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A simple model to predict how
many more failures will appear in
testing

A. Bertolino, E. Murchett

* Introduction
* Bemur model
*» Case studies

* Future work

Static models of software defects

Software metrics are used to estimate the number of
defects  in the soltware

Genera form
y = f('xl7x27 ) -7xn)

¥ ooisoadelect metric, such as:
° humber of changes required in the design
> number of errorg
* number of program changes

X can he:
* product-reluared
* process-relared




Akiyama's study

Metrics used (p roduct-related)

* program size in lines of code (Sr)

*oeount ol decisions (DE)Y

Total number of defects

d, =4.86+0.0185

ot

d,=-1.14+02DE

fof

Dynamic models of software defects

< The soltware system is considered as a *hlick box”
© Tests we developed using the operationat profile

= The reliability is estimatd withou! considering the complexity
of the program

* Testare devebped for
- increasing the relinbility
- eslimiling the reliability
Well known examples are:
* Musamodel for the qme butween Tailures data
* Yamada S-shaped model {or the tailures per time period data

»  Goel/Okumoto model for hoth




Bemar model: motivation

Sometime tdentifying an operationg profite is quite
difficalt and expensive

Operational testing is applied (o the whole system, or
L big-size portions of it

Operational testing can only start when the software
configuralion and hehavior are Fairly stahle

In general, commoniy usw debug fest methods do
not exiibit a regular trend in reliability

Oftentimes for a soltware producer modifying the test
proc¢ess is not easy

Bemar model: purpose

To predict the number of remining faiiures when:

0

¢

¢

the operatenal profile can't be idenlified

the test involved single modules or small pieces

e (est process is in (he carly phases, which are
functional and delerministic

the rate of deteclion of faitures remains quite stabie

provide the software producer with g method  (hat;
can he applicd wilhow any  change (o the test
process

establishes the effectiveness of (he tests performed
s lar

establisties & stop criterion for (he testing




Bemar model: application

Collect the durg during the test
Establish a test interva (Th Tength
Group failure dury into test intervaly

Apply the Bemar method

)

Cai’s method

Assumptions

Modules are modomly  divided in pirt O and part 1
There are N=NO+Nj remaining  defects  in the
sollware;
= Nl in part 0
— Nl in part 1

Use
Perform code review o randomly chiosen  module
Establish 1o which part (G or 1) the module (h al
shows a deree belongs
Use the number or defects discovered (g predict how
many deleets shoutd e detected during the phase ot
dynamic testing in ench part (N0, N[




Model rationale

Intuition
« The number of fatlures f can be estimaled by:
J=nt
- mothe oial number of (esty execured
- ¢ is the failure detection rute

Probiems

* A distribulion should be used instead of a known
Fatlure detection rate

* The empirical distribution for ¢ cun only he identitied
alter tests are completed

Solution

* A Bayesian approach to derive the distribution of ¢
from e ubservation ol test resulis,

Bayesian approach

"subjective” interpretalion of prohahility
allows consistent deductions (rom probability
statements, and inference from observation

given prior probabilities and new observation,
derives  updated posterior probhability:

W
P{conjecture | observation) =

P(observationiconjecture) P(conjecture)
P(observation)




To predict the failures

A random wvariahle T, (hat 1alkes values in [1.M], is
defined ax the distance between two suecessive ailed
lest intervals

First step

Predict the aumber of laited test intervads Ny,

Second step

Predict the number or expectied Taitures Ng

First step
Establisk u prior distribution for T

Derive a posterior distribution Tor T (alter @ given
aumber & of test intervals):

Yy
pet (1 (1)
o B ; /
PT=ilF)=— U
ZP'JU)'[*.] [1—“.]
/=1 j fl
Predict the number ol failed fest intervals

NTT
E/’.’ [T]

N Frie ™




Second step

+ Derive the mean numhber ol failures observe d
within @ fuiled test interval: FA[F]

« Predict the numbg of Failures that the product
will show at the end  of the test

NF,k = Nppy o B LF]

F Sets of failure data
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Future work

