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Spin-Glass Complexity
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We study the quenched complexity in spin-glass mean-field models satisfying the Becchi-Rouet-
Stora-Tyutin supersymmetry. The outcome of such study, consistent with recent numerical results,
allows, in principle, to conjecture the absence of any supersymmetric contribution to the complexity in
the Sherrington-Kirkpatrick model. The same analysis can be applied to any model with a full replica
symmetry breaking phase, e.g., the Ising p-spin model below the Gardner temperature. The existence of
different solutions, breaking the supersymmetry, is also discussed.
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SUSY). While in 1RSB models the complexity saddle
point is supersymmetric and finite, in the SK model our

text of the cavity method as the condition of positivity of
the spin-glass susceptibility �SG �

P
ij�

2 =N [5].
Mean-field spin-glass models can display different
kinds of frozen phases according to the choice of the in-
teraction between their constituent elements. Such a phase
can be either full replica symmetry breaking (FRSB), i.e.,
described by means of an order parameter that is a
function of the replica-group index x [the overlap q�x�],
or one step replica symmetry breaking (1RSB), in which
only two groups of replicas are necessary for a proper
representation of the properties of the system and the
overlap consequently takes only two values. The proto-
type of the first kind is the Sherrington-Kirkpatrick (SK)
model [1], whereas for the second kind we will discuss the
Ising p-spin model, displaying discontinuous overlap at
the paramagnet/spin-glass transition at temperature Ts
and, moreover, a second 1RSB/FRSB transition deep in
the frozen phase at the Gardner temperature TG [2].

By decreasing the temperature from the paramagnetic
phase, both the SK and the p-spin models undergo a
transition to a phase where a dynamic aging regime sets
up. Below the transition temperature, the infinite system
never equilibrates; two-time quantities are not time trans-
lational invariant and do not satisfy the fluctuation-
dissipation theorem. However, the nature of the aging
regime is different in the two models. Furthermore, in
the SK model such transition coincides with the static
transition, taking place at temperature Ts and the large
time values of one-time intensive quantities, e.g., the
energy, tend to their equilibrium value (at finite tempera-
ture). In p-spin models, the temperature Td at which the
aging regime arises is above Ts and the dynamical energy
never converges to its equilibrium value, which remains
above some threshold. It is largely believed that the
dynamical features of these systems are connected to
the presence of a high number of metastable states, the
logarithm of which, divided by the size of the system, is
called configurational entropy or complexity.

In this Letter we present a quenched FRSB computa-
tion of the complexity of the SK model based on
the Becchi-Rouet-Stora-Tyutin supersymmetry (BRST-
0031-9007=04=92(12)=127203(4)$22.50 
computation shows that a SUSY solution would be com-
patible only with a subextensive number of metastable
states. It is reasonable to think that some of the differ-
ences between the dynamics of the two classes of models
amount to this difference.

We will first concentrate on the complexity of the SK
model, consisting of N Ising spins connected to each
other by random variables Jik of variance 1=N. The states
are usually identified with a proper subset of solutions of
the Thouless-Anderson-Palmer (TAP) [3] equations, and
the computation attempts to count these solutions. The
TAP equations are mean-field equations for the single-site
magnetizations fmig:

mi � tanh

"
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 XN
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Jikmk �mi�1� q�
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; (1)

where q �
P
im

2
i =N. They can be obtained by extremiz-

ing the following TAP free energy function F�fmig� with
respect to the fmig:

�F�fmg� � ��
X
i<j

Jijmimj �
N�2

4
�1� q�2

�
X
i

�
1�mi

2
ln
1�mi

2
�

1�mi

2
ln
1�mi

2

�
:

(2)

Not all TAP solutions can be identified with physical
states. An important condition is that they must be the
minima of the TAP free energy. Furthermore, in order to
yield the correct magnetic susceptibility of a state in zero
external field, i.e., � � ��1� q�, the solutions must sat-
isfy the Plefka criterion xp � 1� �2

P
�1�m2

i �
2=N 	 0

[4]. This criterion is also encountered in the replica com-
putation of the equilibrium free energy as the central
stability condition of the saddle point with respect to
the fluctuation of the order parameter Qab. Indeed, it
corresponds to the condition of positivity of the replicon
eigenvalue. Equivalently, it can be recovered in the con-
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We would like to compute the minima of the TAP free
energy functional satisfying the Plefka criterion. Un-
fortunately, the only expression one can handle is

