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Abstract: A recently proposed modelling strategy predicts the net primary production (NPP) of
forest ecosystems by combining the outputs of a NDVI-driven model, Modified C-Fix, and a bio-
geochemical model, BIOME-BGC. This combination strategy takes into account the effects of forest
disturbances but still assumes the presence of a mixture of differently aged trees. The application
of this strategy to even-aged forests, therefore, requires a methodological advancement aimed at
properly modifying the modelling of main ecosystem processes. In particular, the adaptation of the
method to even-aged forests is based on the use of high-spatial-resolution airborne laser scanning
(ALS) datasets, which yields green and woody biomass estimates that regulate the simulation
of photosynthetic and respiratory processes, respectively. This approach was experimented in a
Mediterranean study area, San Rossore Regional Park (Central Italy), which is covered by even-aged
pine stands in different development phases. The modelling strategy is driven by MODIS NDVI
images and meteorological data across five years (2011–2015), which are combined with estimates of
forest canopy cover and height obtained from ALS data taken in 2015. This allows the production of
stand NPP estimates, which, when converted into respective current annual increment (CAI) values,
reasonably reproduce the age dependency of the available ground observations. The CAI estimates
also show a highly significant correlation with these observations (r = 0.773) and moderate error levels
(RMSE = 2.03 m3 ha−1 year−1, MBE = −0.45 m3 ha−1 year−1). These results confirm the potential of
the modified simulation method to yield accurate high-spatial-resolution NPP estimates, which can
offer valuable insights into C cycling and storage, in even-aged forests.

Keywords: Mediterranean forest; MODIS NDVI; C-Fix; ALS data; CAI

1. Introduction

Forest ecosystems, which are distributed over almost one-third of terrestrial, ice-free
surfaces, play a significant role in the global carbon (C) cycle due to their capacity to
store carbon within their tissues [1,2]. Recently, large discussions have emerged about the
possibility of investing in reforestation and/or forest regeneration to mitigate the effects
of climate change [3,4]; this has stimulated the scientific community to investigate the
quantification of forest ecosystem production. Quantifying the role of forests is particularly
important in regions for which there are large uncertainties in the carbon balance, such
as those surrounding the Mediterranean basin. In fact, in these regions, forest ecosystems
have been considered both as weak sources and as sinks, with most uncertainties induced
by the long disturbance history and the more recent impact of climate change [5].

The accumulation of new biomass within forest ecosystems is usually quantified as net
primary production (NPP), which corresponds to the difference between photosynthesis
and autotrophic respiration [6,7]. This variable is generally assessed by means of national
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forest inventories [8] and, more specifically, via the estimation of the current annual in-
crement (CAI), which is convertible into dry matter (or carbon) NPP through the use of
species-specific biomass expansion factors (BEFs) [9,10]. The methods applied to retrieve
NPP and CAI based on field data, however, are more complex, time- and cost-consuming,
and affected by possible errors than those applied to assess basic forest attributes (e.g., tree
density and height, basal area, stem volume, etc.) [11–13].

Remote sensing techniques and biogeochemical models can be used as alternative
tools to study and monitor the main forest ecosystem processes. The former, in fact, can
directly estimate spatially and temporally variable vegetation features, while the latter
can simulate all main vegetation processes (e.g., photosynthesis, respiration, and alloca-
tions). Therefore, these two techniques are intrinsically complementary and can be suitably
combined for simulating forest C fluxes, particularly NPP [14–17]. Maselli et al. [18], for
example, proposed to combine the outputs of a radiation use efficiency (RUE) model,
Modified C-Fix, with those of a model of ecosystem processes, BIOME-BGC. The former
model estimates forest gross primary production (GPP) based on standard meteorologi-
cal observations and remotely sensed NDVI images, while the latter simulates all main
ecosystem processes driven only by ancillary data descriptive of forest conditions. The
outcomes of the two models are finally combined using the ecosystem equilibrium theory
to take into account the effects of forest disturbances [18]. More specifically, the equilibrium
condition simulated by BIOME-BGC is converted into the condition of real ecosystems
through the use of a proxy variable of woody biomass given by the ratio of actual over
potential growing stock volume (GSV).