* Find more oficaciouy Wiays (oexpress prior
knowledge

= Quantily in advance (he goodness of Bemar
predictiog
© Validate the Bemar method wilh more data

= Use of Bemar in combinalion with a reliability
growth model
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Abstract

This paper deals with dynamic models 10 evaluate how many more failures will be observed in
future tests, hased on the failures ohserved so far. The assessment of reliability through testing is
now one of the most matwre liclds in soltware enginecring. There exist ens of refiability growth
models, and several ool for applymng them. The muajor usmlmpliﬁnxhl’ these models are that tegt
cases we randomly drawn from (he eperational profile, and tha( as defects are found and
removed, reliability will exhibil an mereasing trend. Both assumptions are hardly salistied in the
tirst stages of the testing process or lor the lesting of small modules. Besides, there are not
reasons why commonly used test methods al this time, such as spectlication-hased testing or
branch coverage, should exhibit 1 regular trend in reliability.

These are the motivations {or the wark reported here. A dynamic model is introduced that can be
applied to g%;‘cdict the number of remaining faillures in carly test phases. Tt is called the Bemar
model. The Bemar model iy quite general and makes no assumption on 4s to how tests are
selected. The most aliractjve leature is indeed (he simplicity of the model: testers have just to
collect the detection rates of lailures, e, (he intervals hetween subsequent Failures. No

estimation of parameters of the product or of the development process is required.

Keywords: Bayesian approach, defect count models, functional testing, number of expected

failures

1. Introduction

In spite of great advances in the softwire engineering licld since the complaints ahout a software
crisis began (o spread in the mid-seventics, the state of practice in software development is stil]
such that producing delect-froe code remains wishiy! thinking. On the contrary, coping with
soltware Failures, during development and after release, is umong the hardest tasks of managers,
while testing, dehugging and mainenance activities stll consume the largest part of development
effort and resources. For these reasons, methods o estimate the defeet contents of soltware are of
great interest for m anagers and esters.

Researchers have devoled much attention to this probiem and have proposed many models to
quantily faults and failures. It jy important 1o distinguish hetween (wo different approaches that
have been taken. One approach consists of looking at properties of the present or past products,
and/or at purameters of (he development process and then, using these observations, trying to

make a guess ol the wtal number of defeets, or faults, in the current product. A dilTerent approach



is instead to observe defeets, or, more properly, failures, as they show up in testing. Based on
the observed behavior, one then uses statistical inference procedures 1o predict the number or the
time of ailures expected in future wests or in operation.

Depending on which of (he two approaches is followed, delect counting models have been
calegorized as static or dynamic, respectively [Conte et al., 1986, Chupter 7). However, the fact
that static and dynamic models dssess two dilferent entitics, namely defects in the code the firgt
and failures to be ohserved the second, must he anderseored.

Static models are very allractive 1o managers, hecause they provide “numbers”, which the
managers are eager of, very early in advance in comparison with dynamic models. The latter can
only be used lute in the fife eyele, e, in the lesting phases, when 1 may be o late to
etticaciously re-direct development elTorts, [n fact, static defect models are used to identity more
tisky modules and consequently re-aliocate testing resources or modily design. In addition, static
models claim to estimate the (o] number ol defeets. Ag by testing we find and fix fuilures, then,
static models would provide a prediction on how many defects are leltin the code, which may
SCEI A very atlractive measure at lirst glance, i
On the other hand, a defect can be more or lesg disturhing depending on whether, and how much
frequently, it will eventually show up 1o the i user (and depending of course on the
seriousness of ity consequences). Indeed, in many orin few, some defects wil] nevitably escape
lesting and debugging. So, in the end, the reqi Important measure (o decide whether a product can
be released is sollware reliability; e, the numher ol fuilures, and not of remamning defects, must
be estimated. Unti they do not cause failures, remaining deleets do not trouble neither customers
nor producers,

