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Abstract: The potato (Solanum tuberosum) is one of the most widespread and cultivated Solanaceae in
the world. To overcome the increasing problems of intensive cultivation and climate change, finding
new strategies to guarantee the needs of today and future generations has become mandatory. The
use of biostimulants based on Trichoderma spp. can be an excellent alternative to reduce the use of
pesticides, as well as to mitigate the effects of biotic and abiotic stresses. In this study we evaluated
the effects of a new bioformulation containing two Trichoderma strains on potato growth and yield.
Trichoderma strains were characterised morphologically and molecularly. Application of the new
bioformulate was able to promote potato plant growth and caused a significant increase in plant
fresh (+107%) and dry weight (+74%), and potato tuber fresh weight (+37%) and number (+41%),
and it also improved potato yield (+36%). These findings suggest that the bioformulation is a viable
alternative to reduce pesticide use and mitigate biotic and abiotic stress in potato cultivation.

Keywords: biostimulant; biocontrol agent (BCA); plant growth promoting microorganisms (PGPM);
mycoparasite; fungicide; phenotyping

1. Introduction

The potato (Solanum tuberosum) is one of the most widespread and cultivated Solanaceae
in the world due to its nutritional properties and its wide adaptability to new growing
environments as well as its easy affordability [1]. Although the potato is of South American
origin, the continent with the highest potato production between 2012 and 2019 was Asia
with 51.1% of world production, followed by Europe (29%) and the Americas (12.2%) [2].
As one of the most widespread intensive crops in the world, the effects and consequences
of its intensive cultivation cannot be overlooked, such as loss of organic matter, soil erosion,
pollution caused by using synthetic pesticides (such as insecticides fungicides or fertilisers),
acidification or salinisation of soils, and loss of genetic biodiversity.

The damage caused by this type of intensive cultivation has already occurred in some
places on the planet [3,4]. To contain these problems, in line with the European Green
Deal, the sustainable management of environmental resources poses the basis for sustain-
able economic development, placing the agricultural sector at the centre of the ecological
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transition of the European continent [5]. Therefore, preserving biodiversity, ecosystems
and natural resources while at the same time ensuring food safety and sustainability has
become mandatory today [6]. Furthermore, the potato is one of the most vulnerable crops
in changing climates, with events such as long-lasting droughts, extreme heat, and unantic-
ipated frosts [7,8]. Although crop management practices cause about 67% of the variations
in potato yields, climate change is a significant challenge faced by the agricultural sector [9].
Potato development stages, such as sprouting, emergence, and leaf area development, are
temperature sensitive. Temperature thresholds and photoperiod sensitivity are vital in de-
termining the development of potatoes and initiating potato tuber induction, and vary with
potato varieties. When the temperature exceeds 30 ◦C, it can cause slow tuber initiation
and development and physical damage to the tubers [10]. Meanwhile, the elevation of CO2
increases the rate of potato susceptibility to pests and diseases and yields phenology, caus-
ing interferences between implemented and natural biological processes [8,11]. Finding
new strategies to guarantee the needs of today and future generations is now a key point of
agricultural research [12]. The use of biostimulants based on a Biocontrol Agent (BCA) such
as Trichoderma spp. can be an excellent alternative to reduce the use of pesticides, as well as
to mitigate the effects of biotic and abiotic stress. Several Trichoderma spp. are registered
as microbial biological control agents in Plant Protection Products commercialized for
the control of a broad-spectrum plant diseases [13,14]. In nature, Trichoderma spp. are
ubiquitous, and are capable of surviving in the rhizosphere as a skilled competitor towards
other phytopathogens. Numerous studies have demonstrated a biocontrol activity of the
Trichoderma genus against Fusarium spp. and Rizoctonia solani which can cause huge losses
in potato cultivation [15]. The adaptive behaviour of the Trichoderma genus is due to its
ability to modify the rhizosphere conditions in its favour producing siderophores for iron
chelation, or competing for the main source of carbohydrates in soil, limiting factors for
the growth of other microorganisms [16]. Competition is only one mode of survival imple-
mented by the Trichoderma genus. In fact, its properties of producing antibiotic substances
(antibiosis), such as metabolites of a volatile or non-volatile nature which limit the growth
of other phytopathogens, are also known. The production of these secondary metabolites
is specific to each species and includes compounds such as arzianic acid, alameticins,
tricolines, antibiotic peptaibols, 6-penthyl-α-pyrone, massoylactone, viridine, gliovirine,
glisoprenins, and heptelidic acid [15–17]. Mycoparasitisation occurs when Trichoderma spp.
comes into contact with the host, after anchoring through the formation of appressoria
on the surface of the target. In the anchoring sites of the appressoria there will be the
formation of hyphae which produce hydrolytic enzymes (chitinases) that are necessary
for the degradation of the host’s cell wall [18]. Some species of Trichoderma, interacting
with the host plant, influence the physiology, morphology, and metabolomics of the plants.
Studies relating to the impact of Trichoderma interaction with plants have highlighted a
significant effect on many horticultural crops such as melon, tomato, cucumber, eggplant,
pea, lettuce, rocket, beans, and ornamental plants [18–24]. Also, Trichoderma spp. promotes
the absorption of nitrogen and the solubilisation of phosphorus, increasing the yield even
in the absence of fertilization [25], such as increasing the efficiency of use of water, reducing
the stomatal opening of plants, and increasing chlorophyll photosynthesis [26]. Defined
as an avirulent opportunistic plant symbiont, Trichoderma spp. manages to penetrate and
colonize the roots, establishing a symbiotic relationship. Its ability to split sucrose through
invertase and therefore to use the products deriving from hydrolysis as a carbon source
favours its capacity as a colonizer [27]. One of the main effects due to the plant colonisation
of Trichoderma spp. is the induction of Induced Systemic Resistance (ISR), an indirect
defence mechanism activated by genes that encode the production of proteins linked to
the production of hormones such as Salicylic Acid (SA) or Jasmonic Acid (JA) and Ethy-
lene (ET) as a primary signal of host resistance following the production of antimicrobial
metabolites [18,28]. In addition, an integrated approach combining BCAs with fungicides
is put forward to reduce the fungicide doses to manage plant diseases and thereby their
residue on harvested crops. However, to allow large-scale implementation of the use of
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a new bioformulate, further knowledge is needed, comprising the timing, number, and
interval of repeated BCA applications and their compatibility with fungicides [29].