This modelling strategy relies on the assumption that the examined ecosystems are
composed of a mixture of trees in heterogeneous development stages, which mimics the
structure and functions of forests simulated via BIOME-BGC. Hence, the application of the
strategy to even-aged forest stands, where this condition is not met, implies an additional
issue. In these cases, in fact, the relationship between forest green and woody biomass
pools can be profoundly altered depending on the stand structure and development phase,
which induce relevant modifications of photosynthetic and respiratory processes [19–21].
This issue, which usually determines a decrease in the green/woody biomass ratio during
stand development, was addressed by [22], who introduced an age-dependent correction
aimed at modifying the simulation of tree photosynthesis and autotrophic respiration.
This operation required a local calibration of the method based on ground observations of
tree growth increments, which is obviously impractical for operational forest monitoring
programmes over large areas.

A more recent study has postulated that a similar correction can be obtained by the
processing of high-spatial-resolution airborne laser scanning (ALS) observations, which
are now widely available [23]. ALS data, in fact, are informative in terms of the green
and woody biomass pools existing in each ecosystem, which are the main regulators of
photosynthetic and respiratory processes, respectively. Therefore, the accurate quantifica-
tion of such pools is expected to improve the capacity of the original modelling strategy
to reproduce these processes, particularly concerning their age dependency. This should
allow an enhanced simulation of the C stored in managed forests, which is fundamental for
both scientific and practical reasons.

This expectation can be investigated using a set of ground and remotely sensed
datasets descriptive of even-aged forest stands that include observations of CAI as a proxy
of NPP. This study pursues this objective by relying on a dataset collected in the pine
wood of the San Rossore Regional Park (Central Italy), which has been the subject of
numerous previous research activities and forest surveys (e.g., [24]). More specifically,
the investigation is aimed at evaluating the improvement that can be obtained by feeding
the original NPP modelling strategy with ALS estimates of the existing green and woody
biomass pools, which vary depending on the age of the stand.
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2. Materials and Methods
2.1. Study Area

The San Rossore Regional Park, which has been the subject of several investigations
concerning all main forest processes (e.g., [18,22,23]), is located in a flat coastal area close to
Pisa, Central Italy (43.68–43.78◦N Lat., 10.27–10.35◦E Long.; Figure 1). The climate of the
area is Mediterranean, with a mean annual temperature around 15 ◦C and a mean annual
rainfall about 900 mm; precipitation shows a minimum in summer and two maxima in
spring and autumn, which induces a clear summer dry period. The area has prevalently
deep, sandy soils, sometimes affected by problems of salinity.
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August 2015, showing the San Rossore Park bounded by the white line.

The park includes a coastal strip dominated by a Pinus pinea L. (umbrella pine) forest,
which is predominantly in an old growth phase. Most even-aged P. pinea stands are, in fact,
over 50 years old, relatively dense and have a mean height of 20–22 m; only a few of them
are younger (trees planted about 30 years ago) and have a height of 15–18 m.

2.2. Study Data

A description of most pine forest stands in the park was provided in the framework
of the San Rossore Forest Inventory (SRFI), which referred to the years around 2000 [25].
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This inventory reports the number of trees per hectare, the mean canopy height (CH, m),
the diameter at breast height (DBH, cm), the basal area (BA, m2 ha−1), the GSV (m3 ha−1),
and the CAI (m3 ha−1 y−1) of some stands, which were utilized in the current work. The
same forest attributes were measured during another forest inventory repeated after about
20 years; the stand observations of this inventory have been obtained via personal contact
with the park administration.

Spatially interpolated daily estimates of minimum and maximum air temperature
and rainfall for five years (2011–2015) were derived from the ground observations of the
LaMMA Consortium (http://www.lamma.toscana.it/, accessed on 8 January 2024) [26].
Solar radiation was then estimated by means of the ERAD algorithm proposed by [27],
which is based on Meteosat Second Generation satellite data. All these datasets have a
spatial resolution consistent with that of MODIS NDVI imagery, i.e., about 250 m.