The right position is tha statie and dynamic models are hoth uselul, but For dilfercnt objectives.
In the front-end phases of the life cycle, manugers should use static models to apportion sk
among modules and o allocae development Gme  and resources. In the final stages of
development, instead, they should use dynamic models in order 10 evaluate how much disturbing
are the defects that are mevitably lel'l, and o decide whether the product is ready lor delivery,

This paper deals with dynamic models 1o evaluate how runy more failurey are expecled to he
observed in ature tests, hased on the nilures ohserved so fur. The assessment of reliahility
through testing is now one of (he most mature fields in soltware engineering [Lyu, 1996). There
OW exi1st tens of weliability growth models, and several tools for applying them, in combination
with rather sophisticated techniques 1o evaluate the accuracy ol the measures given by the models,
and to select the most appropriate model for g specific data set.

Existing models, though, all share the underlying assumption that the test cases are randomly
drawn from the eperational prolile, and that ag deleets are Tound and remaoved, reliability will
exhibit an increasing trend. Both assuimptions are hardly sutisficd in the first stages of the testing
process. Industrial test processes commenly undergo several subsequent steps, identitied with
differing terms, from unit 10 subsystem, and o system testing, Operational testing can only start
when the soltware configuration and hehavior gre Fairly stabic, and iy applicd to the whole

System, or to hig-size portions of it. For the testing of single modules, or of small subsystems,
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identifying an operational profile is guite difticull and expensive, and perhaps not sensible at all.
Besides, there are nol reasons why commonly used 1est methods at this time, e.g., branch
coverage, should consistently exhibit g regular growth in reliahifity.

These are the underlying motivations for the work reported here. We introduce o dynamic model,
called the Bemar moded, that can he applicd o predict the expecled number of remaining failures
in early test phases. The Bemar model i quite general and makes no dssumplion on as to how test
are selected. The most altractive Teatwre is indecd the simplicity of the model. Tt only requires to
collect the intervals of time hetween subsequent fuilures. No estimation of parameters of the
product or of the development process is needed.

In the next section the underlying intuitive model is deseribed; the mathematical Formulation is
provided in Scction 3. The mode! has heen applicd to some real world data; the results are
presented in Section 4. Aithough the data availuble dre oo poor to validate the model, these first
results look promising. This work is sl in & preliminary phase; we hriefly outline future

directions in the Conclusions.

2. Model Rationale

In measurement, one tres to map chservations of the empirical world to mathematical entities that
can be formally manipulated. Modols are defined trying 10 capture one's  intuition and
understanding of the real world: indeed, "intuition is the starting point for all measurement”
[Fenton and Pfleeger, 1997]. In (his section we present the intuition underlying the Bemar model.
The stimulus Lor this work came from the analysis ol the test results collected over several
projects by o soltware producer, namely Ericsson Telecomunicazioni S.p.A. in Rome. This
producer routinely logs for cach product the filures observed since early test phases until beta
testing, and is interested in fnding more eflective Ways 1o use these data For project management
and product control, So far, these dat are used (o derive measures of Faull densitly, that is the
ratio between the cumulative numher of fuilures observed in a given time period and the product
size, expressed in lincs ol code.,

With regard o the results from hety lesting, which is aperational, standard approaches for
reliability estimates und prediciions can he applied. In [Bertolino et ul., 1998], we describe a first

case study conducted at the same producer, aimed experiencing the use of soltware reliability

engineering techniques. But, reliahility growth models could not he applied to the early test
phases, for the reasons we explained in the introduction.

It must be made clear heforchand that i 18 not the cuse that this producer is looking tor new
testing methods o be applicd that would Lacilitate failure predictions (as could be for instance the
case 1t fault seeding approaches were applicd). On the contrary, (his producer has a well
established and formalized (st process, and is looking for eflicient metrics that can he applied to
the data coliccted. Tt is plausible to assume that 1o a certain extent this proviso would be the same
for many other producers.