The goal of the present study was to evaluate the effects of a mix of two new selected
strains of Trichoderma in the sustainable management of potato cultivation evaluating the
impact of the bioformulation on the quality and quantity of production.

2. Materials and Methods
2.1. Trichoderma spp. Evaluation and Bioformulation

Two strains of Trichoderma from the collection of CNR-IPSP were characterised at the
morphological and molecular levels. Strains (1A and 1B) were grown on petri dishes with
Potato Dextrose Agar (PDA) and then placed at 25 ◦C for about 7 days to allow mycelial
development and sporulation.

2.1.1. Morphological Characterisation of Trichoderma Isolates

The morphological traits (mycelium structure, conidiophores, and conidia) were
observed directly by a ZEISS Axiovert 5 digital inverted light microscope (ZEISS, Jena, Ger-
many), equipped with fluorescence, brightfield, and phase-contrast vision. The structures,
in both observation modes, were described by comparing them with those reported in ap-
propriate taxonomic keys [30,31]. Conidia and conidiophores lengths were recorded using
ImageJ v 1.53, a Sun-Java-based digital image processing computer program. The spores of
each strain were collected in 50 mL tubes using distilled water. Counting was performed
using Burker’s chamber (depth 0.100 mm), and 10 µL of the spore suspension was loaded
onto the counting chamber and visualised under a 40× magnification. Spore concentration
was calculated by the following formula (specific to the counting chamber used):(

Stot

N

)
× 2.5 × 105 × dilutionfactor

N = number of cells observed; Stot = total number of spores observed.