Normalized difference vegetation index (NDVI) images taken using the Moderate
Resolution Imaging Spectroradiometer (MODIS) were derived from the NASA archive
(https://modis.gsfc.nasa.gov, accessed on 8 January 2024). This product provided max-
imum value composite (MVC) images referring to 16-day periods and it has a spatial
resolution of 250 m. All MVC images of the study area over the same years as above
(2011–2015) were further pre-processed in order to reduce residual atmospheric contamina-
tion (for details, see [18,28]).

This study also considered a high-spatial-resolution ALS acquisition taken over the
San Rossore Park during helicopter flights performed between 5th and 8th May 2015. The
helicopter operated at an altitude of about 1100 m a.s.l. with a speed of 70 kn and acquired
data with a maximum scan angle of 60◦, resulting in a mean SWAT of 1100 m. The helicopter
was equipped with a LiDAR RIEGL LMS-Q680i system, which emitted 4.4 pulses m−2 in
a full waveform modality and acquired at a wavelength of 1550 nm; the pulse frequency
was 300 kHz, with 80 lines per second and 2500 measurements per line. The original data
were processed to yield 1 m spatial resolution digital surface and terrain models of the area,
from which the canopy height model (CHM) of the vegetated land surfaces was obtained.

2.3. NPP Modelling Strategy

The main characteristics of the two models applied (Modified C-Fix and BIOME-
BGC), and the combination of their outputs are summarized in the following paragraphs;
additional details, together with relevant assumptions and approximations, can be found
in [18] and [28]. C-Fix is a RUE model driven by daily meteorological and NDVI data,
which was modified by [29] to improve GPP prediction in Mediterranean water-limited
environments. In fact, Modified C-Fix includes a water stress scalar (Cws) obtained from
meteorological data, which simulates the impact of short-term water stress on forest GPP.
Hence, the model estimates the GPP of day i (GPPi) as follows:

GPPi = ε · Tcori · Cwsi · fAPARi · PARi (1)

where ε is the maximum RUE of forests (1.2 g C MJ−1 APAR), Tcori is the respective
temperature correction scalar based on minimum temperature [30], fAPARi is the fraction
of absorbed photosynthetically active radiation (PAR) derived from NDVI, and PARi is
the incident PAR derived as a constant fraction of solar radiation, which all refer to day
i. The water stress scalar of each day (Cwsi), which ranges from 0.5 to 1, is derived from
the ratio between rainfall and potential evapotranspiration (PET), both cumulated over the
preceding two months.

BIOME-BGC is a bio-geochemical model that predicts the storage and fluxes of water,
C and nitrogen in terrestrial ecosystems [31]. This model can simulate all pools and
processes of ecosystems in a quasi-equilibrium condition using daily meteorological data
and site information on soil, vegetation, and eco-physiological parameters [32]. BIOME-
BGC then proceeds with a normal simulation of photosynthesis, respiration, and allocation
processes referring to the examined study period. The quasi-equilibrium simulation implies
that the annual sum of all respirations roughly equals GPP, while the mean annual NEP

http://www.lamma.toscana.it/
https://modis.gsfc.nasa.gov
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tends toward zero. The parameter settings originally provided with version (4.2) of the
used model for seven biome types were modified to suit Mediterranean water-stressed
conditions (e.g., [28]).

The RUE model offers the advantage of a direct remote sensing estimation of total
forest GPP, while BIOME-BGC allows for a complete simulation of all main ecosystem
processes. Therefore, the estimates of the latter model can be improved via the multipli-
cation of the ratio between C-Fix and BIOME-BGC GPP [18]. The outputs obtained must
also be corrected for the effects exerted by natural and/or human-induced disturbances on
actual forest conditions [33]. Such disturbances tend to reduce the biomass pools of forest
ecosystems and subsequently induce positive NEP due to new C accumulation. Following
this reasoning, the ratio of actual over potential GSV is assumed to represent the distance
from ecosystem equilibrium, and it is used to correct the estimated C fluxes. Thus, the
actual forest NPP of day i (NPPi) is estimated as follows:

NPPi = GPPi · FC − Rgri · FC − Rmni · NV (2)

where GPPi, Rgri, and Rmni are the BIOME-BGC estimates of photosynthesis, growth,
and maintenance respirations improved by the combination with C-Fix GPP, while the
two scalars FC (fractional forest cover) and NV (normalized GSV) describe the ecosystem
distance from the equilibrium condition [18,24]. In particular, FC regulates the forest
processes related to tree photosynthesis, while NV affects maintenance respiration. Forest
NPP is, therefore, dependent on the relationship between the two scalars, which were
originally both derived from the ratio of actual over potential GSV [18]. Distinctively,
FC was obtained by applying Beers’s law to the actual leaf area index (LAI), which was
calculated as the product of NV and maximum forest LAI simulated by BIOME-BGC.
This method, however, is effective only in semi-natural forest ecosystems composed of
differently aged trees, where the green and woody biomass pools are approximately in
equilibrium, as assumed when using BIOME-BGC.

The case is different for even-aged stands, in which the ratio between these pools can
strongly differ from that simulated when using the model. In fact, in these stands, the green
biomass rapidly reaches near-maximum values, while the woody biomass continues to
increase, depending also on the management practices applied. Consequently, the ratio
between the two biomass pools tends to decrease with stand aging, which has notable
consequences on the balance between photosynthetic and respiratory processes [34]. In a
preliminary study, [23] hypothesized that this issue can be addressed by estimating both
FC and NV via the processing of high-spatial-resolution ALS data. These data are, in fact,
intrinsically capable of providing information on the actual structure of forest ecosystems,
particularly tree leafage and GSV [35]. The independent estimation of existing green and
woody biomass pools is expected to allow for a more flexible and efficient simulation of the
stand photosynthetic and respiratory processes and, consequently, NPP.

The effects of estimating the two scalars of Equation (2) following the original and
this new method are illustrated in Figure 2. Deriving FC from NV through the use of
Beer’s law yields a unique exponential relationship between the two scalars dependent
on BIOME-BGC potential LAI. On the contrary, estimating NV and FC separately allows
for the simulation of all possible relationships between the two scalars. More specifically,
considering the proportionality between BA and FC found by [36], a family of linear
relationships between FC and NV is obtained with null offsets and slopes inversely related
to CH. This obviously affects the NPP simulated via Equation (2), which becomes dependent
linearly on CH and, asymptotically, on age, due to the tendency of CH to level off with
stand aging.
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Figure 2. Examples of relationships between FC and NV obtained via the original and new estimation
methods. The solid exponential curve shows the values of FC derived from NV through Beer’s law;
the two dotted lines show the same values estimated using the BA-FC allometric equation of [36] and
setting CH to 5 and 25 m, which correspond to a juvenile and an old-growth stand, respectively (see
text for details).

2.4. Data Processing

The available ground observations of the selected umbrella pine stands derived from
the two SR inventories were temporally interpolated to the year of ALS data acquisition
(2015). A linear interpolation method was used for all forest attributes, with the exception
of CAI, for which a reduction in the number of trees that occurred from 2000 to 2020
was taken into account. Next, both the original and modified versions of the described
NPP modelling strategy were applied to all stands larger than the approximate size of a
MODIS NDVI pixel (5 ha), the features of which were fully described by both inventories.
Specifically, Modified C-Fix (Equations (1) and (2)) was driven by daily meteorological data
of the five years preceding 2015 (2011–2015) and corresponding NDVI data extracted from
the MODIS pixels that were roughly coincident with each stand. A BIOME-BGC version
parameterized for Mediterranean pines was then applied using the same meteorological
dataset and ancillary information [24].

The available ALS CHM was corrected as described in [36]. A height threshold (5 m)
was imposed to yield stand FC estimates, which were converted into stand BA through a
locally defined allometric equation [36]. Stand height was calculated as described in the
same article and combined with BA to yield GSV estimates, which were normalized to NV
using BIOME-BGC maximum GSV and transformed into LAI and then FC through the use
of Beer’ law. The outputs of the two models considered were then averaged over the study
years and combined with these NV and FC estimates, as described in [36]. This method
yielded stand NPP estimates, which were converted into respective CAI values through
the following equation:

CAI = NPP · SCA/BEF/BWD · 2/100 (3)

where SCA is the stem carbon allocation ratio, BEF is the volume of the above-ground
biomass/standing volume biomass expansion factor (both dimensionless), and BWD is the
basic wood density (Mg m−3) [10]. The multiplication by 2 accounts for the conversion
from C to dry matter, and the division by 100 accounts for the change in magnitude from
g m−2 to Mg ha−1.
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As previously noted, the application of this method considered the CAI variability
derived from GSV, but yielded estimates theoretically referring to stands composed of trees
in heterogeneous development stages.

