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The ability to create and manipulate strongly correlated quantum many-body states is of central
importance to the study of collective phenomena in several condensed-matter systems. In the last
decades, a great amount of work has been focused on ultracold atoms in optical lattices, which
provide a flexible platform to simulate peculiar phases of matter both for fermionic and bosonic
particles. The recent experimental demonstration of Bose-Einstein condensation (BEC) of light in
dye-filled microcavities has opened the intriguing possibility to build photonic simulators of solid-
state systems, with potential advantages over their atomic counterpart. A distinctive feature of
photon BEC is the thermo-optical nature of the effective photon-photon interaction, which is intrin-
sically nonlocal and can thus induce interactions of arbitrary range. This offers the opportunity to
systematically study the collective behaviour of many-body systems with tunable interaction range.
In this paper, we theoretically study the effect of nonlocal interactions in photon BEC. We first
present numerical results of BEC in a double-well potential, and then extend our analysis to a short
one-dimensional lattice with open boundaries. By resorting to a numerical procedure inspired by the
Newton-Raphson method, we simulate the time-independent Gross-Pitaevskii equation and provide
evidence of surface localization induced by nonlocality, where the condensate density is localized at
the boundaries of the potential. Our work paves the way towards the realization of synthetic matter
with photons, where the interplay between long-range interactions and low dimensionality can lead
to the emergence of unexplored nontrivial collective phenomena.

I. INTRODUCTION

The study of exotic phenomena arising from the in-
terplay between low dimensionality and strong interac-
tions has been a very active field of research in the last
decades, ranging from electronic and magnetic properties
in low dimension [1] to the emergence of topologically
ordered states [2]. While the discovery and characteri-
zation of such phenomena was first made in solid-state
systems, the recent advances in the fields of ultracold
atoms [3], ultracold dipolar molecules [4], and photon-
ics [5, 6] have granted the possibility to engineer alterna-
tive physical systems to simulate solid-state matter. The
development of such an artificial matter, often referred
to as synthetic matter, offers the ability to manipulate
with unprecedented precision the physics of the simu-
lated material, e.g., interactions and presence of artificial
magnetic-orbital fields [6, 7], allowing us to unveil prop-
erties and phases of matter in physical conditions that
are difficult to access in solid-state materials [8].

In this framework, the recent experimental demon-
stration of two-dimensional Bose-Einstein condensation
(BEC) of light in dye-filled microcavities has opened
the possibility to use photons to simulate the equilib-
rium properties of bosonic matter. First observed in
2010 [9, 10], photon BEC is an out-of-equilibrium state
of light showing effective thermal steady-state properties,
achieved by pumping photons into a dye-filled microcav-
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ity in proper conditions. The geometry of the cavity mir-
rors provides an effective trapping potential and mass to
photons, while the pumping sets their chemical poten-
tial. Specifically, the effective trapping potential is in-
duced by a proper shaping of the cavity mirrors, which
were curved in Refs. [9, 10] to provide an harmonic con-
finement (a later experiment on the same system was
reported also in Ref. [11]). The effective mass results
from the freezing of the longitudinal quantum number
of the cavity modes populated by the photons reemit-
ted by the dye molecules. This is obtained by using a
short distance between the cavity mirrors to have a free
spectral range that is comparable with the spectral width
of the emission line of the dye solution within the cav-
ity. Thermalization of the photon gas and the possibility
of a non-vanishing chemical potential is achieved by re-
peated absorption and emission of photons by the dye
molecules pumped with an external laser, with conse-
quent conservation of the average number of photons. In
these conditions, albeit the system is out of equilibrium,
the resulting state of the emitted light can be seen as
effectively in a steady state close to equilibrium [12, 13],
and described by a wavefunction Ψ(r) and chemical po-
tential µ, quantifying respectively the electric field and
the energy stored in the condensate optical mode, obey-
ing a proper Gross-Pitaevskii equation [9, 14–17].

Recently, in 2019, a photon BEC in a double-well po-
tential was experimentally obtained [18] using similar
methods to those in Refs. [9, 10]. The effective two-well
potential for photons was imprinted by properly shap-
ing the cavity mirrors using dedicated delamination tech-
niques. Importantly, these techniques can be used to im-
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print any potential, e.g., lattices or non-periodic poten-
tials [19–21]. The experimental demonstration of pho-
ton BEC in a double well, together with the ability to
realize arbitrary lattice potentials, has opened the possi-
bility to use photons BEC to realize synthetic matter
at room temperature, envisioning the study of many-
body phenomena in parameter regimes that are often
unexplored in cold-atom experiments. In this respect,
a peculiarity of photon BEC is the nature of the ef-
fective photon-photon interaction, which arises from a
thermo-optical nonlinearity and it is thus intrinsically
nonlocal [15, 16, 22]: The condensate intensity heats up
the medium at some point r, causing a spatial modi-
fication of the index of refraction that depends nonlo-
cally on the intensity via a proper Green’s function. As
such, the interaction strength at a given point r depends
on the wavefunction of the whole condensate, thereby
manifesting its nonlocal (i.e., long-range) nature. In ad-
dition to the nonlocal thermo-optical nonlinearity, also
local attractive interactions based on the optical Kerr
effect are present. In current experiments, these interac-
tions are much weaker than the thermo-optical one, and
their influence on the photon BEC is thus negligible. As
of today, experiments and theoretical analyses of photon
BECs are performed considering effective photon-photon
interactions with very short range. In the perspective of
using arrays of photon BECs as simulators of complex
many-body quantum states, a deeper knowledge on how
the presence of strong long-range interactions affects the
condensate properties is highly desirable.

In this paper, we analytically and numerically study
the effect of strong interactions with arbitrary range in
photon BEC. We first present our results on the two-
well potential of Ref. [18], and then extend our anal-
ysis to a short lattice of six sites with open bound-
aries. We numerically determine the condensate wave-
function and corresponding chemical potential by solv-
ing the time-independent Gross-Pitaevskii equation with
nonlocal nonlinearity [15], resorting to a numerical algo-
rithm inspired by the Newton-Raphson method [23, 24].
We simulate the photon BEC in different regimes of inter-
action, and find that the nonlocal nonlinearity can induce
a level inversion in the low-energy spectrum, remarkably
stabilizing a ground state where the condensate density
localizes at the boundaries of the potential.

This paper is organized as follows. In Sec. II, we study
the effect of the nonlocal nonlinearity in the double-well
potential. In Sec. III, we extend our discussion to a
short one-dimensional lattice, providing evidence of the
onset of surface localization of the condensate density,
in proper nonlocal regimes. We draw our conclusions in
Sec. IV, and provide additional details in the appendixes.

II. BEC IN A DOUBLE-WELL POTENTIAL

We open by discussing the effect of a nonlocal interac-
tion in the case of the BEC of photons in the double-well

potential [18]. We first introduce our model and nota-
tions, and then present our numerical results.

A. Model

In photon BEC, the effective steady state is described
by a time-independent nonlocal Gross-Pitaevskii equa-
tion in two dimensions [9, 15, 16][
− ~2

2m
∇2+V (r)+

∫
dr′G(r, r′)|Ψ (r′)|2

]
=µΨ(r) , (1)

where r = (x, y) denotes the two-dimensional spatial co-
ordinate, ∇2 = ∂2/∂x2 + ∂2/∂y2, and V (r) is the effec-
tive potential. The wavefunction Ψ(r) is normalized as∫
dr |Ψ(r)|2 = N0, where N0 is the total (average) num-

ber of photons in the condensate mode, and the chemi-
cal potential µ encodes the energy stored in this mode.
The Green’s function G(r, r′) describes the effective non-
local photon-photon thermo-optical interaction [15]. In
the following, we consider an isotropic interaction, i.e.,
G(r, r′) ≡ G(r− r′). We can equivalently recast Eq. (1)
by rescaling the wavefunction as Ψ(r) =

√
N0ψ(r), where

now ψ(r) has unit norm, and by introducing the nor-
malized interaction kernel K(r) = G(r)/g where g :=∫
drG(r) quantifies the interaction strength, i.e.,[
− ~2

2m
∇2+V (r)+ gN0

∫
dr′K(r, r′)|ψ (r′)|2

]
=µψ(r) .

