
output value is correct may depend on which of these possible fault
configurations is the actual one. Then, the real fault configuration can only
be guessed with a non-null probability of being wrong, and the accuracy of
the guess depends on the failure probabilities for the system components,

With this knowledge, one can produce an optimal adjudication function, ic.,
one that has the highest theoretically possible probability of producing a
correct result for any input to a particular MRC.

An adjudication function that for any syndrome chooses that
result that has the highest probability of being correct,
conditional on the occurrence of that syndrome, is such an
optimal adjudication function.

In fact, the probability that an adjudication function Fadj-i produces a
correct result is given by

(D) P(F‘adj-i produces a correct output) = %YN P(Fagdj-i produces a correct
se

outputl s§)*P(s),
where s is the event: syndrome s is produced.

That adjudication function Fagj-* that, for each syndrome s, chooses that
output o* such that:

16

- Generalized adjudicators -

P(o* is correct | s)= MA&({P(o is correct | s)}
oe

maximizes expression (1), and hence is the function that has the highest
probability to select the correct value, that is the optimal adjudication
function.

Knowing the conditional probabilities needed is of course a hard problem.

3. A SIMPLE ADJUDICATION PROBLEM

We describe here a simple practical adjudication problem taken from the
Delta-4 distributed system [Powell 88].

3.1. Hypotheses on the system.
1. The MRCs in the system are stylized MRCs.1

3.2. Hypotheses on the replicas

3.2.1. Determinism
Unlimited non-determinism complicates the treatment of the adjudication
problem. Therefore, we impose the following constraints.

All the parts and transitions of the machine status that may affect the
behavior of the replicas in the absence of (design or physical) faults are
considered as inputs, and, as stated above, the system is so built as to provide
identical inputs to all the replicas. (Hence, once the inputs are defined, any
program that is non-deterministic contains, by definition, a design fault).
This requirement is satisfied, for instance:

- with respect to variables used before initialization, if such use is considered
as a design fault, or made impossible by the compiler, or if their values arc
preset to a default value when the program is loaded, or considered as part
of the input;

- with respect to the ordering of messages sent to a replicated software
component, if the system guarantees that they are declivered in the same
order to all replicas, or if all variants are written in such a way that their
outputs do not depend on the order of reception of the messages.

As a result of these assumptions, we have that, in the absence of physical
faults, all the replicas of a same variant compute the same output value (i.e.,
the value of the nominal behavior function of the variant), except for inputs
belonging to the failure input domain of the variant. The actual outputs of
the replicas depend on their nominal behaviors and the physical faulis
present, and possibly, if the replicas contain design faults, on other factors
not considered as inputs.

'In the Delta-4 architecture, the adjudicator software component, and the
input demultiplexing software, i.e. the hard-core of such an MRC
organization, run in a particular hardware component (fail-silent NAC), to
make the scheme viable. In all MRC schemes with an identifiable
adjudication module, the adjudicator is assumed to run on a separate,
protected hardware component (or to be replicated on several hardware
components), so that it can be considered fault-free.

17

- Generalized adjudicators -

Assuming total determinism by all the replicas in the MRC is a strong
constraint to implement in practice in current systems. On the other hand, no
hypothesis is made on how faulty replicas behave: for instance, a software fault
may produce different results by two replicas of the same variant,

3.2.2. Self-checking replicas
Each replica in the MRC performs an acceptance test on its own results; the
outputs of each replica include a boolean variable errorflag (equal to 1 if the

other outputs are judged to be correct by the acceptance test, and 0
otherwise).

3.2.3. Non-triviality

We impose a non-triviality constraint on the specification:
3 i,i'e I such that F() n F@') =@,

and on the implementation:

3i,i' e I such that FI:(i) A FII\(I(i') =@ .

In other words, programs that [are required to] give the same result for all
inputs are excluded.

3.3. Information available to the adjudicator.

For an invocation of the MRC, the adjudicator knows:

- the array of the values of the output vectors of all the replicas;

- for each replica, the information of which node it runs on and which
variant it belongs to.

Besides, the only firm hypothesis on the results of two replicas is:

- the results of two replicas belonging to the same software variant, if
correct, are identical.