The actual status of the even-aged pine wood stands was instead accounted for by mod-
ifying the model combination strategy based on the previously exposed eco-physiological
considerations. This implied another application of the modelling strategy driven by the
stand FC values directly obtained from ALS data in place of those derived from NV, which
yielded a new set of respective NPP and CAI estimates.

The relationships between the temporally interpolated SRFI observations involved in
the modelling strategy (stand age, CH, BA, and GSV) were characterized through the use
of linear correlation analysis. The stand estimates of FC, BA, GSV, and CAI obtained from
ALS data were assessed versus the respective inventory observations, summarizing the
results by means of standard accuracy statistics (correlation coefficient, r; root mean square
error, RMSE; and mean bias error, MBE).

3. Results

Figure 3 shows the spatial distribution of the umbrella pine stands within the San Rossore
Park and the position of the 32 stands selected as described above. The main characteristics of
the latter stands derived from the two SRFI inventories and interpolated in 2015 are provided
by the summary statistics shown in Table 1. Their age varies between 30 and about 130 years,
with an average close to 88 years; therefore, most of the plots are old-growth forests, and
only three of them are relatively young (around 30 years). The CH average and standard
deviation are 22.0 ± 2.6 m, with minimum and maximum values from 14 to 26 m. BA is
high, i.e., 25.9 ± 5.5 m2 ha−1, with a range between 14 and 38 m2 ha−1. The observed GSV is
410 ± 85.1 m3 ha−1 and ranges between 222 and 583 m3 ha−1; CAI is 6.6 ± 2.9 m3 ha−1 y−1,
with minimum and maximum values of 3.1 and 15.8 m3 ha−1 y−1, respectively.

The inter-dependency between these variables is expressed in terms of the correlation
coefficients shown in Table 2. Age is a major determinant of CH due to its obvious positive
effect on tree dimension; however, the dependence of CH on age is slightly asymptotical, as
demonstrated by the 0.03 correlation increase brought about by the fitting of a logarithmic
instead of a linear function. Instead, BA is negatively and moderately dependent on age,
mostly due to a reduction in the number of plants per stand induced by thinning operations
during forest aging. This pattern is attested to by the observations of the two available
inventories, which indicate a strong reduction in the number of trees, particularly for the
youngest stands (up to 70%). As expected, GSV is strongly correlated with BA but only
marginally with the other stand attributes, partly due to the contrasting influence of age on
CH and BA.

Concerning CAI, a direct relationship is evident with BA and, to a minor extent, with
GSV. The relationship is, however, negative and highly significant with CH and stand age.

More specifically, the relationship between CAI and age is visible in Figure 4, which
also shows a fitted power function equation capable of accounting for over 80% of the
CAI variance. This figure confirms the mentioned expectation of a negative asymptotical
dependency of CAI on age, which should theoretically be considered by estimating FC and
NV from ALS data.

The GPP estimates obtained using Modified C-Fix for the entire park area, which are
representative of total ecosystem production, are displayed in Figure 3. The GPP predicted
for the umbrella pine stands ranges from 1500 to 1900 g C m−2 y−1, with an average
around 1750 g C m−2 y−1. Similar estimates are obtained by the use of BIOME-BGC, which
also simulates all other processes at equilibrium conditions. In particular, the autotrophic
respiration predicted by this model accounts for about 68% of ecosystem GPP.

The CHM of the park area is displayed in Figure 5, with superimposed boundaries
of the 32 selected umbrella pine stands. These stands are distributed within the whole
umbrella pine forest strip, with the youngest stands placed in the south.
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Table 1. Summary statistics descriptive of the 32 forest stands considered derived from the inventory
observations interpolated in 2015.