(2)
The sign of g in Eq. (2) determines the nature of the
interaction. It is repulsive, or defocusing, for g > 0,
while it is attractive, or focusing, for g < 0. From now
on, we focus on the case of repulsive interaction g > 0.

The goal now is to study numerically the effect of the
nonlocal interaction on the condensate wavefunction. To
reach this goal, we restrict ourselves to one dimension
(r = x and ∇2 = d2/dx2). This choice allows us to dras-
tically reduce the numerical complexity of the problem
while granting access to the most relevant informations
on the interplay between the interaction strength and its
range, encoded in K(x, x′) as detailed below. In our sim-
ulations, we model the double-well potential as

V2W(x)=


mω2

2

(
xmin

π

)2

cos2

(
πx

xmin

)
(|x| < xmin/2)

mω2

2

(
|x| − xmin

2

)2

(|x| ≥ xmin/2)

,

(3)
where the subscript “2W” stands for “double-well”. In
Eq. (3), ω is the effective trapping potential on each min-
imum, and xmin is the distance between the two minima.
In the case of local interaction, the kernel is a delta func-
tion K(x) = δ(x). For a nonlocal interaction, K(x) de-
scribes heat transport, and its form is found by solving
the appropriate heat diffusion equation [15–17]. Here, to
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FIG. 1. (a) Colormap of the experimental data for the double-
well potential V (x, y) from Ref. [18]. (b) Cut along the x-axis
of the data in panel (a) (blue points) for y0 = 73.675µm,
marked by the dotted horizontal black line, and fit with the
function in Eq. (3) using

√
mω = 0.117346

√
THz/µm (i.e.,

ω ' 1.08× 1012 rad/s with m ' 7.76× 10−36 kg) and xmin =
12.5µm (red line, see Appendix A). The origin of the x-axis
in the panel (b) has been shifted to have a symmetric double
well around x = 0 [which corresponds to x = 73.5µm in panel
(a), marked by the vertical black dotted line].

limit the numerical complexity, we model the kernel as a
regularized box potential of the form

K(x) = K0

[
tanh

(
x+ σ

w

)
− tanh

(
x− σ
w

)]
, (4)

where σ denotes the effective thermo-optic interaction
range (i.e., 2σ is approximately the size of the box), w
quantifies how sharply the interaction goes to zero around
the box boundaries x = ±σ, and K0 = 1/

∫∞
−∞ dxK(x)

ensures the kernel unit normalization (for sufficiently
small w, K0 ' 1/2σ). The choice of the box poten-
tial in Eq. (4) allows us to systematically study the ef-
fect of nonlocality while keeping a reasonable numerical
complexity of our simulations (details are given in Ap-
pendix B). Hereafter, we refer to the case K(x) = δ(x)
of local interaction as σ = 0.

In Eq. (3), we have two independent length scales:

ξ =
√

~/mω, which is the characteristic size of the wave-
function density within each well, and the distance be-
tween the minima of the two wells xmin. To use experi-
mentally meaningful values in Eq. (3), we take the photon
mass as m ' 7.76× 10−36 kg and fit the low-energy part
of the potential from Ref. [18], in particular the cut along
the axis of the double well, using the function in Eq. (3).
The result of the fit is shown in Fig. 1. From the exper-
imental data, we extract the distance between the two
minima xmin ' 12.5µm, and estimate the trapping fre-
quency in a single microsite as ω ' 1.08×1012 rad/s, from

which ξ =
√
~/mω ' 3.54µm follows (see Appendix A

for details). This allows to rewrite Eq. (2) in dimension-
less units, using ξ and ~ω as characteristic length and
energy scales, respectively.

B. Numerical method

We then simulate Eq. (2) in dimensionless units by re-
sorting to a numerical method inspired by the Newton-

Raphson method [23, 24], which is detailed in Ap-
pendix B. We here report the main steps for the sake
of clarity. Our goal is to find the condensate wavefunc-
tion ψ(x), and associated chemical potential µ, for given
values of gN0 and σ, using the kernel in Eq. (4). We
discretize the x-axis using a grid of M points. Since the
double-well potential confines the wavefunction within
a finite segment of length S along the x-axis, symmetric
with respect to x = 0, we can truncate the x-domain into
a box of linear length Lx > S, where Lx is chosen such
that the wavefunction is zero for all x outside the box.
Then, we discretize x ≡ xj = −Lx/2 + (j − 1)∆x, with
∆x = Lx/M , and j = 1, . . . ,M . Consequently, the wave-
function ψ(x) is in turn discretized into a M -dimensional

vector ~ψ, whose components are ψj = ψ(xj). Here, S is
basically the spatial extension along x of the condensate
density, which is approximately S ' xmin due to the high
potential barriers for |x| > xmin/2.

We identify two parts in the Hamiltonian in Eq. (2):
The linear Hamiltonian H0 = −(1/2)d2/dx2 + V (x),
and the nonlinear contribution F (x) = gN0

∫
dx′K(x −

x′)|ψ(x′)|2. The linear Hamiltonian in the discrete for-
mulation is a M ×M matrix, whose exact diagonaliza-
tion yields the spectrum of the Schrödinger’s equation,

i.e., the wavefunctions {ψ(0)
m (x)} and associated energies

{µ(0)
m } (m = 1, . . . ,M) for gN0 = 0 denoted by the su-

perscript “(0)”. The key idea behind our method is to
determine, for a fixed value of σ, the nonlinear wave-

function ψ
(g)
m (x) and corresponding chemical potential

µ
(g)
m for a given gN0 6= 0 perturbatively, starting from

the knowledge of ψ
(0)
m (x) and µ

(0)
m . Then, starting from

gN0 = 0, we gradually ramp up the value of gN0 by a
small step dg: At the q-th step of this ramping, we deter-

mine ψ
(q dg)
m (x) as ψ

(q dg)
m (x) = ψ

((q−1)dg)
m (x) + ϕ(x), for

a proper small correction ϕ(x) that is found as detailed

in Appendix B. This procedure is seeded using ψ
(0)
m (x)

and µ
(0)
m for q = 1, and repeated by increasing q until the

value of gN0 appearing in Eq. (2) is reached.

C. Numerical results

Using this approach, we numerically simulate Eq. (2)
using Lx = 40, M = 400 (i.e., ∆x = 0.1), and xmin =
3.53121. We set w = 1 in Eq. (4) and ramp up the
coupling strength from gN0 = 0 to gN0 = 50, with in-
crease dg = 0.5, for different values of σ. Since we are
interested in the properties of the system at low energy,
we focus on the nonlinear evolution of the two lowest-
energy levels of the double well m = 1, 2, which are
the symmetric and antisymmetric states that we denote

by ψs,a(x) ' e−(x+xmin/2)2/2ξ2 ± e−(x−xmin/2)2/2ξ2 respec-
tively at energy µs,a. In the linear case gN0 = 0, the
symmetric and antisymmetric states are characterized re-
spectively by the absence or presence of a node at x = 0,

i.e., ψ
(0)
s (0) 6= 0 while ψ

(0)
a (0) = 0. Due to the node in the
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FIG. 2. Condensate density as a function of x (in units of ξ, see text) from the simulation of the Gross-Pitaevskii equation for
(a) symmetric |ψs(x)|2, and (b) antisymmetric state |ψa(x)|2, with the double-well potential in Eq. (3) (see also Fig. 1b). The
condensate density at fixed gN0 = 50 is plotted for σ = 0 (blue solid line), σ = 2 (blue-gray dash-dotted line), σ = 4 (dark green
dash-dotted line), σ = 6 (light green dashed line), and σ = 9 (solid red line). For clarity, we plot also the condensate density in
the linear case (black dashed line). The numerical parameters are: Lx = 40, M = 400, xmin = 3.53121, w = 1, and dg = 0.5.