2.1.2. Molecular Analysis of Trichoderma Isolates

The genomic DNA of the two fungal isolates was obtained using Qiagen’s DNeasy®

Plant Pro kit (Qiagen, Hilden, Germany, EU) following the manufacturer’s instructions. The
DNA was quantified with a Thermo Fisher Scientific’s Nanodrop 2000 spectrophotometer
(ThermoFisher scientific, Waltham, MA, USA) and then amplified by PCR, using the
Promega GoTaq® G2 DNA Polymerase kit (Promega, Madison, WI, USA) in a total volume
of 25 µL. Reactions were subjected to an initial denaturation of 3 min at 95 ◦C, followed
by 40 cycles of 45 s at 95 ◦C, 45 s at 58 ◦C, and 1 min at 72 ◦C, with a final extension of
10 min at 72 ◦C in a MiniAmp thermal cycler (ThermoFisher scientific, Waltham, MA,
USA). For the molecular identification we used ITS, TEF1, and TRI-ACT genes. Primer
sequences are reported in Table 1. The presence of the amplificated fragments was verified
by electrophoresis on 1% agarose gel. Purification of the PCR products was performed
using the Bioline ISOLATE II PCR and Gel Kit (Bioline, Memphis, TN, USA) following
the supplier’s protocol. The obtained DNA was quantified by both Qubit fluorometer and
NanoDrop 2000 spectrophotometer (ThermoFisher scientific, Waltham, MA, USA). The
samples were sequenced by the company Eurofins Genomics LLC (Ebersberg, Germany,
EU) through Sanger sequencing. The GenBank BLAST tool (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) was used to compare the obtained sequences with those in the GenBank
database.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Horticulturae 2024, 10, 664 4 of 14

Table 1. Nucleotide sequences of primer pairs used in this study.

Primer Name Gene Primer Direction Sequence (5′-3′)

Internal Transcribed Spacer ITS
ITS1 TCCGTAGGTGAACCTGCGG
ITS4 TCCTCCGCTTATTGATATGC

Translation elongation factor 1 alpha Tef-1
EF1-728 CATCGAGAAGTTCGAGAAGG

TEF1R GCCATCCTTGGGAGATACCAGC

Beta-actin β-actin TRI-ACT1 TGGCACCACACCTTCTACAATGA
TRI-ACT2 TCTCCTTCTGCATACGGTCGGA

2.1.3. Dual-Plate Bioassay

In vitro antagonism tests were set up to evaluate the mycoparasitic activity of the
two Trichoderma strains against four different fungal pathogens (Sclerotinia sclerotiorum,
Fusarium oxysporum, Aspergillus sp. and Botrytis cinerea). Biocontrol assays were established
by inoculating 10 µL of spore suspension (1 × 105 spores·mL−1) of the selected pathogen
(except for S. sclerotiorum for which sclerotia were used) in the middle of the half-circle of
the PDA petri dish. After 24 h, 10 µL of spore suspension (1 × 105 spores·mL−1) of each
Trichoderma strain were inoculated at diametrically opposite points of the same plates.

Biocontrol assays were followed according to the different growth requirements of
the selected pathogen. The fungal growths were measured with a ruler (mm) every 24 h,
up to the day of contact between the mycelium of the pathogen and the antagonist. The
experiment was conducted in independent triplicates. Single cultures of the pathogens
were used as control plates. The inhibitory effect of Trichoderma isolates was assessed
by estimating the percentage (%) reduction on pathogen growth in the presence of the
antagonist, according to the following formula: (D − d)/D × 100, where D is the estimate
of radial growth of a pathogen in the control sample and d is the estimate of radial growth
of a pathogen in the bi-culture [32].

2.1.4. Trichoderma–Fungicide Interaction

In vitro studies were conducted to test the resistance of the two Trichoderma isolates
against three commercial fungicides: Talendo® (Proquinazid, Corteva Agriscience™, Indi-
anapolis, IN, USA); Lidal® (Tetraconazole, Corteva Agriscience™); and Biomic (Tannins,
Nuovo Mondo Bio s.n.c., Soriano nel Cimino, Italy). Briefly, 10 µL of a spore suspension
1 × 105 spores mL−1 were inoculated in the centre of the petri dish containing PDA mixed
with the single fungicide according to the label dose. Control samples were made, inocu-
lating Trichoderma isolates on PDA plate. The experiment was conducted in independent
triplicates. Following the inoculations, the plates were incubated at 25 ◦C and the radial
growth of the various species was measured every 24 h for 7 days using a ruler (mm). The
percentage of growth inhibition by the fungicide was calculated as previously reported for
the dual-plate bioassay.