As a further constraint, the Delta-4 scenario requires that the adjudicator:

a) produce as a result one of the outputs of the replicas;

b) use only the set of sclf-check results by each replica and the set of the
results of pairwise comparisons among the output values of all the replicas.
Both are sets of boolean values, where "0" means "disagreecment" and "1"

means “"agreement”. The resulting N-element vector and NxN matrix
constitute the syndrome of our system.

4. EVALUATION OF ADJUDICATION FUNCTIONS.

4.1 A method for a realistic evaluation of adjudication
functions.

To choose among different candidate adjudication functions for a system, it is
necessary to have a realistic evaluation criterion. A first cvaluation for a
given system configuration, can be derived observing their behaviour on a
number of experiments. Given a syndrome, each possible adjudication
function will produce a value that can be correct or erroneous. In gencral,
there is no guarantec that we shall find an adjudicator that is consistently
the best for every syndrome. In fact, without any further knowledge, it is
impossible to choose between two adjudicators if one bchaves better for a
syndrome and the other for another syndrome.

18

- Generalized adjudicators -

Let an error state be defined as a set of variables, describing the system
during an invocation of the MRC, that allow the deduction of:

- the correct result for the MRC,

- the syndrome observed by the adjudication mechanism in the MRC.

For each adjudication function Fadj-k, the probability that it produces a
correct result is:

(2) PEF.q4:. rO(iuce a correct result) = b P(x)*Ug(x),
adj-k P xe STATES k(

where:

- STATES is the set of possible error states;

- P(x) is the probability of occurrence of the error state x;

- Uk(x) is a binary function whose value is "1" if the value produced by the
function Fadj-x is a correct value for the error state X, "0" otherwise.

Error states may exist with different correct results but the same syndrome.
The correctness of the result given by the adjudication function for a
syndrome depends on which is the actual error state that produced that
syndrome,

The same probability expressed by (2) can be written as:

(3) P(Fadj-k produces a correct result) = %YNP(FadJ’-k produces a correct
se

result N s),
where s is the event "the value of the syndrome is s", and:

4 ik i rrect M = s * * R

(4) P(Fagj-k is correct s) e S"IE‘ATES P(s | x)*P(x)*Vi(x)

where

- P(s | x) is the probability of observing the syndrome s conditional to the
occurrence of the error state x. Since an error state deterministically
implies a syndrome, P(s | x) is "1" if the error state x implies the syndrome
s, "0" otherwise.

- Vk(x) is a binary function having value "1" if the output of‘Fadj_k for the
syndrome implied by the error state x is the correct output for the error
state x, "0" otherwise.

Supposing we know the system configuration and information about
probabilities of relevant events in the system, the steps to derive the
comparison are:

1- enumerating all the possible error states x for the given system
configuration, and assigning their probabilities;

2- enumerating all the possible syndromes in the system and assigning to
each such enumerated syndrome s the conditional probability P(s | x), which
can be "0" or "1", for each error state x of step 1;

3- for each syndrome of step 2, evaluating each adjudication function
according to expression (4).

Then, the total probability that an adjudication function produces a correct
value, with the given system configuration and assigned probabilities, is
found computing expression (3).

19

- Generalized adjudicators -

4.2 The probability assignment problem.

The main problem in this evaluation is the difficulty of finding the correct
probabilities of all the error states (component failures, faults of components
that affect other components, etc..). In general, only estimates of these
probabilitics for some system components arc known.

In a typical real-world system of the kind we described in chapter 3, we can
assume we know:

- hardware fault rates for the nodes of the system;

- some idea of the joint probabilities of hardware faults in different nodes (or
the knowledge that they are independent);

- software error rates for each variant;

- "something" about joint error probabilities for different software variants;

- "something” about error probabilities for the self-checks of the replicas,
and the probabilities of joint errors with the replicas themselves;

- "something" about the conditional probabilities of observing a syndrome s
when the error state x occurs.

This is not enough: for example, the probability that a hardware fault will
produce an error in the software components running on it is generally
unknown,

To obtain some kind of assessment, we can try and assign ‘invented"
probability values to those events for which nothing can be hypothesized
from initial estimates.

The probability values so obtained constitute an approximation of the real
probability distribution of faults and errors, and the precision of this
approximation depends on how much information is known on the
component failures (and on how trustworthy it is), and on the algorithm
chosen to invent the unknown probabilities.