Vertical gray dashed lines mark the position of the potential minima x = ±xmin/2. (c) Energy gap ∆Egap := µ
(g)
a − µ(g)

s in
units of ~ω as a function of gN0. Different curves refer to different values of σ, with color coding as in panels (a) and (b). The
horizontal dotted gray line marks the value ∆Egap = 0, below which the antisymmetric state becomes the lowest-energy state
of the double well. This happens for σ = 4 and sufficiently large gN0, signaling the preference for the system to create a full
depletion area (with a node) between the two wells.

antisymmetric state, one has µ
(0)
a > µ

(0)
s (in our numer-

ics, µ
(0)
s ' 0.364 and µ

(0)
a ' 0.522). The goal now is to

study how these two states, and their ordering in energy,
change in the presence of the nonlocal nonlinearity.

1. Depletion of the condensate density

The numerically obtained densities in the nonlinear

case |ψ(g)
s,a (x)|2 are shown in Fig. 2, panels (a) and (b).

We obtain these states by seeding the Newton-Raphson

algorithm using ψ
(0)
s,a (x) and µ

(0)
s,a , respectively. We specif-

ically plot |ψ(g)
s,a (x)|2 for gN0 = 50 and for σ = 0, 2, 4, 6, 9,

to gradually reach the regime of highly nonlocal interac-
tion starting from the local case. From our simulations,
in the linear case, we find correctly the symmetric and
antisymmetric states (black dashed lines). In the nonlin-
ear case, the form of the condensate density drastically
depends on the interaction range. In the local case σ = 0
(blue solid lines), increasing gN0 simply spreads the con-
densate density within the wells. This result may not
come as a surprise, since both condensate peaks tend
to reach the Thomas-Fermi limit of very dense photon
cloud [25], while either overlapping around x = 0 in the
symmetric state, or avoiding the overlap preserving the
node in the antisymmetric state.

When the interaction becomes nonlocal, the density at
a given point x feels the repulsion from a finite portion
of the surrounding density. This fact can drastically af-
fect the low-energy properties of the system, depending
on the value of σ. We identify three distinct nonlocal
regimes: (i) A regime where σ is smaller than the con-
densate width S, (ii) A regime where σ and S are compa-
rable, and (iii) A regime where σ becomes larger than S.

In the first regime (blue-gray dash-dotted line for σ = 2
in Fig. 2), increasing σ qualitatively changes the den-
sity profile but does not provide any drastic effect in the
low-energy part of the spectrum: The two density lobes
reduce their width and repel from each other, effectively
renormalizing xmin. In the symmetric state (Fig. 2a),
this means that the lobes overlap around x = 0 starts to
decrease. In the antisymmetric case (Fig. 2b), instead,
the overlap is already suppressed due to the presence of
the node at x = 0, and thus the repulsive nonlocal inter-
action simply enhances such a repulsion.

A critically different scenario is observed in the second
regime (dark green dash-dotted line with σ = 4 in Fig. 2).
We observe that, when starting our calculation from the
symmetric state, the nonlocality almost completely sup-
presses the lobes overlap, therefore inducing a depletion
area around x = 0, and it further pushes the density
lobes far apart from each other. The effect is less drastic
when starting from the antisymmetric state, because the
node already effectively provides a depletion area around
x = 0. This is further enhanced by the nonlocal repul-
sion, increasing also in this case the lobes mutual dis-
tance. Interestingly, due to the induced depletion, the
spatial form of the condensate density in the symmetric
and antisymmetric cases become very similar, suggesting
the onset of a level inversion between the symmetric and
antisymmetric states. This point is further corroborated
below.

Lastly, in the third regime, for σ & S, the effect of the
interaction becomes trivial. In this case, the interaction
on the scale of the condensate size becomes all-to-all, i.e.,
the density at each point x interacts with the density of
the whole condensate, and thus one can write Eq. (2)
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with K(r, r′) ≡ K0, i.e.,[
− ~2

2m
∇2 + V (r)

]
ψ(r) = (µ− gN0K0)ψ(r) . (5)

The interaction then simply becomes an overall energy
shift that can be included in the definition of µ and then
the system returns to be effectively linear. This is clearly
observed in Fig. 2, panels (a) and (b), for σ = 6 (light
green dashed line), and especially for σ = 9 (red solid
line), where the density becomes equal to the one in the
linear case (black dashed line).

2. Symmetric-antisymmetric level inversion

A deeper insight on the system behaviour in the three
regimes is provided by Fig. 2c. We define the energy gap

∆Egap := µ
(g)
a − µ

(g)
s , and plot it in units of ~ω as a

function of gN0 for the same values of σ used in panels
(a) and (b). This allows us to trace the nonlinear evolu-
tion of the energies of the symmetric and antisymmetric
state: ∆Egap > 0 implies that the lowest-energy state
of the system is the symmetric one, where the system
prefers to keep a nonzero overlap between the density
lobes, even if vanishingly small, while ∆Egap < 0 implies
instead that the lowest-energy state is the antisymmetric
one, highlighting the preference for the system to form a
node at x = 0 and thus a full depletion area between the
lobes. As evident from the figure, for the scanned values
of gN0, one has ∆Egap > 0 for σ = 0, 2 and σ = 6, 9, cor-
responding to the first and third regime, respectively (for
σ = 6 we see a monotonically decreasing behaviour of the
gap, which may hint a level inversion for gN0 larger than
the scanned values). In these cases, the ground-state of
the system is the symmetric state. Notice that for σ = 9
(red line) one has ∆Egap ' 0.158, independently of gN0,

which is the result in the linear case ∆Egap = µ
(0)
a −µ(0)

s

(black dashed line) as expected from Eq. (5). Remark-
ably, in the second regime for σ = 4, ∆Egap becomes
negative for sufficiently large gN0. This is a signature of
the level inversion between the symmetric and the anti-
symmetric state: At this point, the antisymmetric state,
which is the excited state for small gN0, becomes the
lowest-energy state.

The analysis in this section points out the highly non-
trivial interplay between the strength of the interaction
and its range, allowing us to conclude that, in proper
regimes, the nonlocal interaction can induce a complete
depletion region in the condensate density between the
wells. We notice that a double-well potential can be
seen as a limit case of a one-dimensional lattice poten-
tial, where the two wells identify the two “boundary”
(or surface) sites of the lattice, and the point x = 0
is the degenerate “bulk”. As such, a natural question
that now arises is how nonlocal nonlinearities affect the
condensate density when the potential V (x) describes a
one-dimensional lattice, where the presence of both bulk

1 2 3 4 5 6
m

0.46

0.47

0.48

µ
(0

)
m

FIG. 3. First Dx eigenvalues {µ(0)
m } of the linear Hamiltonian

H (in units of ~ω) for the lattice with Dx = 6 in Eq. (6).
The spectrum consists of Dx − 2 non-degenerate bulk states
(m = 1, 2, 3, 4) that identify the tight-binding band µm ' µ0+
J0λm, for some µ0 and J0, and λm as in Eq. (C4). The two
quasi-degenerate surface states (m = 5, 6) appear at higher
energy above the bulk states. The respective wavefunctions
of these six states are shown in Fig. 6 of Appendix C.

and boundary states can give raise to nontrivial effects.

III. SURFACE LOCALIZATION OF LIGHT IN
LATTICE POTENTIALS

In this section, we extend the discussion in Sec. II by
taking as potential V (x) a one-dimensional array of sev-
eral wells, where a well defines a lattice site. We first
review the spectrum of the linear Hamiltonian for the
lattice potential, and then study how nonlocal nonlinear-
ities modify the energy landscape, highlighting the onset
of surface localization of the condensate density.