We surveyed the literature in search fur a dynamic model that could he applicd to the test outputs

from the eurly test phases: reliability growth models could not he used, as eardier explained. An
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interesting finding of (his survey wuas [Cui, 98]0 Cai has proposed a model o predict the
remaining number of defects in the code bused on the [ailures that are abserved in testing, which
is in a sense a hyhrid approach between static and dynamic models. Since the assumptions
underfying Cai's mode! reasonably held Tor the prajects ol this producer, the madel was applied
(o the data availuble, in order o see I the estimation ol defects provided by the model was
conclusive for our siluation, but with negative resulls.
We investigated on the reasons why Cui's methad, which reportedly worked well on his data, did
not function on our data. One of (he findings was that Cai's model does not consider the time
occurrence of failures. Inwitively, Cai's model i similar o fault seeding methods, but instead of
considering the proportion hetween seeded taults and unknown faults, Cai divides the soltware
under test inlo (wo parts, and uses (he relative occurrence of (real) faults in cither parts. The
model is thus only concerned with the number of fuults and possibly with how these are
distributed among the modules ol a system, but not with the time of their detection,
In our opinion, the rate of failure discovery is a fundamental parameler, and should be inciuded in
the model. Tn sim ple words, the scenario we have I mind is that # failures are detected after
days of testing, and that we want (o estimale how many more failures we expect o find in the
next o days, it we continue 0 st in the same way, We reasonably think that the prediction
should be different il the Failures are untformly distributed over the o days, or if’ instead all the
fuilures are, say, discovered in the Tirst day of lesting, and then the remaining (d - 1) days exhibit
no failures.
We have consequently defined a new dynamic model laking int account the time distiibution of
failure discaveries. The intuition behind this new model is very simple: assuming that we can
know a priori, or somchow estimate, the rate of failure findings over the sequence of executed
lests, say £, then i by n we denole the tol number ol lests o he executed, quite ohviously the
expected number of tailures £ would he estimated hy:

(1) f=n*r
OFf course this formula is rather naive and cannot be used in practice in this simplistic Form,
because the rate of fuilure detection intesting can never be established with certainly; it is rather a
random variable, for which a distribution shouid he identilied. For cach new product under test,
the empirical distribution of the failure detection rate can only be precisely drawn only after the
testing s completed. However, il we could assume that, atier having observed the test results for
some time it stabilizes (e, il can he used as an approximation of the real, so far unknown
distribution, to predict future behavior), then a formuia generalizing Eq. (1) could be used. This
is the underlying intuition ol the Bemar model. To derive the distrihution ol the Tailure detection
rate from the obscrvaiion of es! results, Bemar uses o Bayesian approach. This is described in the
next section,
According to its justilication, we ex peet that Bemar performs hetier when the e of detection of
ailures in testing remains more or less stable. This is in contrast with the assumption underlying
reliability growth models. In fact, the Bemar model should he applicd to carly test phases, and in

general to all those situations in which failures are Tound with some regulanty, and remains valid
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only Tor limited periods, ic.. Gl the pomt in which the rale of occurrence of lutlures starts to
decrease as an eflect of having remaoved ahigh number of fauls,

In other words, the Bemar model performs well s long as reliability prowth models cannot yet be
applied. It is foresecable thal the Bomar maodel and a reliability growth model can be used 1n

complementury way. How these could he combined will he object of Futyre investigation.

3. Description of the Bemar Model

Before presenting the delinitions and formulas adopted in the model, the typology of data
available is described.

‘The software producer provided us with sets of Failure data collected over several projects during
the phase ol subsystem testing, The lest cases are deterministically chasen by examining the
functional specifications and altogether bolore test execution start (which means that the number
of tests to he exceuted is decided in advance). The tests are not exceuled continuously, but only
during the working days (i.c.. live days in o week) and 8 hours per day. For each project, the
mformation registered consists of the sturl and end dates ol the test phase, and of the calendar day
(but not the day tme) of discovery of cach Iailure. Test execution (CPU) times were not
recorded,

Based on the coarse granufarity ol available data, we decided 10 group [ailure data into test
ntervals (TIs). A TI could he as long as a day, a week, or any ather length (for instance
measured in seconds), depending on the glohal duration of the esting, the precision of the data
available and the amount ol ohserved failures,

A TEin which atleast a failure is observed is called a juited rest interval (FTI), otherwise it is said
a suceessiul TL Note that, anyhow small 2 e nterval is chosen, untl this remaing larger than a
single test there will always be a chance o observe mor than one (ailure within a failed test
interval. Henee, we predict the expected number of Tuilures in two steps: Tirst we predict Ny,
Le., the number of FTIs is estimated. Then, Trom this number, we derive the number of failures
Nr.