�s�f� �
Z 1

�1

YN
i�1

dmi��@iF�det�@i@jF���F� Nf�: (3)

Strictly speaking, this corresponds to count all the solu-
tions of the TAP equations of a given free energy f times
the sign of the determinant of the Hessian. Therefore, the
assumption that this expression corresponds to the num-
ber of physical states must be justified a posteriori.
Through standard manipulations we can express �s as
an integral over fermionic, f i;  ig, and bosonic, fmi; xig,
variables of the exponential of the following action [6,7]:

S � xi@mi
F�fmg� �  i j@i@jF�fmg� � u
F�fmg� � Nf�:

(4)

The variable u is given by the �-function over the free
energy. This action posses the BRST-SUSY [6], i.e., it is
invariant under the transformation �mi � � i; �xi �
�u i; � i � ��xi; � i � 0. We can perform annealed
or quenched averages yielding ln�s and ln�s, respectively;
the quenched averages are the physical ones, i.e., those
describing the properties of a typical system. They can be
computed through the replica method, considering n
copies of the system and taking the limit n! 0.
Eventually one obtains an integral of the exponential of
a ‘‘macroscopic’’ action Smacro depending on four bosonic
and four fermionic (in case replicated) variables (see, e.g.,
[7]). If the complexity is extensive, the integral may be
evaluated by steepest descent, solving saddle point
equations for the macroscopic action. Furthermore, the
fermionic part always gives a subextensive contribution
that is neglected, yielding the well-known expression
obtained more than 20 years ago by Bray and Moore
(BM) [6,8–10].

The problem of finding a solution to the saddle point
equations obtained in order to extremize the macroscopic
action is highly nontrivial. The annealed case [6,8,10]
tells us that there are different solutions to these equa-
tions and we face the problem of selecting, if any, the
correct one. In particular, there is a BRST-SUSY solution
and a BRST-SUSY-breaking solution. The selection prob-
lem has been recently considered by the authors [10] and
it has been shown that all solutions currently known for
the annealed case present some problems. In the quenched
case it has been shown [11] that the complexity curve
��f�, if it exists, vanishes at the equilibrium free energy.
In [10] it has been pointed out that such a point of
the complexity curve is described by a BRST-SUSY
saddle point.

The fermionic, subextensive part, usually neglected in
the computation of the complexity by means of the saddle
point approximation, is actually very important; taking it
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into account, one sees that the macroscopic action too
is invariant under a proper macroscopic BRST-SUSY
transformation between its eight (eventually replicated)
variables [7] and the prefactor of the exponential of
the BM saddle point to be zero at all orders in an ex-
pansion in 1=N.

Considering a BRST-SUSY saddle point simplifies the
computation of

R
eSmacro . Indeed, as already discussed in

[6,10], one recovers the computation scheme proposed in
[12,13].We, thus, consider the replicated expression of the
variational free energy used to compute the equilibrium
free energy, which depends on the n
 n matrix Qab. In
the limit n! 0, Qab is parametrized by means of the
Parisi Ansatz in terms of the function q�x�. We impose by
hand a break point of q�x� at x � m< xstatic (where xstatic
is the break point of the Parisi solution), and then we
extremize the free energy with respect to q�x�, obtaining
the function F��;m�. The complexity ���; f� at a given
free energy f is obtained through the following equa-
tions:

���; f� � �m2 @F
@m

; f �
@�mF��;m��

@m
(5)

with
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(6)

The function f�x; y� satisfies the Parisi differential equa-
tion @xf � _qq=2
@2yf� x�@yf�2� with initial condition

f�m�; y� �
1

�m
ln
Z
dp�q�z�cosh

m��y� �z�dz�
ln2

�
;

(7)

where dp�q�z� is a Gaussian measure over z with mean
zero and variance �q, which accounts for a possible
discontinuity at x � m. We have computed both q�x�
and the resulting complexity as a function of m by nu-
merical integration and by an exact series expansion in
powers of the reduced temperature through the tech-
niques of [14]. We find that when setting m smaller than
the static break point xstatic, the function q�x�, which
extremizes the free energy, develops a discontinuity at
x � m. In general, q�x� is a continuous monotonous func-
tion for x < m; at some x0 <m, it develops a plateau such
that q�x� � q�x0� for x0 � x � m, in particular, q�m�� �
q�x0�. Eventually, it displays a positive discontinuity �q
at x � m. For x > m, it is a constant. At some m � mmax,
corresponding to a threshold free energy fth, ���;m�
takes its maximal value (see Fig. 1). We can identify
��fth� with the total complexity.