A. Model and linear spectrum

We consider a lattice of Dx sites along x, where the
distance between two consecutive minima (i.e., the lattice
constant) is given by xmin. Without loss of generality, we
take the potential V (x) as an even function of x as

VL(x)=


mω2

2

(
xmin

π

)2

cos2

(
πx

xmin
+ φx

)
(|x| < xB)

mω2

2
(|x| − xB)

2
(|x| ≥ xB)

,

(6)
where the subscript “L” stands for “lattice”. We denote
by xB = xmin(Dx − 1)/2 the position of the rightmost
external minima (i.e., the right boundary of the poten-
tial), and φx = 0 for Dx even and φ = π/2 for Dx odd.
The different value of φx depending on the parity of Dx

ensures the spatial inversion symmetry of VL(x). Notice
that VL(x) reduces to V2W(x) in Eq. (3) when Dx = 2.

Let us consider the case xmin � ξ (deep lattice, or
tight-binding, limit), where the distance between two
consecutive lattice wells is much larger than the char-
acteristic size of a lattice well. As in Sec. II, we focus
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on the low-energy part of the spectrum, specifically the
first Dx energy states. The low-energy wavefunctions

{ψ(0)
m (x)}, with m = 1, . . . , Dx, consists in general of Dx

localized quasi-Gaussian peaks (i.e., the Wannier local-
ized functions), each one centered on a given lattice well.
Out of these Dx peaks, two peaks are centered at the
two outermost lattice sites (i.e., the boundary, or sur-
face, sites), and the remaining Dx − 2 peaks occupy the
bulk lattice sites. The overlap of the Wannier functions
on the bulk sites gives raise to the set of Dx − 2 energy

levels {µ(0)
m } (m = 1, . . . , Dx − 2), defining the tight-

binding lowest energy band. The band becomes flatter
and flatter (i.e., the bulk states approach degeneracy)
the larger xmin/ξ. Instead, the two Wannier functions
at the boundary sites give raise to two additional, quasi-

degenerate energy levels µ
(0)
Dx−1 and µ

(0)
Dx

, at significantly
higher energy compared to the tight-binding band. These
two high-energy levels identify the symmetric and anti-
symmetric localized surface modes, effectively forming a
boundary double-well system (see Appendix C).

While the discussion above is valid for general Dx,
which can be arbitrarily large, in this paper, we focus
on a relatively short lattice of Dx = 6 sites. We make
this choice because, on one hand, short lattices are rel-
evant to current photon BEC experiment, and on the
other hand, they allow us to systematically investigate
the effect of nonlinearities while keeping a reasonable nu-
merical complexity. Always for numerical reasons, we
choose xmin/ξ = 6. We identify this choice as a good
compromise between being in the sufficiently deep-lattice
limit, while avoiding the presence of vanishing small en-
ergy gaps in the spectrum that would spoil the numer-
ical convergence of our algorithm. The first Dx eigen-
values, ordered in ascendent order, are shown in Fig. 3.
Dots with m = 1, 2, 3, 4 denote bulk states, where the
condensate wavefunction is distributed on the four bulk
lattice sites. The red dots at m = 5, 6 are the two quasi-
degenerate boundary states, where instead the conden-
sate wavefunction focuses on the two boundary sites, see
Fig. 6 of Appendix C.

B. Nonlinearity-induced surface localization

We now study the effect of a nonlocal nonlinearity on
the lattice photon BEC, and provide evidence of the onset
of surface localization of the condensate wavefunction.
We follows the same numerical scheme used in Sec. II for
the double well. Here, we use M = 1000 and Lx = 150
(i.e., ∆x = 0.15), and scan the nonlinearity strength from
gN0 = 0 to gN0 = 10, using a step dg = 0.025.

The result of our simulation is shown in Fig. 4, where

we plot the chemical potential µ
(g)
m for the first Dx states

as a function of gN0. We simulate different values of σ,
from the local case σ = 0, where K(x) = δ(x), to the
highly nonlocal case where the interaction range σ is suf-
ficiently larger than the spatial extension of the conden-

0 1 2 3
gN0

0.46

0.62

0.78

0.94

σ= 0

(a)

0 1 2 3
gN0

0.46

0.50

0.54

σ= 10

(b)

0 1 2 3
gN0

0.46

0.50

0.54

σ= 20

(c)

0 1 2 3
gN0

0.46

0.50

0.54

σ= 25

(d)

FIG. 4. Chemical potential µ
(g)
m in units of ~ω for m =

1, . . . , Dx as a function of gN0 obtained by solving Eq. (2)
for (a) σ = 0, (b) σ = 10, (c) σ = 20, and (d) σ = 25, using

as initial guess for the Newton-Raphson calculation ψ
(0)
m (x)

and µ
(0)
m . Color coding as in Fig. 3. The data for m = 1

are plotted as blue dots, and those for m = 5, 6 as dashed
red lines. For σ = 20, a level inversion around gN0 = 1.7
is detected: The boundary state, which is the highest energy
state for small gN0, becomes the lowest state for large gN0.
The black dashed line in panels (c) and (d) marks the slope

µ
(g)
m − µ(0)

m = gN0K0 in Eq. (5) expected in the highly non-
local limit (K0 ' 1/2σ, see Sec. II). The data for m = 1 and
m = 2 (dark blue dots and light blue solid line, respectively)
appear almost overlapped on the scale of the plot. The data
are plotted up to gN0 = 3 for graphical purposes only.

sate wavefunction S ' (Dx − 1)xmin along the lattice.
For σ > 0, the kernel is as in Eq. (4). For a given m,

the energies µ
(g)
m and respective wavefunctions ψ

(g)
m (x)

are computed by seeding the Newton-Raphson nonlin-

ear calculation using ψ
(0)
m (x) and µ

(0)
m with the same m

as initial guess. This allows us to trace the evolution
of the first Dx energy levels as the nonlinearity strength
and ranges are increased, starting from the linear case in
Fig. 3. These data are complemented by Fig. 5, where

we show the wavefunction density |ψ(g)
1 (x)|2 for specific

cases in Fig. 4. The picture emerging from our numerical
data can be summarized as in the following sections.

1. Local interaction

For a local interaction (σ = 0), the first Dx eigenvalues
increase with gN0 preserving their ordering, i.e., no level
inversion occurs (see Fig. 4a). In particular, the ground
state (blue dots) for gN0 = 0 continuously evolves into
the ground state for large gN0. This point is further es-
tablished by looking at the condensate density in Fig. 5,
panels (a) and (b): Starting from the linear solution (see
Appendix C), increasing the interaction strength simply
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20 10 0 10 20
x

0.00

0.13

0.26 (a) gN0 = 0

20 10 0 10 20
x

(b) gN0 = 10, σ= 0

20 10 0 10 20
x

(c) gN0 = 10, σ= 10

20 10 0 10 20
x

(d) gN0 = 10, σ= 20

20 10 0 10 20
x

(e) gN0 = 10, σ= 25

FIG. 5. Ground-state wavefunction density |ψ(g)
1 (x)|2 (pink thick line) and lattice potential VL(x) (blue thin line) in Eq. (6),

with
√
mω = 1, Dx = 6, and xmin = 6. Lengths and energies are in units of ξ and ~ω, respectively. The values of the potential

are rescaled by a factor 0.02 for graphical purposes. Panel (a) is the linear solution for gN0 = 0 (see also Appendix C), where
the value of σ is irrelevant, while other panels are for gN0 = 10 and (b) σ = 0, (c) σ = 10, (d) σ = 20, and (e) σ = 25. For
σ = 20, the condensate density localizes at the boundary sites.

spreads the condensate density all over the lattice, tend-
ing to a configuration where all the Dx lattice wells are
populated and the peaks of the density have the same
height on each well. The physical reason for this fact
is readily understood. In our system, there are two el-
ements that play an opposite role in terms of energy
minimization: On one hand, the lattice potential bound-
aries act as much as possible to confine the wavefunction
both avoiding populating the boundary sites and maxi-
mizing the occupation of the central bulk sites, while on
the other hand, the local repulsive interaction tends to
avoid such an imbalanced occupation, therefore inducing
a more and more uniform peak density the larger gN0

along the lattice wells. As such, any form of condensate
density localization is energetically unfavorable.