In the first step, @ estimae N we deline the distunce between two subsequent FTIs as a
random variable T, that can ke discrele values within an intervai (1, M] (where M s a maximum
fixed value). Precisely, lor cach 7 within [1.M], the associated prohahility mass function (pml),
pti) = P(T=i), gives the probability that the next ilere will he ohserved after 1 Tls fie, 7 -1
successlul Ts ure ohserved and then the ith THis a FTD,

M
Denoting by NTI the wotal number of test intervals (o he performed, and with E[TI=3 p(i)-i, it

i=1

can he shown that the following tormula holds':

(2) NTI=N,,, -E[T]

' Actaally, 1his formuta holds precisely Wit e be sssumed that the fasi testinterval is o failed one. Otherwise, the
lelt=hand side shoukd he decrensed by the nomber of 1est ingervaly occurring between the last FTT ad the lust test
interval. This adjustment will he neglected in the paper,
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Since for cach project the number of (sl intervals can be casily derived (remember that the
functional test cases are preselected in advance), Equation {2) ahove can he solved for Nerg,

yielding:

(3) NTT
Npp = E_—
[T]

We need now a procedure (o derive E[T]. Looking at the data availuble, we see that the failures
are variously distributed over the whole test period und it is not generally the case that towards the
end of the functional test period less failures are ohserved than at the beginning (as it is expected
in operational testing). In particular, the duta do not show any consistent reliability increasing
trend, appearance which was conlirmed by the Lapiace wst [Kanoun et al., 19973 conducted over
all the sets of data. In Figure 1, we show lor instance the failure data relative © one of the

products analyzed.
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Figure I Failure data for 1 product

To develop a prediction procedure which is sensible, and corrclated with the behavier of a given
product under (est, it is desirable o use the test results cotlected as Tunctional test proceeds to
adjust an initial estimate of the pml. Hence, we chose to adopt a Baycsian approach.

In the Bayesian framework, probabilitics are meant to describe an obscrver subjective knowledge
of yet-unknown cvents. This knowledge evolves s events are observed. Tn this context, the pmf
of T p(i) 1s tuken as the prior knowledge about the behavior ol o product under test. Le., pr(i) is
taken to mode! a tester's subicctive belie! ahout the rale of latlure detection before some evidence
(the test results) about the product under test is ohserved. During the performance of the
functional testing, the realization of 2 sequence of test intervals with and without failures is
observed. Thanks (o this evidenve, the tester's knowledge about this product evolves and a new
distribution for the pmf ol T, calicd the posterior distribution, can be derived, Denoting by Fie the
sequence of observed outcomes (lailed/suceessluly for the first £ Tls, the posterior distribution
prel) then gives P(T=i | Fi), Len itis the upduie of p{i} alter having observed the sequence

Fi. Applying Bayes' formula we have:
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PiwlT=0PEIT =)

@ pra)=(PT=i1F)==
D PURIT= )R, (T=))

=t

in which the term P(FIT=i) is usuully called u fikelihood function. To derive it, we can consider
that, il T=/, then the probability of observing a (uiture in the next test interval is 1/, i.c.:

I o
- i F s faited

(5) PRIT=i=f @
h==) iF Fy is suceessiul
i

Substituting this in Formula 4, and ferating the same reasoning also to the subsequent test

intervals, we inally obtain®

LYy
o (-1
i {

Iy

(6) plrai) = — T
ZPT(_/)'(“. [~=
=1 J t
which gives the posterior pml for the random varable T, after observing & test intervals, out of
which fwere [ailed.

