
RESEARCH ARTICLE
www.advquantumtech.com

Generating Discorrelated States for Quantum Information
Protocols by Coherent Multimode Photon Addition

Nicola Biagi, Luca S. Costanzo, Marco Bellini, and Alessandro Zavatta*

It is demonstrated that the recently developed technique of delocalized single
photon addition may generate discorrelation, a new joint statistical property
of multimode quantum light states, whereby the number of photons in each
mode can take any value individually, but two modes together never exhibit
the same. By coherently adding a single photon to two identical coherent
states of light in different temporal modes, the first experimental observation
of discorrelation is provided. The capability of manipulating this statistical
property has applications in scenarios involving the secure distribution of
information among untrusted parties, like in the so-called “mental
poker” games.

1. Introduction

When considering different modes of the electromagnetic field,
the number of photons (NoP) populating each of them may ex-
hibit a wide variety of distributions. Independently from the dis-
tribution in each single mode, correlations among the num-
ber of photons in the different modes are of particular inter-
est and may come in different forms. Injecting a coherent state
in one input port of a balanced beam-splitter, with vacuum in
the other, the probability of observing a particular number of
photons n in one output mode is independent (un-correlated)
from that of measuring m in the other one (see Figure 1a). If
a classical thermal state is split, correlations are observed, with a
higher probability of measuring the same NoP in the two modes.
These classical correlations have been already exploited in
ghost imaging applications,[1] whereas non-classical correlations,
such as those existing in twin beams generated by parametric
down-conversion,[2,3] are known to bring additional and unique
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advantages for quantum enhanced imaging
and sensing.[4] In principle, an ideal two-
mode squeezed vacuum exhibits perfect
photon number correlations, meaning that
two perfect detectors always measure the
same number of photons in the twomodes.
Such perfect correlations are also important
for quantum communication tasks, when
common but random information has to
be shared between two parties.[5,6] On the
other hand, when a single photon is used
at the input of the beam-splitter, perfect
anti-correlations are observed between the
outputs: if a single photon is measured at
one output, then no photon is present in

the other one, and viceversa. Equally anti-correlated outputs
result from impinging two indistinguishable photons onto a
balanced beam-splitter, in a so-called Hong-Ou-Mandel (HOM)
scheme.[7]

Different from all the above, a new form of correlation in
the NoP of different field modes has been recently discussed by
Meyer-Scott et al.[8] It consists in the zeroing of particular out-
come probabilities for the NoP in one mode for a given measure-
ment result in the other mode. Appropriately named as discor-
relation, it manifests itself in null elements of the joint photon
number probability distribution Pn1 ,n2

. In particular, one can have
the case Pn,n = 0, where the probability of measuring the same
number n of photons in both modes is always zero for all n, but
the marginal distributions Pn =

∑∞
m=0 Pn,m are always nonzero

(see Figure 1b).
Figure 1c presents an alternative way to visualize discorrela-

tion. Here, the integrals along the diagonal direction of the joint
photon number distributions show the probability P(Δn) of a
difference Δn = n1 − n2 in the photon counts between the two
modes. Therefore, a separable state (Figure 1a) shows a maxi-
mum forΔn = 0, whereas the ideal discorrelated state (Figure 1b)
has a zero there, meaning null probability ofmeasuring the same
number of photons in the two modes.
Opposite to quantum key distribution schemes, where com-

mon random keys need to be shared, “discorrelation” can be used
to distribute unique randomness between parties. In particular, it
could be useful in so-called “mental poker” problems, which are
concerned with the fair dealing of cards between distant players
without a trusted third party.
A possible (classical) solution to this class of problems, also re-

lated to blind signature for secure voting or electronic cash, was
first provided by Rivest, Shamir, and Adleman (RSA) in 1981,
in one of the first appearances of Alice and Bob as the two un-
trustworthy parties playing poker over the phone.[9] The proposed
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Figure 1. Joint photon number distributions Pn1 ,n2 for: a) an ideal separable |𝛼⟩1|𝛼⟩2 state (with 𝛼=2) as obtained, for example, by splitting a coherent

state |√2𝛼⟩ in a 50% beamsplitter. The numbers of photons measured in the two modes are not correlated in this case; b) the same state exhibiting
discorrelation after delocalized single photon addition; c) integrals along the diagonal direction of the above joint photon number distributions (see the
text for more details).

protocol relied on commutative encryption, that is the possibility
to correctly retrieve a multiply encrypted message by perform-
ing decryption operations in a different order. However, just like
for the RSA public key algorithm,[10] the security of the scheme
was completely dependent on the difficulty of the mathematical
problem of factorization. On the contrary, sharing a discorrelated
multimode state would naturally guarantee the uniqueness of the
distributed random numbers.
The aim of this work is to provide the first experimental evi-

dence of such a valuable resource for quantum information pro-
tocols.