2. Non-local interaction

As the interaction range increases (σ > 0), the system
displays a richer phenomenology. We here report the
numerical results for σ = 10, 20, 25. This choice of the
values of σ is motivated by the fact that we are interested
in studying the system where nonlocal effects play a pre-
dominant role, i.e., σ & xmin, following Sec. II. The non-
linear chemical potentials as a function of gN0 are shown
in Fig. 4, panels (b)-(d), and the respective ground-state
condensate density is reported in Fig. 5, panels (c)-(e).

We first comment the data for σ = 10 in Fig. 4b, where
the interaction range involves several condensate peaks,
but it is still smaller than the condensate size S. The
first Dx nonlinear eigenvalues evolve with gN0 starting
from their respective linear values by preserving their or-
dering, as in the local case. We observe that the bulk
eigenvalues for m = 1, 2 and m = 3, 4, after an initial
separation, become very close in energy, however, they
are always well separated in energy from the boundary
eigenvalues for m = 5, 6 (red dashed lines). The ground-
state density shown in Fig. 5c displays two peaks at the
sites close to the boundary ones, and the two central bulk
sites are almost empty. This effect can be seen simply as
a redistribution of the condensate density within the bulk

sites, in order for the system to minimize the effect of the
nonlocal interaction, while always keeping the boundary
sites unoccupied.

As the interaction range is further increased and be-
comes comparable with the condensate size S, a different
scenario arises. The key result of our paper emerges for
σ = 20, in Fig. 4c. For small gN0, we see that the in-
crease of the Dx − 2 bulk eigenvalues with gN0 is well

captured by the linear behaviour µ
(g)
m − µ(0)

m ' gN0K0,
with K0 ' 1/2σ, expected from the highly nonlocal ap-
proximation in Eq. (5) (black dashed line). Instead, the
boundary eigenvalues (m = 5, 6, red lines), in striking dif-
ference with the previous cases, increase with a smaller
slope, and eventually evolve into a bulk state around
gN0 = 1.7. Around this value, the ground-state and first-
excited state eigenvalue (m = 1 and m = 2 correspond-
ing to dark blue dots and light blue line in the figure,
which are almost overlapped), invert with the boundary
eigenvalue, and evolve into a (nonlinear) boundary state.
Here, specifically, the state with m = 2, which has a node
in x = 0, evolves into the lowest-energy state. As such,
the boundary state that is the highest state in energy in
the lower band for gN0 . 1.7 becomes the ground state
for gN0 & 1.7. This fact is also clearly seen from the form
of the condensate density in Fig. 5, comparing panel (a),
which is the linear solution for gN0 = 0, with panel (d).
After the level inversion, the increase of the eigenvalues
for m = 3, 4, 5, 6 is again well captured by the highly
nonlocal approximation.

By further increasing σ towards the highly nonlocal
regime, this level inversion, and thus surface localiza-
tion, is not detected within the scanned range of gN0.
This is seen in Fig. 4d for σ = 25. The boundary state
evolves into a bulk state in a similar way as in panel (c),
but all other eigenvalues evolve with gN0 according to
the highly nonlocal approximation in Eq. (5). Here, the
ground-state density preserves its shape throughout the
nonlinear evolution, as can be seen by comparing panels
(a) and (e) of Fig. 5, in agreement with the fact that the
system is entering the all-to-all interaction regime and
remains effectively linear.

The fact that a surface localized state in this inter-
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mediate nonlocal regime becomes the most energetically
favorable state can be intuitively explained as follows.
As said in the local case, for small interaction strength,
the most energetically favorable configuration is always
the one having a condensate density focused mostly on
the central lattice sites, due to the presence of the poten-
tial boundaries. When the interaction strength becomes
sufficiently large, and the interaction range is compara-
ble with the size of the condensate density, despite the
presence of the lattice boundaries, it becomes more ener-
getically favorable for the system to minimize as much as
possible the interaction energy by splitting the conden-
sate density focusing it at the lattice boundaries.

More rigorously, the interaction term in the interme-
diate regime behaves as a correction to the lattice po-
tential VL(x), raising the energy of the bulk sites with
respect to the boundary sites. This can be seen as fol-
lows. If we call xj the position of the j-th minimum of
the lattice potential, one can approximate in the limit
σ � ξ the density as |ψ(x)|2 '

∑
j |ψ(xj)|2 δ(x − xj).

The interaction term in the Gross-Pitaevskii equation

can then be approximated as
∫
dx′K (x− x′) |ψ (x′)|2 '∑

j K(x−xj) |ψ(xj)|2. This term behaves as a correction

to the lattice potential VL(x), adding a local nonlinear

chemical potential µNL(x) = gN0

∑
j K(x− xj) |ψ(xj)|2.

For gN0 > 0, µNL(x) is maximal at the center of the lat-
tice, and minimum at the boundaries. This can be seen
by observing that, for x close to the lattice center, the
sum over j will symmetrically include sites both to the
left and to the right of x [recall that K(x) is a symmet-
ric function of x]. As x gradually approaches the lattice
boundaries, the summation decreases because it includes
an increasing number of spatial points both towards the
surface, where |ψ(xj)|2 ' 0, and far from it, where in-
stead K(x− xj) ' 0, yielding a zero contribution to the
overall sum. As a result, the minima of the overall effec-
tive lattice potential Veff(x) ≡ VL(x) + µNL(x) will be at
lower energy at the boundaries with respect to the lattice
center, hence favoring the focusing of condensate density
close to lattice boundaries.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we theoretically studied the effect of a
repulsive (defocusing) thermo-optical nonlocal nonlinear-
ity in Bose-Einstein condensate (BEC) of photons. We
first studied the case of photons trapped in the double-
well potential experimentally realized in Ref. [18], in the
presence of a strong nonlocal interaction with tunable
range. We performed our analysis by developing a nu-
merical code inspired by the Newton-Raphson method,
which allowed us to solve the time-independent Gross-
Pitaevskii equation with arbitrary potential and interac-
tion form. We observed that, while a local interaction in-
duced a spreading of the condensate density throughout
the double well, a sufficiently large but finite nonlocal-

ity favored instead the emergence of a full depletion area
between the two wells, tending to focus the condensate
density at the potential boundaries.

We then extended our analysis to a one-dimensional
small lattice of six sites. This allowed us to generalize
our previous observations for the double well, which is a
minimal extension of a lattice with two sites only, to a
more complex case where a distinction between bulk and
boundary (or surface) sites could be made. We focused
on the nonlinear evolution of the first low-energy eigen-
values forming the lowest energy band for different values
of the interaction range. Our key results was that, when
the interaction range was comparable with the size of the
lattice, and the interaction was sufficiently strong, a level
inversion between eigenvalues took place. In particular,
the state with the condensate wavefunction localized at
the potential boundaries, which is the highest eigenvalue
of the lowest band for a weak or short-range interaction,
becomes the ground-state energy level for strong interac-
tion. This fact signaled the onset of surface localization,
where the condensate density is focused at the system
boundaries. In our paper, we modeled the photon-photon
thermo-optical interaction as a regularized box potential.
In future, it would be interesting to study the emergence
of surface localization using smoother forms of the inter-
action kernel, as well as the extension of our results on
surface localization to large lattices with several sites.

Our results point out the highly nontrivial interplay
between potential boundaries and interaction within a
one-dimensional array of potential wells. An intrigu-
ing question opened by our work is how long-range
interactions affect the photon BEC when several one-
dimensional lattices are coupled together, with the inclu-
sion of a complex coupling between photons in different
arrays to mimic the presence of a synthetic magnetic (or
gauge) flux in the system (i.e., a bosonic flux ladder of
photons). A possible way to introduce an effective mag-
netic field in our setup, thereby implementing a photonic
two-leg flux ladder, can be making two separated struc-
tured microcavities, each one realizing a one-dimensional
array of photon BEC, and couple them with a time-
modulated coupling constant, with a proper distribution
of the modulation phases in space [26]. The interaction
range is determined by the degree of nonlocality of the
thermo-optical response of the microcavity, which can be
controlled by adding proper thermo-responsive dopants
to the system [15, 27]. In the present experiments using
dye molecules [9, 10, 18], the pumping is not performed
continuously but rather with 500 ns long pulses. One one
hand, this time is much longer than the time scale of the
absorption and reemission processes by the dye molecules
(approximately between 10 ps and 100 ps), inducing ef-
fective thermalization of the photon gas. On the other
hand, this pulse length is shorter than the expected equi-
libration time for heat transport to reach a steady state
within the dye solution. True continuous wave operation
is expected to be possible for instance using semiconduc-
tor materials for photon thermalization [28].
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Our work paves the way towards the simulation of
condensed-matter systems using photon BECs (i.e., syn-
thetic matter of light), thus envisioning the intriguing
possibility to study of exotic, possibly topological phases
of matter emerging from the interplay between low di-
mensionality, effective gauge fields, and strong interac-
tions with tunable range.