2.1.5. Bioformulation of Trichoderma Isolates

For the preparation of the new bioformulate (SOSTATA W), the two Trichoderma strains
(1A and 1B) were inoculated into flasks containing Potato Dextrose Broth (PDB) and left to
grow in a rotating incubator at 25 ◦C for 7 days at 150 rpm. The liquid suspension was used
to inoculate rice (Oryza spp.), used as carrier previously autoclaved in a polypropylene
zipper filter bag. The bags were incubated for at least one month at 25 ◦C in the dark. Rice
completely covered with spores was distributed in the field as previously described in
Section 2.1.

2.2. Experimental Field

During the seasons 2022 and 2023, three experimental Italian fields located in Cervinara
(AV), Maddaloni (CE), and Avezzano (AQ) were cultivated with different potato cultivars.
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Also, in 2023 two more fields located at Acerra (NA) and Airola (BN) were included in the
trials (Table 2).

Table 2. Experimental fields conducted for two consecutive years in southern Italy. Table shows the
site of cultivation with GPS coordinates, the extension of cultivated area in hectares, and the potato
cultivar name.

Experimental Fields

Site
Airola Cervinara Maddaloni Acerra Avezzano

(41◦03′10.2′′ N
14◦35′05.8′′ E)

(41◦01′49.1′′ N
14◦37′05.0′′ E)

(41◦01′03.6′′ N
14◦21′42.4′′ E)

(40◦56′20.2′′ N
14◦24′25.8′′ E)

(42◦03′53.5′′ N
13◦31′54.2′′ E)

Cultivated area 4 ha 4 ha 2 ha 2 ha 2 ha

Cultivar Agata Agata Inova Colomba Colomba & Cicero

The experimental study was designed to compare three treatments: (i) cultivation
usually adopted by the farmer, Control (C); (ii) cultivation using a commercial Trichoderma
product, Micosat (CCS Aosta srl) (O); and (iii) cultivation using a new Trichoderma for-
mulation, SOSTATA (W). A repeated blocks design was used for the experiment. The
new bioformulate was made using two Trichoderma strains selected from the collection
of the Institute for Sustainable Plant Protection (IPSP) of the National Research Council
(CNR). The bioformulate was distributed at 30 kg·ha−1 along the furrow near the tuber
contemporary to the sowing, while Micosat was used following the instructions on the
label. The potato cultivars evaluated for the purpose of the experimental design were:
Inova, Colomba, Agata, and Cicero in ascending order of maturity or relative earliness
of the ripening cycle. The experimental fields located in the Campania region (Airola,
Cervinara, Maddaloni, and Acerra) had sandy loam soil, while the Avezzano field from the
Abruzzo region was a clayey soil. The weather conditions were variable not only among
the different sites but even more between the two years of the trial (Table 2).

2.3. Plant Response Evaluation

To evaluate the effectiveness of treatments, at the phenological stage of tuber swelling,
five plants randomly collected from each thesis with their respective tubers were harvested
to assess (i) plant fresh weight, (ii) potato tuber number, (iii) potato tuber fresh weight, and
(iv) plant dry weight. Production was recorded at the end of the potato cultivation cycle.

Furthermore, in the experimental field of Cervinara, we assessed the plants’ response
to different treatments using a UAV multispectral flight (DJI Phantom multispectral, five
bands: blue, green, red, red edge, and near-infrared (NIR)) conducted during the growing
season on 20 June 2023. The images collected were processed with PIX4DMapper software
v. 1.58.2 to calculate vegetative indices (such as NDVI and GNDVI) and to measure the
crop elevation in each experimental plot.