2. Discorrelation by Single-Photon Addition

The property of discorrelation had never been investigated and
observed experimentally yet, therefore Meyer-Scott et al.[8] pro-
posed some feasible schemes to generate discorrelated states in
a laboratory. Their schemes were based either on the mixing of
a coherent and single-photon state on a beam-splitter, or on con-
ditional measurements after the mixing of an entangled HOM
state with two independent multiphoton states. Here, we use a
different approach to generate discorrelated states, based on the
delocalized addition of a single photon.

Single-photon addition is the optical realization of the bosonic
creation operator, and it operates by increasing an optical field
mode by exactly one quantum of excitation. Experimentally, the
photon addition operation is realized by taking advantage of stim-
ulated emission in a two-mode degenerate parametric ampli-
fier, provided that the parametric gain is low enough.[11] Owing
to photon number correlations between signal and idler beams
of the parametric emissions, the detection of an idler photon
heralds the successful realization of the photon addition onto
the light state injected along the input signal mode. Single-
photon addition can generate nonclassical light states from clas-
sical ones and, once combined with photon subtraction, it is
used for full light state engineering at the single-photon level.
For instance, using sequences of photon addition and subtrac-
tion operations, it is possible to realize enabling tools for optical
quantum technologies, such as noiseless linear amplification[12]

andmeasurement-induced strong Kerr nonlinearity at the single-
photon level.[13] Moreover, when the single-photon addition pro-
cess is coherently applied to a multimode field, delocalized her-
alded addition can entangle two or more field modes.[14]

Here, we use this recently developed method of delocalized
single photon addition to generate discorrelation between two
modes of the electromagnetic field initially populated by uncorre-
lated coherent states. The effects of this optical manipulation are
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ideally depicted in Figure 1: the delocalized addition of a single
photon digs a null diagonal into the joint photon number proba-
bility distribution of two coherent states of equal amplitude (ini-
tially exhibiting a maximum on the diagonal of Pn1 ,n2

). After ad-
dition, although the NoP in each of the two modes can still take
any value individually, the two modes together never exhibit the
same, that is, Pn,n = 0. By experimentally reconstructing the out-
put joint photon number probability distributions Pe

n1 ,n2
of two

identical coherent states that underwent the delocalized addition
of a single photon, we provide the first evidence of discorrelation
in a multiphoton two-mode state.
The coherent addition of a single photon to two distinct

field modes, 1 and 2, by means of the balanced superposi-
tion (â†1 − â†2)∕

√
2 generates entanglement between the two

modes independently of the kind of states originally populating
them.[14] The simple coherent addition of a shared single photon
to two vacuum states, produces a single-photon mode-entangled
state[15] of the kind (|1⟩1|0⟩2 − |0⟩1|1⟩2)∕√2, which clearly
exhibits discorrelation, as discussed above. When delocalized
single-photon addition acts on two input modes containing
identical coherent states |𝛼⟩, the final state is:
|𝜓(𝛼)⟩12 = (

â†1|𝛼⟩1|𝛼⟩2 − |𝛼⟩1â†2|𝛼⟩2)∕
√
2

=
[
D̂1(𝛼)D̂2(𝛼)

(|1⟩1|0⟩2 − |0⟩1|1⟩2)]∕
√
2 (1)

with the phase-space displacement operator defined as
D̂(𝛼) = e𝛼â†−𝛼∗ â and using the operator relation â†D̂(𝛼) =
D̂(𝛼)â† + 𝛼∗D̂(𝛼). Therefore, coherently adding a delocalized
single photon to two identical coherent states is seen to coincide
with the result of an equal phase-space displacement operation
D̂(𝛼) on both modes of a single-photon mode-entangled state;
the final state thus maintains constant maximum entanglement
independently of the amplitude of the input coherent states.
It is easy to see that this state can be equivalently obtained by
mixing a single photon and a |√2𝛼⟩ coherent state on a balanced
beam-splitter, as proposed in ref. [8], therefore the two output
modes should present perfect multiphoton discorrelation.