ACKNOWLEDGEMENTS

We thank Julian Schmitt and Martin Weitz for fruitful
discussions and comments on this paper. We acknowl-
edge funding from H2020 PhoQuS project (Grant No.
820392). M. C. S. and C. C. acknowledge funding from
Sapienza Ricerca, PRIN PELM (20177PSCKT), Quan-
tERA ERA-NET Co-fund (Grant No. 731473, project
QUOMPLEX). F. V. acknowledges funding by the DFG
within SFB/TR185 (Project No. 277625399).

Appendix A: Fitting the double-well potential

In this appendix, we provide details on the way we
fit the experimental data of the double-well potential
from Ref. [18] with the function in Eq. (3). We esti-
mate the value of the trapping frequency ω from the
value of the height of the potential barrier ∆E(th.) :=
V2W(0)− V2W(±xmin/2), which from Eq. (3) is

∆E(th.) =
mω2

2

(xmin

π

)2

. (A1)

We impose that the value in Eq. (A1) matches the
experimental value of the potential barrier ∆E(exp.),
which from the data in Fig. 1 is ∆E(exp.) '
0.109 THz. By inverting the relation in Eq. (A1) and
by imposing ∆E(th.) ≡ ∆E(exp.), one has

√
mω =

(π/xmin)
√

2∆E(exp.). By using xmin ' 12.5µm, which is
the experimental value of the distance between the two
minima of the double-well potential, we find

√
mω '

0.117346
√

THz/µm. The trapping frequency ω can
be then estimated by assuming a photon mass m '
7.76271 × 10−36 kg [18], and one finds ω ' 1.08415 ×
1012 rad/s (approximately 0.173 THz). This yields the
characteristic length scale for each local harmonic os-
cillator ξ =

√
~/mω ' 3.53987µm, which is the char-

acteristic length scale in our simulations. In units of
ξ, the distance between the two minima of the double
well is xmin/ξ ' 3.53121. In rescaled units, we then
simulate Eq. (2) setting ~/

√
m = 1,

√
mω = 1, and

xmin = 3.53121, i.e., giving lengths and energies in units
of ξ and ~ω, respectively. As a final annotation, we men-
tion that, to fit the experimental data in Fig. 1, the po-
tential in Eq. (3) was shifted by Vmin = 0.12 THz, so
that V2W(±xmin/2) = Vmin, but this offset just adds a
constant shift to the chemical potential µ in Eq. (2), and
we then take Vmin = 0 in our simulations.

Appendix B: Details on the numerical simulation

In this appendix, we discuss in detail the numerical
method used to solve the Gross-Pitaevskii equation[
−1

2

d2

dx2
+V (x)+gN0

∫ ∞
−∞

dx′K(x−x′)|ψ(x′)|2
]
ψ(x)

= µψ(x) , (B1)

in dimensionless units (see main text). In Eq. (B1), we
take the wavefunction and the nonlinear kernel normal-
ized to unity,

∫∞
−∞ dx |ψ(x)|2 = 1 and

∫∞
−∞ dxK(x) = 1.

In addition, the potential V (x) and nonlinear interaction
kernel K(x) are real functions of x, so both the wave-
function and chemical potential µ can be taken real. In
our simulations, we always consider cases where V (x)
and K(x) are such that the wavefunction ψ(x) is con-
tained within a segment I of length S of the real axis,
i.e., |ψ(x)| ' 0 for all x /∈ I. This allows us to study
Eq. (B1) limiting ourselves to x defined within a finite
domain of size Lx > S, which we take by convention
symmetric with respect to x = 0, i.e., −Lx/2 ≤ x <
Lx/2. We then discretize the x variable as a linear
grid of M points equally spaced by ∆x = Lx/M , i.e.,
xj = −Lx/2 + j∆x, where j = 0, . . . ,M − 1. The wave-
function ψ(x) is then represented by a vector with M en-

tries ~ψ = (ψ(x0), ψ(x1), . . . , ψ(xM−1)). In the following,

we will denote by ψj the j-th entry of ~ψ, i.e., ψj ≡ ψ(xj).
It is understood that Lx is sufficiently larger than S to
yield |ψj | = 0, for all j with |xj | > Lx/2.

The derivative operator in Eq. (B1), acting on the

wavefunction ~ψ, is discretized using the pseudo-spectral
representation [29]. By defining the matrix Θ as

Θ1|jk = (1− δjk)
(−1)

j+k

2
cot

(
θj − θk

2

)
. (B2)

where δjk is the Krönecker delta and θj = 2πj/M , we
obtain a matrix representation D1 of the first-derivative
operator d/dx as

D1 =
2π

Lx
Θ1 , (B3)

and consequently the matrix representation D2 of the
second-derivative operator d2/dx2 reads D2 = D1 ·D1,
where “·” denotes the matrix dot product. The matrix
representation of the potential V (x) and nonlocal nonlin-

ear convolution F [ψ(x), x] =
∫∞
−∞ dx′K(x − x′)|ψ(x′)|2

are straightforward, since both terms represent multi-
plicative operators in x space. Then, V (x) is represented
by the diagonal matrix V with entries V|jk = δjkV (xj),
and the convolution is represented by a diagonal matrix

F[~ψ] with entries F|jk = δjk ∆x

∑M−1
p=0 Kjpψ

2
p. There-

fore, the discrete version of Eq. (B1) reads(
−1

2
D2 + V + gN0 F[~ψ ]

)
~ψ = µ~ψ . (B4)
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Notice that, in the linear case for gN0 = 0, Eq. (B4)
reduces to the Schrödinger equation for a particle in a
potential V (x), which can be solved by exact diagonalza-
tion of the Hamiltonian matrix H = −D2/2+V. To solve
Eq. (B4) for gN0 6= 0, we resort to an iteration scheme
based on the Newton-Raphson method [23, 24]. The ba-
sic idea of this method is to find the unknown wavefunc-
tion ~ψ and chemical potential µ for a given value of the

nonlinearity strength gN0 ≡ g0, which we denote by ~ψ(g0)

and µ(g0) for simplicity, starting from the knowledge of
the wavefunction and chemical potential for a smaller

value of the nonlinearity strength g0 − dg, i.e., ~ψ(g0−dg)

and µ(g0−dg), where ideally dg is infinitesimally small.

If we denote by ~χ ≡ ~ψ(g0−dg) the known wavefunction,

we expand the unknown wavefunction ~ψ(g0) as ~ψ(g0) =
~χ+ ~ϕ, where ~ϕ is a small correction to ~χ such that |ϕj | �
|χj |, for all j, which has to be found by solving Eq. (B4).