Our most important result is that this solution must be
rejected on a physical ground. In Fig. 1 the BRST-SUSY
quenched complexity is plotted versus f together with the
annealed complexity [6,10]. Convexity implies that
ln�s 	 ln�s. The total complexities, in the annealed
127203-2
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FIG. 2. Complexity of the Ising p-spin model for p � 3. It
counts (meta) stable states up to a value fG, lower than fmax (it
would be fG � fmax in the spherical p-spin case where no
1RSB/FRSB transition occurs). Beyond such point, the stabil-
ity condition (Plefka’s criterion) is violated. In particular,
fG ! f0 as T ! TG.
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FIG. 1. Annealed and quenched complexity of the BRST
solution in SK model.
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and quenched case, can be identified with those of the
states with higher complexity, i.e., �tot � ��fth� and,
thus, the previous convexity condition is violated. More-
over, convexity implies that at any f the annealed com-
plexity must be greater than the quenched one, but fth is
greater in the quenched case; therefore, there is a region
where the annealed complexity is zero while the
quenched complexity is finite.

Most importantly, we have checked (details elsewhere
[15]) that the solution does not satisfy the Plefka crite-
rion, i.e., the replicon eigenvalue is negative as soon as
m< xstatic. This means that, provided it actually describes
some TAP solutions, they have no physical meaning. As
discussed in [10], the violation of the Plefka criterion
leads also to a mathematical inconsistency with some
assumptions implicit in the solution (i.e., the condition
B � 0; see [10]). A direct computation shows that this
result can be extended to generic mean-field models with
a continuous FRSB q�x� [15].

Since the solution is unphysical for any f > feq, we
obtain that BRST-SUSY in the SK model implies zero
complexity. In order to account for a finite complexity,
one has to look for another solution. In the BRST-SUSY
case, the number of states is subextensive and all of them
have the same free energy per spin, equal to feq. Fur-
thermore, all states verify xp � 0. These properties are in
complete agreement with both old and recent numerical
findings [16,17], not implying any supersymmetry. In [16]
the minima of the TAP free energy with xp 	 0 (i.e., those
that can be physically identified with states of the system)
are studied by means of some modified TAP equations
[16] which allow separation of this set from the non-
physical solutions; in [17] the original equations are
employed. In both cases it turns out that all these minima
satisfy xp � 0, as N ! 1, which is in disagreement with
the prediction of the annealed BRST-SUSY-breaking so-
lution [11,10].We also mention that a zero complexity was
also obtained in the dynamical reformulation of Parisi
solution performed in Ref. [18].
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The Ising p-spin model [2] is useful to understand the
different behavior of the complexity in 1RSB and FRSB
models. This system undergoes a first phase transition
from a paramagnetic to a 1RSB phase at a temperature
Ts and a second, continuous phase transition from the
1RSB phase to a FRSB phase at TG < Ts. The replicon
eigenvalue of the 1RSB solution is positive but goes to
zero at TG. At T < TG the replicon is negative on the 1RSB
solution while it is strictly zero on the FRSB solution. At
temperatures TG < T < Ts we can compute the quenched
complexity using the standard recipe of [12] complexity,
which is zero at the equilibrium free energy and reaches a
maximum value at some fmax. However, as noted in [19],
the replicon eigenvalue, which is positive at f � f0, goes
to zero at some fG < fmax and is negative at free energies
f > fG where the solution must be rejected; see Fig. 2.
Thus we identify fG as the free energy threshold at that
temperature. It turns out that limT!TGfG�T� � f0�TG�.
Therefore approaching TG from above, the range

f0; fG�, where the complexity is finite, shrinks to zero.
Equivalently, the total complexity goes to zero at TG:
limT!TG��T� � limT!TG��fG�T�� � ��feq�TG�� � 0.
Therefore at the transition from a 1RSB equilibrium
phase to a FRSB equilibrium phase, the complexity van-
ishes and remains zero in the whole FRSB phase.