3. Experimental Setup

We use a temporal-mode scheme (see Figure 2) for the exper-
imental implementation of the delocalized single-photon addi-
tion. The coherent superposition of photon additions on two
different traveling temporal modes, 1 and 2, is obtained by al-
lowing the herald (idler) photon from a stimulated parametric
down-conversion (PDC) process[16] to travel two indistinguish-
able paths of different length toward the herald detector.[15] The
signal mode of the PDC is seeded with attenuated laser pulses
coming from the main laser source (a mode-locked Ti:sapphire
laser emitting 1.5-ps pulses at 786 nm and at a repetition rate of
81 MHz). The PDC crystal (a 3-mm long, bulk, type-I, BBO) is
pumped by the frequency-doubled laser emission. The two paths
for the idler photons are realizedwith an unbalanced, fiber-based,
Mach–Zehnder interferometer placed after a set of spectral and
spatial filters (F). A detection event by the single-photon detector
(D) placed at one of the interferometer outputs heralds the suc-
cessful implementation of a delocalized single-photon addition

Figure 2. Schematic view of the experimental setup performing coherent
single-photon addition on two different input temporal modes, both con-
taining a coherent state |𝛼⟩. A click in the single-photon detector D, placed
after a Mach–Zehnder interferometer unbalanced by the time delay be-
tween the input temporal modes, heralds the delocalized addition of a
single photon to the two output modes, which are then completely ana-
lyzed by means of time-domain homodyne detection (HD). See the text
for further details.

between the two temporalmodes. In principle, one can also freely
adjust the phase between the two photon addition operations by
varying the relative phase 𝜑 between the interferometer arms via
the fine adjustment of an air-gap length. A feedback loop based
on the interference of a counter-propagating pulse train injected
in the unused interferometer output port provides phase stabi-
lization. In practice, for this experiment investigating discorrela-
tion properties, we are only interested in the odd superposition
of Equation (1), but the experimental scheme is much more ver-
satile than this and would easily allow one to explore the effects
of different superposition phases and weights.
Ideally, in order to test the discorrelation properties of the fi-

nal state, one should perform a joint photon number resolving
measurement on the two consecutive wavepacketmodes. In prac-
tice, due to the lack of proper photon number resolving detectors,
we adopt a different strategy. The analysis of the output states is
based on time-multiplexed homodyne detection, where pairs of
local oscillator (LO) pulses with controlled phases 𝜃1,2 in the two
separate temporal modes are interfered with the signal modes
on a 50% beam-splitter. Two proportional photodiodes detect the
pulses at the outputs of the beam-splitter and the correspond-
ing photocurrents are subtracted for eachmode. Quadrature data
points are thus obtained for each mode by integrating the corre-
sponding difference photocurrent signal over a time window of
about 10 ns.

4. Results and Discussion

Two-mode quadrature data are collected for different values of
the two LO phases scanned in the [0,𝜋] interval by controlling
their global phase via a piezo-mounted mirror, and their relative
phase by means of an ultrafast electro-optic modulator. Applying
an iterative maximum likelihood algorithm[17,18] to the collected
data it is possible, at least in principle, to reconstruct the density
matrix fully representing the optical two-mode state. This way,
one can access not only the joint photon number distribution
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Figure 3. Ideal (left column) and experimental (right column) joint photon number distributions for different mean photon numbers n̄ = |𝛼|2 in each
of the input coherent states.
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but, for example, it is possible to measure the entanglement of
the state by means of the negativity of the partial transpose, as
done in ref. [14]. However, it is worth noting that, increasing the
mean photon number of the state, the number of density ma-
trix elements to reconstruct rapidly increases too. This quickly
makes such an approach unfeasible (e.g., a two-mode separable
coherent state, with |𝛼|2 = 1 in each mode, may already require
the reconstruction of up to 2400 density matrix elements for a
faithful representation). In order to overcome this issue, we per-
formed a tomographic reconstruction by averaging the LO global
phase 𝜃 and acquiring about 50 000 quadrature values for nine
equidistant relative phase values in the interval [0,𝜋]. The phase-
averaged density matrix elements in the Fock basis are given by

1
2𝜋 ∫

2𝜋

0
d𝜃⟨n1|⟨n2|Û†

1 (𝜃)Û
†
2 (𝜃)�̂�Û1(𝜃)Û2(𝜃)|m1⟩|m2⟩ (2)

where Û(𝜃) = e−i𝜃n̂ describes a phase shift of 𝜃, and �̂� is a generic
density matrix describing the state before the phase averaging.
Using Û(𝜃)|n⟩ = e−i𝜃n|n⟩, it is apparent that the uniform averag-
ing of the LO global phase 𝜃, over the interval [0, 2𝜋], has the effect
of nullifying all the elements such that (n1 −m1 + n2 −m2) ≠ 0.
This reduces the number of matrix elements needed to be recon-
structed by the maximum likelihood algorithm because the only
non-zero ones are those diagonal with respect to the LO global
phase, which include the ones needed to calculate Pe

n1 ,n2
(those

for which n1 = m1 and n2 = m2); this procedure has also been
validated by numerical simulations.
The joint photon number distributions Pe