The Normalized Difference Vegetation Index (NDVI) measures the amount of live
green vegetation in an area, calculated from the visible and near-infrared light reflected
by vegetation. The index ranges from −1 to 1, with higher values indicating denser and
healthier vegetation, and it is calculated as follows:

NDVI = (NIR − red)/(NIR + red)

The Green Normalized Difference Vegetation Index (GNDVI) is a measure of a plant’s
“greenness” or photosynthetic activity. It utilises the near-infrared (NIR) and green bands of
the electromagnetic spectrum. The index ranges from −1 to 1, with higher values indicating
denser and healthier vegetation, and it is calculated as follows:

GNDVI = (NIR − green)/(NDVI + green)
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2.4. Statistical Analysis

All data were subjected to statistical analysis. Statistical analysis was performed using
the IBM® SPSS® Statistics software (SPSS 28.0). The significance of the bioformulation
application (Control (C); Micosat (O); and SOSTATA (W)) over two consecutive field trials
(2022 and 2023) was determined by comparing mean levels among treatments using a
One-Way Analysis of Variance (ANOVA) with Tukey’s HSD post hoc test at p = 0.05.

3. Results
3.1. Morphological and Molecular Characterisation of Trichoderma Isolates

A pure culture of the two Trichoderma isolates 1A and 1B was obtained on PDA petri
dishes. The 1A isolate shows as white mycelium of spongy consistency and irregular
growth with granule conidiation and scattered conidial masses (Figure 1a); the 1B isolate
exhibits a concentric ring structure with a dark green pustular central zone bordering a light
green ring, a light intermediate zone, and a light green peripheral ring (Figure 1d). The
morphological analysis aligns with characteristics typical of the Trichoderma genus. Several
Trichoderma isolates have exhibited abundant fluffy mycelium, with two to three distinct
concentric rings of white mycelium and green conidia [33]. Other characteristics that define
the genus Trichoderma are a fast growth in culture medium and development of conidia
with a green-yellow colour [34]. These characteristics are similar to several Trichoderma
species, so it was difficult to identify the isolates based only on morphological data [35].
The microscopic observation of isolate 1A showed branched and elongated conidiophores
placed at different angles, on which 8 µm flask-like phialides were inserted, and ellipsoidal
conidia (3.8 L–2.4 L µm) were highlighted (Figure 1b,c); meanwhile, the isolate 1B had
compact, broad-branched conidiophores that assumed a pyramidal structure with 8 µm
flask-like phialides. Conidia varied from globose (1.4 d µm) to sub-globose (1.9 D–1.3 d
µm) (Figure 1e,f).
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Figure 1. Morphological characterisation of Trichoderma isolates. (a) Micelium growth of the isolate
1A on PDA petri dish; (b) microscopic observation of conidiophores and (c) conidia of isolate 1A;
(d) micelium growth of the isolate 1B on PDA petri dish; (e) microscopic observation of conidiophores
and (f) conidia of isolate 1B.

As a result of the molecular analysis using the three gene markers (ITS; EF1; and
ACT), we classified the two isolates at the species level as Trichoderma asperelloides (1A) and
Trichoderma harzianum (1B). In Figure 2a neighbour-joining tree constructed with MEGA X
software v. 10.2.4 is shown.
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Figure 2. Phylogenetic neighbour-joining tree of two isolates of Trichoderma inferred by the analysis of
ITS1, EF1, and ACT genes using MEGA 11 software. Phytophthora infestans was used as the outgroup.

3.2. Dual-Plate Bioassay

The mycoparasitic effect of T. asperelloides (1A) and T. harzianum (1B) was carried
out with a dual-plate technique against agriculturally important plant pathogens such as
Sclerotinia sclerotiorum, Fusarium oxysporum, Aspergillus sp., and Botrytis cinerea. As shown
in Figure 3, the pathogen inhibition effect of T. asperelloides isolate 1A ranged from 21%
against Asperigillus sp. to a maximum of 36% when competing with F. oxysporum. The
T. harzianum isolate 1B instead showed a more variable mycoparasitic behaviour with
inhibition percentages ranging from a minimum of 0% in competition with B. cinerea to a
maximum of 100% against Aspergillus sp.
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Figure 3. The mycoparasitic effect of Trichoderma asperelloides (1A) and Trichoderma harzianum (1B) in
dual-plate assay against the plant pathogens Sclerotinia sclerotiorum, Fusarium oxysporum, Aspergillus
sp., and Botrytis cinerea. The graph shows the percentage of growth inhibition of individual pathogens
by the two Trichoderma isolates. An asterisk indicates that differences are statistically significant for
Tukey’s HSD post hoc test at p = 0.05. *: 0.001 < p < 0.01; ***: p < 0.0001.