In general, deriving a prior distribution o the prahabifity of interest is a difficult task, which also
generates some perplexity towards the uselulness off Bayesian inlerence methods. In our case, the
form of pr(i} can be derived on the hasis of dut avadlable rom similar products, In general, some
suitable representation of ignorance is often adopted, like Tor instance the uniform distribution,
though actually shsolule ignorance can never be assumed.

By using the posterior pml provided by formula (6) to derive E[T] by (3) we can then derive
NETigs Le., the number of FTls expected after NTT test intervals, using the test inlormation
collected during the Iirst & st intervals.

From Neprg the total number of Gilures N needs now o be estimated. This clearly depends on
how many failures on average are ohserved within 1 FTE We can ugain define a random varizhle
Fto represents the number of Tilures ohserved within a FTL and then derive Np [Tom Nppp, with
Np =N, - E[F].

We dertve an empirical pml lor F by considering the results from the first & Tls. In particular, by
analyzing the sets of Luilure data available, @ maximum number ol Lwilures per FTT, MF, can he
fixed. From the distribution of the number of [uilures within a lailed test interval, we are able to

M

caleulate the expectation Ll Fl= 3 B(F=0)i-
il

*In the generalization of this formula from the case =110 larger values ol £, we have in reality used some relixed
assumptions, which could raise seme objection © s validdity from o purely theoreticnt viewpoint. In Future work
we will [ix these problems. However, on the sel of dat) avidlable, (his formula performed better than other
theoretically stronger maodels.




Therelore, alter having observed & Tls, the number of faitures that a product will show at the end
of the functiona! est is:

7)) Ny = Ny s - 11 P
The formulas (3) and {7) arc o he used mcrementatly during functional test, i.e., considering
each tme a greater value lor &, and adjusting the pmfs involved correspondingly. In this way, the
prediction about the total number of Tailures Tor a product as testing proceeds will be more and

more precise.

4. Application

The Bemar method has been experimented on the Tailue data relative © (he functional test phase
of several products; we have also ticd it on some operational test results (for which we expect the
model is not working as well as [or functiona] lesting). We hriefly preseat the results in sections

4.1 and 4.2, respectively.

4.1 Functional testing

Belore applying the Bemar model o the ditta refative o functiona! testing, we investigated ways
to derive a suitable prior distribwtion for T,

About these data we knew that the products performed similar functionadities, they had been
tested by the same producer and with the same methodology. Tt was plausible o expect that the
st results could exhibit a similar hehavior, which would be a uselul luct (o derive o prior pmt for
T.

More in general, it is probuble that a software producer has coliected similar information about the
functional tests developed in the past. In the case that the products exhibit a similar behavior, the
mformation collected {in particulur the mean and the variance) can be usetul to establish a proper
prior pmf ol T For the next product that the producer will west.

First of all, analyzing the fuilure data we noticed that the distance belween suhsequent FTIs was
not greater than 20 and that the maximum numher of lailures per FTT was 6. Therefore we
considered that the variable T could tike discrete values within the interval [1.20} and we put
MEF=6,

Then for euch project we derived a histogram of the lime distance (measured in clapsed test
intervals) occurring between  two subsequent FTIs. In Figure 2 we report the  histogram
corresponding to the product shown in fgure L Analyzing the histograms for this and all the
other sets of data available, a cortain regularity in the failure hehavior under lunctional testing was
in faet noted. This observation would sustain the hypothesis that 2 general distribution for the
distance between (wo successive FTIs for the Tunctional test process ol this producer can be

identified.
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Figure 2: Histogram for the random variable T

In particular, alter some analysis, we decided 10 approximate the prior pml ol T with a normal
rruncated distribution. We devived the normal curve with meun and variance equal to the sample
mean and variance, and truncated it hetween | and 20, Since the data we have are grouped within
intervals, we then approximated this continuous distribution with a discrete one.