n1 ,n2
obtained from

experimentally reconstructed density matrices are shown in the
right column of Figure 3 for different amplitudes of the input co-
herent states. Note that no correction for detection efficiency was
included in the reconstruction procedure. Although the experi-
mental distributions do not exhibit the perfect discorrelation of
the ideal states (also shown as a reference in the left column), due
to experimental imperfections (limited detection efficiency and
imperfect delocalized photon addition operation), they neverthe-
less present an evident decrease in themagnitude of the diagonal
elements, a clear signature of discorrelation.
This is better illustrated in Figure 4, where the integrals of

the experimental joint photon number distributions of Figure 3
along the diagonal direction are presented. The experimental
marginal distributions P(Δn) show pronounced local minima for
Δn = 0, clearly witnessing the discorrelation of the states. It is
also evident that there is a very good agreement between the ex-
perimental and the corresponding theoretical marginals for the
states described by Equation (1), calculated while keeping into ac-
count several imperfections according to the following model:

�̂�exp = Trr
{
B̂†
1(𝜂)B̂

†
2(𝜂)

[
𝜂p�̂�id + (1 − 𝜂p)�̂�(𝛼)

]
�̂�vacB̂1(𝜂)B̂2(𝜂)

}
(3)

where �̂�id represents the ideal pure state of Equation (1). Due to
unwanted single-photon detector clicks, the heralded state is de-
scribed by a mixture of the ideal state with the input uncorre-
lated two-mode coherent state �̂�(𝛼) with amplitude 𝛼. The mix-
ture weight is the preparation efficiency 𝜂p that depends on: 1) the
spatial-temporal widths of filters (F in Figure 2) along the herald-
ing armof the experiment; 2) the dark counts of the single-photon

Figure 4. Experimental (solid curves) and theoretical (dashed curves)
probability distributions P(Δn) for a differenceΔn = n1 − n2 in the photon
counts between the twomodes resulting fromdelocalized photon addition
onto two identical coherent states of mean photon number n̄.

detector D; and 3) imperfect matching of the addition mode to
the detection one.[19] According to the standard quantum model
of losses,[20] each mode of the generated mixed state is attenu-
ated by a beam splitter with transmission 𝜂 and described by the
unitary transformation B̂(𝜂). The two-mode vacuum term �̂�vac ac-
counts for the extra quantum noise introduced by the loss pro-
cess, and the unused reflected modes of each beam splitter are
traced over by the partial trace Trr . In particular, the theoretical
curves of Figure 4 consider an independently determined detec-
tion efficiency 𝜂 = 0.70 (due to optical losses, quantum efficiency
of the photodiodes and electronic noise in the homodyne detec-
tor) and a preparation efficiency of 𝜂p = 0.92.[19]

Note that, for the extreme case of delocalized photon addi-
tion to two vacuum states (i.e., for |𝛼|2 = n̄ = 0), resulting in the
production of the single-photon mode-entangled state of [15], the
ideal P(Δn) curve would just consists of two equal peaks at Δn =
±1. If the effect of a finite global efficiency is taken into account,
the central dip would only be visible for 𝜂tot ≳ 0.67, whereas the
curve would flatten and the dip turns into a peak for lower effi-
ciencies. This is the reason why the curves of Figure 4 seem to
show shallower dips for decreasing n̄. With the present experi-
mental inefficiencies, the central dip would disappear for input
coherent states with n̄ ≲ 0.2.

5. Conclusion

In conclusion, we have shown that our recently developed
method based on the delocalized addition of a single photon, be-
sides allowing one to entangle arbitrary states of arbitrarily large
size,[14] can generate discorrelated states. Heralded single-photon
addition on two different traveling temporal modes containing
identical, uncorrelated, coherent states leads to a discorrelation
in their joint photon number distribution, that is to the impossi-
bility of measuring the same NoP in both modes. We experimen-
tally verified the generation of discorrelated states by performing
a reduced two-mode tomographic reconstruction that allowed us
to manage the increasing computational effort in the reconstruc-
tion of states with larger mean photon numbers. Our experimen-
tal results clearly show the signature of discorrelation as a dip at
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the center of the probability distributions P(Δn) as a function of
the difference in the photon counts between the twomodes, even
in the presence of limited detection efficiency, imperfect state
preparation, and statistical noise.
The peculiar statistical properties of discorrelated quantum

states, experimentally verified here for the first time, might make
these states useful for new specific applications. For example, the
possibility of distributing random numbers among two parties
while being certain of their uniqueness, that is the impossibility
for the two parties to receive the same number, could be used in
distributed voting schemes[21] or for fair card dealing in “mental
poker” games.[9,22]
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