3.3. Trichoderma–Fungicide Interaction

Of the three fungicides tested at label doses, Lidal (Tetraconazole) proved to be the
most effective in inhibiting the growth of the two Trichoderma strains leading, after 7 days, to
100% and 54% of growth inhibition of T. asperelloides (1A) and T. harzianum (1B), respectively.
Talendo (Proquinazid) and Biomic (Tannins) proved not to be effective in inhibiting growth
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of the two Trichoderma strains, recording a percentage of inhibition equal to 0% for both
(Table 3).

Table 3. Percentage of growth inhibition of Trichoderma strains 1A and 1B after 7 days on a PDA
petri dish containing the three fungicides: Lidal (Tetraconazole) 1500 µL·L−1; Talendo (Proquinazid)
250 µL·L−1; and Biomic (Tannins) 4000 µL·L−1.

% of Growth Inhibition

Lidal (Tetraconazole) Talendo (Proquinazid) Biomic (Tannins)

% inhib. 7 dpi SD % inhib. 7 dpi SD % inhib. 7 dpi SD

Trichoderma asperelloides (1A) 100 0 0 0 0 0

Trichoderma harzianum (1B) 54.4 2.8 0 0 0 0

3.4. Evaluation of Morphological Plant Parameters and Yield

The parameters analysed were (i) plant fresh weight, (ii), potato tuber fresh weight
(iii) plant dry weight, and (iv) potato tuber numbers. Significant differences among the
treatments were found. Figure 4 reports the means of five plants per treatment in three
different fields over two consecutive years of the experiment. In the 2023 season, two more
fields located at Acerra (NA) and Airola (BN) were included in the trials. Comprehensively,
our results showed that the treatment with the new bioformulate (SOSTATA W) had
positively increased the parameters observed while the commercial biostimulant Micosat
(O) had no significant impact on crop development. Field blocks treated with the new
bioformulates had higher canopies and more vigorous plants.
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Figure 4. Mean values of five plants per treatment in three different fields over two consecutive
years of experiment. The parameters observed were (i) plant fresh weight, (ii), potato fresh weight
(iii) plant dry weight, and (iv) potato numbers. Differences are statistically significant for Tukey’s
HSD post hoc test at p = 0.05. *: 0.001 < p < 0.01; **: p < 0.001; comparing SOSTATA (W) vs. Control
(C); and §§: p < 0.001; comparing SOSTATA (W) vs. Micosat (O).

In particular, for plant fresh weight, the SOSTATA (W) treatment showed an average
weight of 598.2 (±5.07) g/plant, significantly different from the farm Control (C) which
was 288.4 (±2.68) g/plant. The potato tuber fresh weight of the SOSTATA (W) treatment
(1059.5 ± 6.13) g/plant) was significantly greater than the Control (744.6 ± 10.75 g/plant)
and interestingly also with respect to the Micosat (O) treatment (732.8 ± 4.9 g/plant).

Looking at the plant dry weight values, the difference between SOSTATA (W) treat-
ment (57.3 ± 0.38 g/plant) and the farm Control (C) (32.8 ± 0.35 g/plant) was significant
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as well as for the number of potatoes obtained, with an average of 14.4/plant and of
10.16/plant tubers for SOSTATA (W) and farm Control (C) treatment, respectively.

Figure 5 shows the collected data related to the two-year production of the three
experimental fields. Also, in this case the SOSTATA (W) treatment was able to increase
production by 20% and 36% compared to Micosat (O) and Control (C), respectively.
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4. Discussion