Variable Minimum Maximum Mean Standard Deviation

Age (years) 30 133 88 26.3
CH (m) 13.9 26.3 22.0 2.6

BA (m2 ha−1) 13.7 37.9 25.9 5.5
GSV (m3 ha−1) 222 583 410 85.1

CAI (m3 ha−1 y−1) 3.1 15.8 6.6 2.9
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Table 2. Correlations (r) found between observed age, CH, BA, GSV, and CAI (* = significant
correlation, p < 0.05; ** = highly significant correlation, p < 0.01).

r CH BA GSV CAI

Age 0.868 ** −0.215 0.293 −0.831 **
CH −0.412 * 0.165 −0.773 **
BA 0.828 ** 0.542 **

GSV 0.118

Figure 6 shows the scatter plots of the stand attributes observed and estimated through
the use of ALS data. Among these, CH is slightly underestimated (r = 0.845, RMSE = 3.03 m
and MBE = −2.71 m). The BA estimates, obtained from FC values ranging from 0.5 to 0.9
(average = 0.74), are less accurate in terms of variance explained but still satisfactory in
terms of errors (r = 0.567, RMSE = 4.82 m2 ha−1 and MBE = 1.50 m2 ha−1). The combination
of CH and BA yields GSV estimates that are only moderately accurate, i.e., r = 0.545,
RMSE = 77.9 m3 ha−1 and MBE = −26.3 m3 ha−1 (Figure 6C).

The normalization of GSV into NV yields stand estimates that are mostly higher than
0.5 (average = 0.56). When combined with BIOME-BGC potential LAI values around 4,
these estimates yield FC estimates that are much higher and less differentiated than those
obtained when using the ALS data (from 0.8 to 0.95, average = 0.89). These patterns are
obviously relevant for the prediction of NPP via Equation (2).
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Figure 5. ALS CHM of May 2015 with with superimposed boundaries of the park area and of the
32 selected forest stands (while lines).

The conversion of GPP into NPP through this equation, in fact, yields stand estimates
of around 830 g m−2 y−1, which correspond to a CAI of 8–9 m3 ha−1 y−1. These estimates
are plotted versus the respective stand ages in Figure 7, together with the fitted line of
Figure 4. The CAI estimates show only a marginal tendency to follow this line, which
indicates their poor dependence on age.
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strategies. The correlation coefficients are calculated with respect to the dotted line, which is the same
as in Figure 4 (* = significant correlation, p < 0.05; ** = highly significant correlation, p < 0.01).

On the contrary, driving Equation (2) with the lower and more differentiated ALS FC
estimates yields CAI values that are more dependent on age, as indicated by a significant
correlation with the fitted line (r = 0.778) (Figure 7).

The accuracies of the CAI estimates obtained using the two methods are, correspond-
ingly, quite different. The estimates obtained through the use of the original method
poorly reproduce the CAI measurements (r = 0.38), mostly due to an underestimation
of the youngest stands and a marked overestimation for the others. These problems
are notably alleviated when using the new method, which yields the estimates plot-
ted versus the respective ground observations shown in Figure 8. These CAI estimates
are in good agreement with the observations (r = 0.773, RMSE = 2.03 m3 ha−1 y−1 and
MBE = −0.45 m3 ha−1 y−1), with only a certain underestimation remaining for the high
CAI values of the most juvenile stands.

The spatial distribution of the stand CAI observations and estimates is displayed in
Figure 9. A general agreement between the two maps can be noted, particularly concerning
the low CAI values in the central part of the park as well as the highest CAI values in the
most juvenile southern stands.
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4. Discussion

The original version of the current model combination strategy was developed and
tested during investigations carried out both at local and regional scales (e.g., [18,22,24,29]).
The strategy relies on sound scientific bases that guarantee the efficiency of the two models
utilized and of the combination of their outputs.

Forest GPP is directly predicted by means of the parametric RUE model C-Fix adapted
to Mediterranean environments, where plant growth is often limited by water stress during
the dry period [37]. The accuracy of the C-Fix GPP estimates is obviously dependent on the
quality of the meteorological and satellite imagery utilized [29,38]: both current datasets
are available at a 250 m spatial resolution, which is acceptable in relatively homogeneous
forest environments. The GPP estimates obtained are comparable to those observed at an
eddy covariance flux tower that was installed in the same park within a different pine forest
stand. The species monitored at that tower, in fact, was Pinus pinaster Ait. (Maritime pine),
and the observation period was from 1999 to 2012 [39]; the mean annual GPP observed
from 2001 to 2005 was around 1800 g C m−2. Lower values were reported by flux tower
observations taken in a Spanish Mediterranean pine wood ecosystem (about 1500 g C m−2),
and in the dry forest of Yatir, Israel (about 820 g C m−2) [40].