4.3 How to choose the best adjudication function.

We have defined the optimal adjudication function; but this is not always the
best adjudication function to use in a MRC. For example, performance
requirements could make it unusable (it requires more time than simpler
adjudication functions), or, for a given system configuration and assigned
probabilities, the reliability of the optimal adjudication function could be
comparable to that of another function that is better under other points of
view (for example, it follows a simpler algorithm).

The evaluation method described in the previous paragraph can help in
choosing the best adjudicator, given a real system configuration.

The choice of the best adjudication function is very sensitive to the
probability assignment. The probability that a result r produced by the
adjudication function k for a given syndrome s is wrong grows with the
probabilitics of the error states from which the syndrome s can be derived
and for which the result r is wrong.

The steps to follow for choosing a good adjudication function to use in a

given system are:

1) assuming some initial probabilitics. They depend on the particular system
under cxamination (for example, low redundancy systems or ultra-high
reliability systems), and are values that are plausible in these systems or
are concerned with particular situations believed to be interesting (for
cxample, totally symmetric or asymmetric system);

20

- Generalized adjudicators -

2) inventing probabilities for each error state for which nothing is initially
known. These values must be assigned in such a way that:

a) they are consistent with the initial probabilities and the axioms of
probability theory;
b) they are plausible for the system under examination;

3) evaluating different adjudication functions for this probability
assignment, supposed to be fairly realistic;

4) giving different values to probabilities at point 2), according to some
significant criterion trying to guess the real values for these
probabilities, and returning to point 3);

S) giving different values to probabilities at point 1), as they are estimates of
the real values and perhaps different possible values are plausible. Then,
iterate the steps until an adjudication function, that behaves in a good way
for the different probabilities assignments examined, is found. This
adjudication function is the best one, as it shows the best behavior for the
probabilities assignments supposed to be good realistic approximations.

Neverthless, a difference could be observed between the supposed behavior
of an implementation of an MRC and its actual behavior, also when the
adjudication function is chosen using this evaluation method. It depends on
the error made in the assignment of the required probabilitics.

5. CONCLUSIONS

In this report, the problem of adjudication for redundant components has

been addressed. The main results consist in the definition of:

- a terminology for the problem of specifying robust systems;

- an optimal adjudication function, which gives the theorctical upper bound
for the goodness of all adjudication functions;

- a method for a realistic evaluation of different adjudication functions.

Both the optimal adjudication function and the evaluation method utilize
information about probabilities of occurrence of the most relevant cvents in
the system. Realistically, only an estimate for some of these probabilitics can
be assumed as known.

To have good results in real applications from this optimal adjudication
function and evaluation algorithm, methods for computing accurate values

for the required probabilities should be investigated (as suggested in
paragraph 4.3).

Our future work will consist in the construction of a tool implementing the
evaluation method described in this report. It will be useful for having real
comparison values of different adjudication functions. For the problem of
probabilities assignment, we will investigate solutions utilizing already
existing applications in mathematical ficld.

6. REFERENCES

[Anderson 85] T. Anderson, ed., "Risilient Computing systems”, 1985

[Anderson 86] T. Anderson, "A structured decision mechanism for diverse
software", fifth Symposium on Reliability in Distributed Software and
Database Systems, Jan 13-15 1986, Los Angeles, California.

[Arlat 87] J.Arlat, K.Kanoun,J.C.Laprie "Dependability evaluation of software
fault-tolerance”, LAAS Research Report n. 87.389, December 1987

21

- Generalized adjudicators -

[Cristian 87] F. Cristian, " Exception handling”", IBM Research Report RJ 5724,
1987.

[Echtle 89] K. Echtle, "Distance Agreement Protocols", nincteenth
International Symposium on Fault Tolerant Computing, June 1989, Chicago.

[Echtle 89] K. Echtle, "Fault diagnosis by combination of absolute and relative
tests”, presentation in Toulouse, March 1989.

[Lorczak 89] P.R. Lorczak, A.K. Caglayan and D.E. Eckhardt, "A theoretical
investigation of generalized voters for redundant systems", nincteenth
International Symposium on Fault Tolerant Computing, June 1989, Chicago.

[Powell 88] D. Powell, ed , "DELTA 4 Overall System Specification", Issue 2,
November 1988

22