By plugging the expansion ~ψ(g0) = ~χ + ~ϕ into Eq. (B4),
we can reduce the nonlinear equation (B4) to a linear
system for the correction ~ϕ. Let us now find the linear
equation for ϕj . By keeping only first-order terms in ϕj ,
one has ψ2

pψj ' χ2
pχj + χ2

pϕj + 2χpχjϕp and one can
write Eq. (B4) component-wise as

µχj+µϕj =
∑
h

Hjhχh +
∑
h

Hjhϕh+g0∆xχj
∑
p

Kjpχ
2
p

+2g0∆xχj
∑
p

Kjpχpϕp + g0∆xϕj
∑
p

Kjpχ
2
p , (B5)

where h, p = 0, . . . ,M −1. The goal now is to write from
Eq. (B5) a linear system of the form A~ϕ = ~v for the cor-
rection ~ϕ, for a matrix A and vector ~v to be determined
from Eq. (B5). In this way, one can find the correction
as ~ϕ = A−1~v. It can be useful to rename the dummy
indexes p as h in the summations involving ϕp, rename
ϕj =

∑
h δjhϕh, and group terms in Eq. (B5) as

∑
h

(
Hjh+2g0∆xKjhχjχh+δjhg0∆x

∑
p

Kjpχ
2
p−µδjh

)
ϕh

= µχj −
∑
h

Hjhχh − g0∆xχj
∑
p

Kjpχ
2
p , (B6)

which suggests that one can define the matrix A and the
vector ~v as

A|jh = Hjh+2g0∆xKjhχjχh+δjhg0∆x

∑
p

Kjpχ
2
p−µδjh

vj = µχj −
∑
h

Hjhχh − g0∆xχj
∑
p

Kjpχ
2
p . (B7)

Once ~ϕ is determined as ~ϕ = A−1~v, the eigenvalue µ ≡
µ(g0) in Eq. (B6) can be found from the new wavefunction
~ψ(g0) = ~χ+ ~ϕ simply as

µ(g0) ' ∆x

∑
j

ψ
(g0)
j Φj , (B8)

where

Φj =
∑
h

Hjhψ
(g0)
h + g0∆x

∑
p

Kjp

(
ψ(g0)
p

)2

ψ
(g0)
j . (B9)

In this method, since the wavefunction and the chemi-
cal potential for a nonlinear strength g0 − dg have to be
known in order to find those for a nonlinear strength g0, a

possible way to determine ψ
(g0)
j and µ(g0) for the desired

(final) value g0 of the nonlinear strength can be seeding
the calculation in Eq. (B6) using as a starting point the

wavefunction ~ψ(0) and µ(0) computed in the absence of
nonlinearities (g0 = 0), i.e., by solving the Schrödinger
equation by exact diagonalization of the Hamiltonian ma-

trix H in Eq. (B4). Basically, one first finds ~ψ(dg) and

µ(dg) seeding Eq. (B6) with ~ψ(0) and µ(0). One then re-

peats the calculation finding ~ψ(2dg) and µ(2dg) seeding

Eq. (B6) with the previously determined ~ψ(dg) and µ(dg),

and so on repeating the procedure until ~ψ(g0) and µ(g0)

for the desired value of g0 are reached.
Notice that, in an actual numerical context, where dg

is small but anyhow finite, one can still rely on this lin-
earization but one has to perform additional convergence
iterations, labelled by n, for a given value g of the nonlin-
ear strength in order to refine the value of ~ϕ. In practice,
the numerical procedure that we employ to find the solu-
tion of Eq. (B4) for a target value g0 of the nonlinearity
strength can be summarized in the following steps:

1. Solution of the linear problem. First, one solves the
Schrödinger equation by exact diagonalization of H in
Eq. (B4), and selects the desired state from the linear
spectrum. This yields the wavefunction and chemical

potential ~ψ(0) and µ(0) to seed the nonlinear calculation.

2. Newton-Raphson nonlinear steps with gradual in-
crease of the nonlinearity strength. Here, one chooses
a small step dg and solves Eq. (B6) as explained before.
In order to refine the solution, one performs a number of
convergence steps by repeatedly solving Eq. (B6) for a
given value g. For a given convergence step n, one com-

putes ~ψ
(g)
n and µ

(g)
n by finding ~ϕn seeding Eq. (B6) with

~χ ≡ ~ψ
(g)
n−1 and µ ≡ µ

(g)
n−1 found from the previous con-

vergence step. To enhance the numerical convergence of

the algorithm, ~ψ
(g)
n is updated using a relaxation factor

γ < 1 [23], i.e., ~ψ
(g)
n = ~χ + γ~ϕ, and the chemical poten-

tial µ
(g)
n is found as in Eq. (B8). The wavefunction ~ψ

(g)
n

is normalized to unity at every convergence step. Dur-
ing the convergence steps, one can define the maximum
numerical error as

MaxErr(n) := maxj

∣∣∣∣∣∣ψ(g)
n,j

∣∣∣− ∣∣∣ψ(g)
n−1,j

∣∣∣∣∣∣ . (B10)

By fixing a numerical tolerance ε � 1, the convergence
steps are repeated until the condition MaxErr(n̄) < ε is
found after a number n̄ of steps. The resulting wavefunc-

tion ~ψ(g) ≡ ~ψ
(g)
n̄ and chemical potential µ(g) ≡ µ(g)

n̄ at the
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end of the convergence steps are then taken as solution of
Eq. (B4) with nonlinearity strength g. These values are
used to seed the nonlinear calculation for a nonlinearity
strength g+dg, and the whole procedure is repeated until
the value g0 is reached.

In our simulations, we fix ε = 10−12 and γ = 0.1, and
observe that convergence is reached for 100 < n < 400,
for all values of g and σ used in this paper. Let us also
point out that the specific choice of the regularized box
kernel K(x) in Eq. (4) is motivated by numerical con-
siderations. On one hand, a box potential reduces the
numerical complexity of the problem, because it allows
for small system lengths Lx, and in turn not too large
values of M , which significantly helps to keep a reason-
able numerical complexity of the problem. Using a kernel
from the solution of the heat equation [15–17], or a Gaus-
sian kernel [15], requires indeed larger values of Lx, and
thus of M , especially in the highly nonlocal regime, due
to the slower decaying behaviour for large |x|. On the
other hand, a sharp box potential (i.e., for w → 0) intro-
duces in the numerical simulations a discontinuity that
may spoil numerical convergence. Due to these issues, in
order to have a good numerical resolution and a reason-
able numerical complexity, we opt to use the regularized
box potential.

We mention that a similar numerical method, specifi-
cally to solve the two-dimensional Gross-Pitaevskii equa-
tion in cylindrical coordinates, was used in Ref. [15].

Appendix C: Spectrum in the deep lattice limit

In this appendix, we report for the sake of complete-
ness the derivation of the spectrum of Eq. (2), in the one-
dimensional case, with the lattice potential in Eq. (6),
and in the linear case (gN0 = 0). We focus on the first
Dx energy levels. As discussed in Sec. III A, the spectrum
consists of Dx−2 states identifying the bulk states, form-
ing the lowest tight-binding energy band, and two states
above the band that describe the two boundary states.

In order to find the first Dx states of the spectrum, one
can resort to first order degenerate perturbation theory.
In the limit xmin/ξ →∞, the system consists of Dx inde-
pendent one-dimensional harmonic oscillator wells with
potential V (x) = mω2(x − xm)2/2, where {xm} are the
positions of the central point of each potential well of
the lattice. By taking each well in its ground state, the
spectrum then consists of Dx degenerate levels at energy
µm = ~ω/2 and eigenfunctions given by the Wannier

localized functions fm(x) = Am e
−(x−xm)2/2ξ2/

√
ξπ1/4

(m = 1, . . . , Dx), where {Am} are proper normalization
factors. Out of these Dx states, L = Dx − 2 states de-
scribe Gaussian functions localized at the bulk sites, and
the other two are Gaussians localized at the two bound-
ary sites. Of course, for infinitely distant wells, there is
no distinction between bulk and boundaries.