In addition to C-Fix, this modelling strategy utilizes a version of the bio-geochemical
model BIOME-BGC parameterized for Mediterranean pines. The model parameterization
led to the identification of the evergreen needleleaf parameter settings reported in [32],
which have been assessed in several cases for their capacity to reproduce both gross and
net forest C fluxes [41].

The combination of C-Fix and BIOME-BGC outputs allows for the exploitation of the
high efficiency of the RUE model in terms of estimating forest GPP and the capability of the
bio-geochemical model to simulate all other ecosystem processes. As fully explained in [18],
this combination strategy retains GSV as a crucial variable to characterize the actual status
of the examined forests, which may be quite different from that considered through the use
of BIOME-BGC. This model, in fact, simulates ecosystems in quasi-equilibrium with local
environmental factors without taking into account the effects of human disturbances: the
possible impacts of these are therefore incorporated using the ratio of actual over potential
forest GSV (see Equation (2)).

The assessment of this model combination strategy has demonstrated its capacity to
predict net forest C fluxes in areas where some fundamental assumptions used by BIOME-
BGC can be considered reasonable [18,28]. This model, in fact, assumes the existence of
a temporally stable ratio between photosynthetic and respiratory biomass pools, which
corresponds to the presence of trees having diversified ages (development phases). In
contrast, even-aged stands generally show a negative dependence of this ratio on age,
which is due to several factors [21,22]. Among these, a major effect is exerted by the
levelling off of photosynthetic tissues accompanied by the progressive accumulation of
respiring woody biomass, which are both typical of homogeneously aging forests [42].
Forestry operations that are commonly applied to even-aged forest stands (tree cutting,
thinning, etc.) can also alter the relationships among different biomass pools in a way that
is difficult to assess over wide land areas and long time periods [43].

These problems can be overcome by estimating the existing forest biomass pools with
high spatial resolution and accuracy, which can now be performed by relying on ALS
datasets [44]. Numerous classical investigations, in fact, have shown the capability of
these datasets to describe major forest attributes such as canopy density, BA and GSV [45].
Recently, [23] postulated that this capability could be exploited to characterize forest
stands affected by different natural and human-induced factors and simulate the respective
evolutions in terms of gross and net C fluxes.

These considerations are confirmed by the results of the current experiment, which
concerns a sample of even-aged pine stands with different developmental stages. The
statistical analysis carried out on this sample indicates that increasing stand age affects
tree height positively while it has a minor and negative effect on the BA, which is likely
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due to the thinning operations that are applied progressively during stand aging. As
a consequence, the increase in GSV with age is marginal and likely associated with a
slight decrease in canopy cover, which jointly induce a decrease in the difference between
photosynthetic and respiratory tissues and, consequently, NPP and CAI. This pattern can
also be explained by an eco-physiological explanation: aging trees become bigger in terms
of stem radius and height but grow less rapidly due to increasing respiratory costs [42]. In
most cases, this process is associated with a reduction in the number of standing trees due
to forestry operations, particularly in the youngest stands [46].

Such patterns are poorly reproduced by the original modelling strategy, within which
the stand GSV and canopy cover are linked through LAI. The reduction in the difference
between photosynthesis and respiration simulated by this method, in fact, is entirely
dependent on the increase in GSV, which, as previously noted, is only indirectly and
approximately related to stand aging. Hence, the application of Equation (2) yields a poor
dependence of CAI on age and a strong overestimation of CAI for the oldest stands. This
issue is currently addressed via the separate estimation of the two scalars that regulate
the functioning of Equation (2). These scalars are obtained via the processing of high-
spatial-resolution ALS data, which allows for the modification of the relationship between
simulated photosynthesis and respiration. This modification improves the capacity of the
modelling strategy to take into account the effect of stand aging on both these processes.
Consequently, the new method yields CAI estimates that are more strongly dependent on
stand ages and are much more accurate.