To evaluate the potential of Trichoderma spp. as possible BCAs to promote plant growth
and production in potato cultivation, two new Trichoderma strains were identified and used
to treat experimental potato fields. The two Trichoderma strains were previously tested
in vitro for their mycoparasitic activity and resistance to fungicides. The results of the
in vitro competition assays against four selected pathogens showed different results in
relation to the strains tested and the pathogen used. Even variation within one species was
reported by Metz and Hausladen [36]; Consolo et al. [37]; and El-gamal et al. [38]. They
tested the inhibitory effect of several T. harzianum strains against Alternaria solani isolates
from potato and tomato, respectively. Also, the ability to inhibit the growth of pathogens
such as F. oxysporum, B. cinerea and Aspergillus spp., which were used in our research, was
reported by Bhale and colleagues [39] even with different fates, underlining the fact that
the inhibition capacity is strictly dependent on the strain of Trichoderma tested. For example,
Zhang et al. [40] reported 75% and 82% in vitro mycelial growth inhibition of B. cinerea and
R. solani respectively, caused by T. longibrachiatum. Qualhato et al. [41] also found good
results of mycelial growth inhibition of S. sclerotiorum, R. solani, and Fusarium solani when
using different Trichoderma species. Additionally, Amin et al. [42] reported that Tricoderma
viride highly inhibited the mycelial growth of R. solani, Sclerotium rolfsii, and S. sclerotiorum
in comparison with T. harzianum. These findings underline the importance of a broad
approach to evaluating the growth inhibition potential of different Trichoderma species on
plates. In general, the results from the comparison vary with the Trichoderma isolate and
with the phytopathogen accordingly, with results shown in this work.

To inhibit fungal pathogens, fungicides have been developed to target different compo-
nents or mechanisms of the fungal cell, including respiration, nucleic acid metabolism, cell
membrane integrity, protein synthesis, signal transduction, and cell mitosis [43]. However,
most fungicides perform without distinguishing between harmful pathogens and nontarget
organisms such as beneficial micro-organisms [44]. As such, fungicides could impact the
growth of BCAs or reduce their population size, making biocontrol treatment ineffective.
Previous studies have reported that fungicides combined with biocontrol agents can inhibit
pathogens or improve the disease resistance of plants [45]. Myresiotis et al. [46] reported
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that the combination of plant growth-promoting rhizobacteria and hymexazol could effec-
tively control Fusarium crown and root rot on tomatoes. Our findings on the compatibility
of the two Trichoderma strains (1A and 1B) with three fungicides showed a complete in-
hibition from Lidal (Tetraconazole), while Talendo (Proquinazid) and Biomic (Tannins)
were ineffective. Selvakumar et al. [47] also demonstrated the limited inhibitory effects of
tannins. They found that T. virescens and T. reesii were able to tolerate up to 3000 ppm of
crude tannins extracted in water and acetone without experiencing any growth inhibition.
Progressive growth inhibition of T. virescens and T. reesii occurred as the tannins themselves
increased. Hence, the resistance of the strains employed in this study to specific fungicides
could aid in comprehending the optimal utilization of the antagonistic capabilities of T.
harzianum 1B and T. asperelloides 1A. However, new studies must be conducted in planta
to better establish the limits of each strain and to enable their use in integrated disease
management.