We now discuss the possibility of adopting a BRST-
SUSY-breaking solution, computed at the annealed level
but not (yet) at the quenched one. As discussed in
Refs. [7,10] it needs some justification in order to be
used. Taking into account corrections to the saddle point,
the expansion in powers of 1=N of the prefactor of the
leading exponential contribution is zero at all orders. This
result has been obtained by Kurchan [7] for the total
complexity of the naive TAP equations exploiting the
BRST-SUSY of the macroscopic action referred above;
127203-3
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we have extended this result to the SK model at a generic
value of u (the variable conjugated to the free energy),
i.e., at any value of the free energy. Clearly a zero or
exponentially small prefactor will dramatically change
the saddle point prediction. The vanishing prefactor is
connected to the isolated zero eigenvalue recently iden-
tified in Ref. [20], for N ! 1, solving the apparent vio-
lation of the Morse theorem [6]. In general, this result
shows a substantial difference between the BRST-SUSY
(counting TAP solutions with a strictly positive spectrum)
and BRST-SUSY-breaking solution: while in 1RSB sys-
tems a BRST-SUSYcomplexity counts an extensive num-
ber of states with strictly positive eigenvalues, in FRSB
systems the BRST-SUSY solution is unphysical and the
BRST-SUSY-breaking solution counts, as N ! 1, an ex-
tensive number of configurations with a flat direction out.
This could be the cause, e.g., of the difference in dynami-
cal behavior.

Besides this, the quenched solution should coincide
with the annealed one at free energies greater than
some fc [8], and it has been shown [10] that this does
not compare well with the numerical data of [16,17]. In
particular, it predicts a finite value of xp instead of zero.
Even the support of the complexity is unclear at the
numerical level, with controversial numerical results
[16,21]. However, some, or all, of these latter problems
might be clarified by building the quenched solution and
checking whether f0 � feq and xp�feq� � 0 [22].

The BRST-SUSY is related to the stability of TAP
solutions under local perturbation (as shown in
Ref. [10]). Breaking it means to allow for bifurcation,
birth, or death of solutions when a small local magnetic
field is added. This also has deep consequences on the
approach by cavity method to the spin-glass problem.
Indeed, the method assumes stability adding a new spin,
i.e., slightly modifying magnetic local fields. The cavity
analogue of the two-group FRSB replica computation
[13] should then take into account the onset of new
solutions as a new spin is added to the system.

We also mention that in the Ising p-spin model at TG <
T < Ts, a BRST-SUSY-breaking solution similar to the
annealed one of the SK model can be found [23]. This
solution, however, yields a complexity vanishing at a free
energy different from the equilibrium one at a given
temperature and violating Plefka’s criterion for low free
energies (see [15] for details). On the contrary, the BRST-
SUSY solution of the Ising p-spin model vanishes at
exactly the equilibrium 1RSB free energy (Fig. 2).

Regarding the possible existence of quenched BRST-
SUSY solutions other than the one we considered, they
would violate Plefka criterion too, yielding a negative
replicon eigenvalue. Indeed, a direct computation (details
elsewhere [15]) shows that in FRSB models the violation
of the criterion is caused by the discontinuity at x � m,
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while a continuous function marginally satisfies it. On the
other hand, if q�x� is continuous at x � m, we are not able
to apply the recipe of Eq. (5). The discontinuity at x � m
is therefore unavoidable in order to have a nontrivial
complexity but, at the same time, it causes instability.

Looking at the Ising p-spin model, we recall that in
[19] the existence of states with free energy higher than
fG has been hypothesized; since the 1RSB solution is
unstable, the complexity of these states should be de-
scribed by a FRSB solution, much as the equilibrium
free energy at T < TG. It is not known whether such a
solution actually exists, but it can be proved that violation
of marginal stability will occur in the p-spin model as
well; q�x� should be discontinuous at x � m, but at the
same time the presence of a FRSB region on the left of
the discontinuity will force the replicon to be negative.
The problem of the existence of a complexity of the
clusters [19] in the p-spin model remains, instead, open.
[1] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,
1792 (1975).

[2] E. Gardner, Nucl. Phys. B 257, 747 (1985).
[3] D. J. Thouless, P.W. Anderson, and R. G. Palmer, Philos.

Mag. 35, 593 (1977).
[4] T. Plefka, J. Phys. A 15, 1971 (1982); Europhys. Lett. 58,

892 (2002).
[5] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass

Theory and Beyond (World Scientific, Singapore, 1987).
[6] A. Cavagna, I. Giardina, G. Parisi, and M. Mézard,
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