The present findings agree with those of previous research on CAI estimation in similar
environments as well as with eco-physiological considerations about C accumulation in
differently managed stands. An example of the former case is provided by [20], who
found that mature pine stands have a CAI dependence on age similar to that obtained
here. Comparable results were obtained in studies performed in Italy at both regional and
national levels by [24,47].

The transferability of the CAI simulation method to other forest areas is obviously
dependent on the availability of high-spatial-resolution ALS datasets. Therefore, this
operation is facilitated by national ALS data acquisition programs that have been completed
or are currently in progress in several European countries [48]. The acquired datasets can
be processed using both unsupervised and supervised techniques. In the former case,
locally tuned allometric equations must preliminarily be defined, while in the latter case,
the collection of statistically representative ground samples is usually required [49].

The various steps of the original NPP modelling method are affected by limitations and
error sources, which have been analyzed and discussed in the mentioned papers [18,24]. A
new issue introduced by the current modification concerns the estimation of FC in addition
to GSV from the processing of ALS data. The current experimental results confirm the wide
body of literature existing on this subject, indicating that moderate-to-good accuracy can
be obtained through the use of unsupervised methods based on locally tuned allometric
equations. This accuracy obviously affects that of the eventual CAI estimation, particularly
for the youngest, most productive stands. The CAI underestimation currently found
for these stands, in fact, is mostly derived from the approximate characterization of the
respective FC and NV scalars. The modelling strategy would theoretically allow for the
simulation of very high CAI values provided that these scalars are correctly estimated; for
ex., in the case of a juvenile, extremely dense stand (CH = 3 m, FC = 0.9), the NPP/GPP
ratio would approach 0.75, with a resulting CAI estimate of around 16 m3 ha−1 y−1.

5. Conclusions and Future Prospects

This investigation is a natural extension of previous methodological studies aimed
at simulating C fluxes and accumulation processes over wide forest areas. This study, in
fact, focuses on an issue that is common in many managed forest stands, i.e., the impact of
tree aging on C cycling and storage. In particular, this study has built on a consolidated
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model combination strategy, demonstrating that it can be adapted to simulate the NPP of
even-aged forest stands through the use of high-spatial-resolution ALS datasets.

The general validity of the current results is, of course, constrained by the limited size
and specific characteristics of the ground and satellite datasets utilized. This particularly
concerns the consideration of only one tree species, Mediterranean umbrella pine, in a
unique study area. Thus, future research should be directed to the verification of the pro-
posed simulation method in other case studies, i.e., in different zones and forest ecosystems.
These studies could also consider the application of this method to smaller land surfaces,
taking advantage of the high-spatial-resolution datasets that are being acquired by most
recent satellite missions. For example, the use of NDVI images taken by the Sentinel-2
Multi Spectral Imager, which was launched in 2016, would allow for the estimation of forest
GPP with a spatial resolution of 10 m, which is obviously relevant in terms of fragmented
and heterogeneous areas.
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Abbreviations

ALS Airborne laser scanning
BA Basal area (m2 ha−1)
BEF Biomass expansion factor
BWD Basic wood density (mg m−3)
C carbon
CAI Current annual increment (m3 ha−1 year−1)
CH Canopy height (m)
CHM Canopy height model (m)
Cws Water stress coefficient
fAPAR Fraction of absorbed PAR
FC Forest cover
GPP Gross primary production (g C m−2 day−1)
GSV Growing stock volume (m3 ha−1)
MODIS Moderate Resolution Imaging Spectroradiometer
MVC Maximum value composite
NDVI Normalized difference vegetation index
NEP Net ecosystem production (g C m−2 day−1)
NPP Net primary production (g C m−2 day−1)
NS Normalized sock
NV Normalized volume
PAR Photosynthetically active radiation (MJ m−2)
PET Potential evapotranspiration (mm day−1)
Rgr Growth respiration (g C m−2 day−1)
Rmn Maintenance respiration (g C m−2 day−1)
RUE Radiation use efficiency (g C MJ−1 APAR)
SCA Stem carbon allocation
SRFI San Rossore forest inventory
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