The approach we followed 1o verily the model was the following. Considering the whole series
of test outputs ol 2 product, an intermediate (est mterval Tl is taken as the current point. From
this point, the cumulative number of failures that will be observed for the whole testing period is
estimated applying the Bemar model. For the prediction, therelore, we use the failure data
collected [rom the heginning of the Tunctional test up Lo the sclected point T,

This computation is repeated lor progressively longer west intervals (i.e., for greater values of &),
for instance after the first 5 Tls, alter the first [0 Tts, 15, und so on. In fuct, since a Bayesian
inference procedure is used, the prediction is progressively updated considering each lime a
greater amount of collected data.

In Figure 3 the resulls ohtined applying the Bemar method 10 some ol the sels of data available
are shown. In these figures on the horizontal axis we pul the number of 1est intervals, £,
considered (o make the prediction, and on the vertica] axis the cumulative number of failures, NF,
predicted at the end of Tunctional wsl, The doted Tine represents the cumulative number of failures
predicted at the end of the functional test using as prior pml of T the normal truncated
distribution. The cffeet of improvement ol the prediction as more Lest outpuls are obhserved is
clearly visible. To compure the resulls predicted with the real ones, in the ligures we drew the
actual number of [aitures counted at the end of the lesting (lhe horizontal line). The strip around
the horizontal line marked with verticul segments signs the zone where the relalive error of the

esttmation is below 109

Y
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Figure 3: Predictions with (he Bemar madel

In general, for ol the cuse studics considered, we could ohserve that the model starts with very
high ervors, but alter ahout @ half of the test period, the prediction hecomes quite good. We are
currently studying other ways (o derive o prior pmi for o specific producer from the test result
observed in carlier projects. We expectthat a prior pml which it better (o the st process under

tnvestigation should converge more quickly o valid prediction.



4.2 Application to operational test data

We are interested in discovering il and how the Bemar model can he apphied as a complementary
approuch o relizhility growth models or in those situations in which the Tailure data relative o
operational wsting do not show a reliability ncreasing trend. For this reason, we also tried our
model on some operational test resuits coliceted by the same producer during beta testing.

The problem in applying the Bemar model o this kind ol data was that operational test results
collected previously on similar projects were nol available. Therefore we could not apply the
criteria described in the previous section for the selection of a prior pmf of T. We hence decided
to adopt a uniform prior distribution.

For the rest, the approach (o apply the Bemar model o the data collected during the operational
phase is the same ot that described in Section 4.5 we took an intermediate test interval £ as the
current point of the operational test, and from this point we predicted the expected final number of
tailures. This computation has heen repealed taking progressively longer periods. We report the

results in the Fgure helow.
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Figure 4: Prediction of the Bemar model for heta lesting

The performance ol the model hecomes aceeplable alter 110 Tls, over ¢ complessive period of
180 TTs. We must add that atempts o apply standacd reliability growth models 1o these same data
were not successtul; the probiem was that the reliability did not regularly increase, as required by
those models,

On the contrary, we expect @ worse performance off Bemar over data that exhibit consistent
relability growth. We have tricd the model on o set of data taken from the literature (Ahdel-
Ghaly, 1986). These data are reported as execution limes in seconds between successive Lailures.

To apply our model, we have grouped the failure data into test intervals of 600 seconds,
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Figure 5: Prediction of the Bemar model (or operational testing

5. Conclusions

This work is still in 2 preliminary stage. We are mvestigating dynamic models For monitoring and
controling ‘the wst process based on ohserved test resuils. In this paper we have brietly presented
the motivations, the formulation and o lew applications o a new model that can he applied to
failure data 1o prediet the expected numher ol failures in fulure tests. The model is still
incomplete, and needs lurther validation on more data. In particular, the Tormula used to make the
prediction needs o he augmented with some method [0 estimale in wdvance the error bound. For
the time heing, we have cvaluated the relative crror dgainst known results, and the model
performance looks clrLouraging.

This model assumes that the detected failures are distributed over the whole test period, and that
celiability docs not exhibit a regelar trend. This could he the case Tor the early test phases, when
many fatlures still remain, and standard reliability growth models cannot yet be applied. In this
sense, we believe that this model works in complementary way with reliability growth models,

and in Lact we intend Lo investigate an approgch to use both models in combination,
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