Let us now consider xmin/ξ � 1 but finite. Here
is where bulk and boundary states become clearly dis-

tinguished: Reducing the distance between the lattice
minima starting from infinity will reduce the potential
barriers separating nearest-neighbour wells in the bulk,
causing the localized wavefunctions to have an exponen-
tially vanishing but nonzero overlap. At low energy, since
the two boundary sites keep the high barrier potentials,
the Wannier functions prefer to occupy the bulk sites,
while leaving the boundary sites empty. Let us now fo-
cus on the L = Dx − 2 bulk states. In the basis of
the Wannier functions {fm(x)}, the effect of reducing
xmin/ξ can be described by starting from the case of in-
finitely separated wells, and adding a perturbation δV
which couples the localized Gaussian fm(x) only to its
nearest-neighbour Gaussians fm±1(x). As such, the per-
turbation δV in the basis fm(x) ≡ 〈x|fm〉 has elements
given by δV |m,m′ ≡ 〈fm|δV |fm′〉 = −J0 δm′,m±1, where
J0 > 0 quantifies the strength of the nearest-neighbour
wavefunctions overlap (i.e., the tight-binding tunneling
integral). Now, the perturbation lifts the degeneracy and
spectrum becomes µm ' ~ω/2+J0λm, where the correc-
tions {λm} are the eigenvalues of the matrix δV/J0.

The eigenvalues {λm} can be found by the following
observation. Let us now take m = 1, . . . , L, for some
L, and let us define the matrix ΛL = −δV/J0 + λ1,
where 1 is the L × L identity matrix. Element-wise,
ΛL|j,j±1 = 1, ΛL|j,j = λ, and all other elements are
zero. The eigenvalues of −δV/J0 are the roots of the
characteristic polynomial PL(λ) := det(ΛL). By ex-
plicit inspection of the matrix ΛL, it can be shown by
induction that the following recursion relation holds:
det(ΛL) = λ det(ΛL−1)−det(ΛL−2), or in terms of char-
acteristic polynomials

PL(λ) = λPL−1(λ)− PL−2(λ) . (C1)

This relation makes sense for L ≥ 3. For L = 2, one has
P2(λ) = λ2−1. By introducing the new variable z = λ/2,
i.e., λ = 2z, one has P2(z) = 4z2 − 1, and the recurrence
relation in Eq. (C1) becomes (set L→ L+ 1)

PL+1(z) = 2z PL(z)− PL−1(z) . (C2)

The recurrence relation in Eq. (C2), together with the
fact that P2(z) = 4z2 − 1 is the recurrence relation of
the Chebyshev polynomials of the second kind [30], i.e.
PL(z) ≡ UL(z). In order to find the eigenvalues, i.e.,
the roots of PL(λ), one computes the roots of UL(z) by
setting z = cos(θ). By further using the expression [30]

UL[cos(θ)] =
sin[(L+ 1)θ]

sin(θ)
, (C3)

one has UL[cos(θ)] = 0 for θ ≡ θm = πm/(L + 1), but
since θ = arccos(z), one has zm = cos[πm/(L+1)]. Since
by definition z ∈ [−1 : 1], one has θ ∈ [0 : π]. Since λ =
2z, the roots of PL(λ), ordered such that λm ≤ λm+1,
can be written as

λm = −2 cos

(
πm

L+ 1

)
(m = 1, . . . , L) . (C4)
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FIG. 6. Wavefunctions {ψ(0)
m (x)} for the first Dx = 6 levels in Fig. 3 with the came color coding. The first four panels refer

to the four bulk states for m = 1, 2, 3, 4, and the last two are the two boundary states for m = 5, 6. The bulk states are a
sequence of peaks whose amplitude is modulated by the stationary wave in Eq. (C7). The two vertical dashed gray lines mark
the position of the two boundary potential minima x = ±xB [see Eq. (6)]. The quasi-degenerate boundary states are instead
a symmetric and anti-symmetric combination of localized peaks at the two boundary sites. The fact that, in the bulk states,
the amplitude of the boundary peaks is nonzero, as well as the fact that the boundary states extend a bit also in the bulk, is
ascribed to the fact that, with xmin = 6, the system is not in the strict deep-lattice limit.

The eigenvectors {~vm} of −δV/J0, whose entries vm,j
determine the height of the j-th wavefunction peak in
the m-th energy state, are found as customary from the
secular equation (−δV/J0)~vm = λm~vm, with λm as in
Eq. (C4). Here, we use the following convention on the
values of j. Due to the presence of the high potential
barriers at the lattice boundaries, the effective deep lat-
tice has L = Dx − 2 sites. In the eigenvalue problem,
the values of j = 1, . . . L include only the Dx − 2 sites
of the effective lattice (i.e., excluding the boundaries),
where the height of the j-th wavefunction peak vm,j can
be nonzero. We will then identify the two boundary sites
by extending the domain to j = 0 and j = L+ 1, where
by convention vm,j is identically zero on these two sites.

The spatial j-dependence of {~vm} can be found in
the following way. Let us define vm,k =

∑
j e
ikjvm,j ,

then one has from the element-wise secular equation,
which is −vm,j−1 − vm,j+1 − λmvm,j = 0, the expression∑
k[2 cos(k)+λm]e−ikjvm,k = 0. Because of the presence

of the oscillating terms e−ikj , this relation is satisfied if
[2 cos(k) + λm]vm,k = 0, for each k. This means that
one has vm,k 6= 0 when 2 cos(k) = −λm, i.e., by using
Eq. (C4), when k = ±k0 = ±πm/(L + 1). Otherwise,
when 2 cos(k) 6= −λm, one has vm,k = 0. Going back to
real space j, the j-dependence of ~vm is

vm,j = vm,k0e
iπmj/(L+1) + vm,−k0e

−iπmj/(L+1) , (C5)

for j,m = 1, . . . , L. As said before, we require that vm,j
is identically zero on the extended domain for j = 0 and
j = L + 1. In Eq. (C5), this boundary condition yields
vm,k0 = −vm,−k0 , which can be taken as vm,k0 = −iv0/2
to have a real vm,j , and then we can write Eq. (C5) as a
stationary wave

vm,j = v0 sin

(
πmj

L+ 1

)
. (C6)

The constant v0 in Eq. (C6) is chosen to ensure the unit
normalization of the vector ~vm. In the case of a symmet-
ric potential V (x) = V (−x), as in the case of Eq. (6),
Eq. (C6) is modified by shifting j → j − (L+ 1)/2, i.e.

vm,j =


v0 cos

(
πmxj
L+ 1

)
(m odd)

v0 sin

(
πmxj
L+ 1

)
(m even)

, (C7)

where xj = j−(L+1)/2 with j = 1, . . . , L is the position
along the x-axis of the j-th potential minimum (in units
of xmin).

The first Dx eigenvalues {µm} and real wavefunctions
{ψm(x)} for the case of the lattice potential discussed in
Sec. III (Dx = 6 and xmin = 6) are shown in Figs. 3 and 6,
respectively. The spectrum consists of Dx − 2 bulk en-
ergy levels as µm ' µ0 +J0λm, where µ0 and J0 quantify
the zero-point and bandwidth, and λm is as in Eq. (C4),
with L = Dx − 2. Small deviations from the predicted
behaviour are due to the fact that, with xmin = 6, the
system is not in the deep lattice limit. Also, the fact that
µ0 6= ~ω/2 is a consequence of the fact that the lattice
wells are not perfectly harmonic (they are approximately
only at their center). Above the tight-binding band of
bulk states, the two quasi-degenerate boundary states
(red points) are found. These two states form a “bound-
ary double well”, where the lowest boundary state is a
symmetric combination of two localized functions at the
boundary sites, whereas the highest boundary state is
instead an anti-symmetric combination (see also Fig. 6).

For completeness, we mention that, for m > Dx, the
higher bands are encountered. The wavefunctions in
these bands are characterized by an increasing number of
nodes appearing at the minima of the potential wells, i.e.,
some of the Wannier localized functions are not Gaus-
sians but rather higher Hermite-Gauss modes.

[1] D. Baeriswyl and L. Degiorgi, Strong Interactions in
Low Dimensions, Physics and Chemistry of Materials

with Low-Dimensional Structures (Springer Netherlands,



13

2007).
[2] X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
[3] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev.

Mod. Phys. 91, 015005 (2019).
[4] B. Sundar, B. Gadway, and K. R. A. Hazzard, Sci. Rep.

8, 3422 (2018).
[5] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299

(2013).
[6] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,

L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
berberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006
(2019).

[7] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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