Trichoderma spp. can even exert positive effects on plants with an increase in plant
growth (biofertilization) and the stimulation of plant-defence mechanisms [17]. The use
of biostimulants based on Trichoderma spp. is widespread due to Trichoderma‘s ability to
promote plant growth in most agroecosystems with positive effects on the plant biomass,
both epigeal and hypogeal [48]. For example, a study conducted on passion fruit showed
that plants treated with Trichoderma had a greater leaf surface, greater biomass, and a
greater commercial yield [49], as well as Trichoderma treatment having positive effects on
tests carried out on wheat, in which a greater plant height, leaf length, root length, and tip
length were recorded [50]. To assess the beneficial effects of Trichoderma treatment on plant
growth and production, we collected data on morphological parameters such as plant fresh
weight, plant dry weight, tuber dry weight, number of tubers per plant, and yield expressed
in kg·ha−1. From the obtained results, the treatment with the SOSTATA (W) bioformulate
showed significant differences compared to the control for all the morphological traits
analysed. Application of the new bioformulate was able to promote potato plant growth,
and caused a significant increase in plant fresh (+107%) and dry weight (+74%), potato tuber
fresh weight (+37%) and number (+41%). In addition, for potato fresh weight, significant
differences between the SOSTATA (W) treatment and Micosat (O) were found. Furthermore,
the plants treated with SOSTATA (W) showed an increased production of 20% and 36%
compared to Micosat (O) and Control (C) treatments, respectively. The data obtained are in
line with other studies carried out both in a protected environment and in the open field.
In fact, as reported by Contreras-Liza et al. [51], the inoculation of Trichoderma both in vitro
and in the greenhouse promoted the growth of potato seedlings in vitro and significantly
improved the height of the potato plant, increasing the size, calibre, and weight of seed
tubers and plant biomass. Similar results were obtained by M. Rakibuzzaman et al. [48]
where the ability to promote the growth of potato plants was evaluated in vivo, using
different concentrations of Trichoderma compared to the control. The increase in production
compared to untreated plants was 11.33% and 23.82% depending on the concentration of
the treatment, and was due to an improvement in the dry matter content. The beneficial
effects of the interaction of T. harzianum with S. tuberosum phureja was also evaluated in
South America by Galindo et al. [52] where an increase in biomass of 30% to 38% compared
to the control was highlighted. Application of a select microbial product composed of a
consortium of Bacillus subtilis and T. harzianum effectively suppressed common scab disease
and increased tuber yield by establishing a high relative abundance of beneficial bacteria in
the rhizosphere as reported by Wang et al. [53]. An increase in potato tuber number and
weight was also reported by J. Constantia and colleagues (2023) [54] using the commercial
bioformulation TrichoPowder (Trichoderma sp.) and plant growth promoting rhizobacteria
(PGPR). Ommati et al., [55] tested six species of Trichoderma inoculated together with F.
oxysporum to evaluate the combined effect on the potato yield. The results showed that
plants co-inoculated with Trichoderma and Fusarium had higher production compared to
plants inoculated only with the pathogen. Lastly, the results obtained from vegetation
indices (NDVI and GNDVI) computed from spectral UAV data show a spatial variability
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that is in good agreement with the production variability observed with treatments. As
shown in Figure 6, both average NDVI and GNDVI showed the highest values for the
SOSTATA treatment (0.73 ± 0.09 and 0.57 ± 0.07 respectively), with similar but lower
values for the Micosat (0.72 ± 0.09 and 0.56 ± 0.06 respectively) and Control (0.70 ± 0.09
and 0.54 ± 0.06 respectively). Regarding the crop elevation variability, we estimated 0.24 ±
0.07 m for the control, 0.27 ± 0.08 m for the Micosat treatment, and 0.24 ± 0.09 m for the
SOSTATA treatment.
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Today, we can assert that there is sufficient scientific evidence confirmed with this
research to prove that through the symbiosis between potato plants and microorganisms,
it is possible to reduce the use of high energy consumption inputs with a negative envi-
ronmental impact, such as fertilizers and agrochemicals, mitigating their harmful effects
on the ecosystem [47]. A huge barrier in the study of potential biopesticides is the precise
understanding and determination of their modes of action, i.e., their interactions in dy-
namic systems, composed of antagonistic organisms, pathogens, and plants [56–58]. In
addition to climatic conditions, interactions with autochthonous microorganisms present in
an environment may adversely affect the efficacy of microorganisms included in bioprepa-
rations [59]. According to Kubiak et al. [60], the main environmental factors affecting the
activity and survival of beneficial microorganisms, including their sporulation processes,
include temperature, humidity, acidification of the substrate, and availability of nutrients.
The main challenge here is to select microbes that will show high tolerance to changing
climatic conditions [58] and resistance to chemical pesticides.

5. Conclusions

The results of this study suggest the beneficial potential of two new Trichoderma
strains in the sustainable management of potato cultivation. Through morphological and
molecular analyses, the new Trichoderma isolates were identified as T. asperelloides (1A) and
T. harzianum (1B). The in vitro trials both for antagonist capacity and fungicide resistance
showed that these isolates can be good biocontrol agent candidates to be used in field
application and also in integrated management. Moreover, the application of SOSTATA (W)
bioformulate was able to promote potato plant growth and caused a significant increase in
fresh and plant dry weight, and potato tuber fresh weight and number, improving overall
potato yield. Our findings demonstrate how useful it is to exploit biodiversity in terms
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of species and strains of beneficial microorganisms for providing new solutions with low
environmental impact in intensive cultivation.
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