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Abstract: The influence of the Dzyaloshinskii–Moriya interaction (DMI) on the eigenmodes of mag-
netic nanostructures is attracting interest for both fundamental reasons and prospects in applications.
In this study, the characteristics of spin waves eigenmodes in either long stripes or elliptical dots
magnetized in-plane, with lateral dimensions of the order of 100 nm, are analyzed by micromag-
netic simulations in presence of a sizeable DMI. Using the GPU-accelerated software MuMax3, we
show that the eigenmodes spectrum is appreciably modified by the DMI-induced non-reciprocity in
spin-waves propagation: the frequencies of the eigenmodes are red-shifted and their spatial profiles
appreciable altered due to the lack of stationary character in the direction orthogonal to the magne-
tization direction. As a consequence, one finds a modification of the expected cross-section of the
different modes in either ferromagnetic resonance or Brillouin light scattering experiments, enabling
one to detect modes that would remain invisible without DMI. In this respect, the modifications of the
spectrum can be directly connected to a quantitative estimation of the DMI constant. Moreover, it is
seen that for sufficiently large values of the DMI constant, the low-frequency odd eigenmode changes
its profile and becomes soft, reflecting the transition of the ground state from uniform to chiral.
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1. Introduction

The study of chiral magnetism is attracting more and more attention in recent years,
thanks to the discovery of the interfacial Dzyaloshinskii–Moriya interaction (DMI) [1,2]
in magnetic thin films and multilayers. This interaction is an antisymmetric exchange
coupling between two nearest spin electrons mediated by an heavy metal under- or over-
layer [3–5]. For future applications, an accurate measurement of its strength is indispens-
able, so that different methods have been developed to evaluate it, such as the study of
the domain walls motion [6–9] and the detection of spin waves (SW) by Brillouin light
scattering (BLS) [10–17]. Several investigations have been published in the last seven years
concerning plain films and multilayers [18,19], while there are only a few investigations
concerning patterned nanostructures [20–25]. In particular, it is important to achieve a
detailed understanding of the modifications of the dynamics of isolated magnetic nanoele-
ments, which are usually realized by e-beam lithography and can be exploited in magnetic
memories [26].

In a pioneering micromagnetic study, Garcia-Sanchez et al. [21] showed theoretically
that Neel domain walls driven by the DMI can modify spin-wave propagation by an
inducing nonreciprocal channeling along the center of the wall. Such channeling also
occurs at the edges of perpendicularly magnetized wires and dots, where partial walls
appear as a result of twisted boundary conditions.
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Subsequently, M. Mruczkiewicz et al. [22] exploited both the frequency-domain
method and micromagnetic simulations to investigate the impact of DMI on the ferromag-
netic resonance (FMR) spectrum of isolated stripes magnetized in-plane, where DMI causes
a red-shift of some peaks in the simulated FMR spectrum, as well as the appearance of
new peaks.

More recently, the first theoretical investigation of nanodots magnetized in-plane was
performed by Zingsem et al. [23] who proposed a model for quantized traveling waves in
a confined geometry for the case of nonreciprocal propagation wherein waves at a given
frequency have wavelengths that depend upon the direction of travel. They put in evidence
that confinement in a nonreciprocal energy landscape produces a fixed nodal structure with
wave amplitudes modulated in time and a phase velocity determined by the difference in
wave- lengths between opposite propagation directions.

In this work we aim at deepening the analysis of the effect of interfacial DMI on
nanomagnetic elements, considering both isolated stripes of width 100 nm and elliptical
nanodots with lateral dimensions 100 × 50, 200 × 100 and 300 × 150 nm2. All the nanos-
tructures are magnetized in-plane along the easy direction and have a thickness of 1.5 nm.
We systematically vary the DMI strength D between 0 and 4 mJ/m2, analyzing the variation
of both the eigenmodes spectrum and the spatial profile of the excited eigenmodes.

Please note that the results that we find in this paper correspond to what is expected
in a possible experiment of ferromagnetic resonance o of Brillouin light scattering (at
perpendicular incidence) on real magnetic wires or dots with sizeable DMI, which are still
lacking in the literature.

2. Theoretical Framework and Micromagnetic Simulations

The dynamics of the considered magnetic systems, it is governed by the well-known
Landau-Lifshitz-Gilbert equation (LLG):

∂m
∂t

= −γ
(

m×He f f

)
+ α

(
m× ∂m

∂t

)
(1)

where m(r, t) = M
Ms

is the unit vector along the local magnetization, γ is the gyromagnetic
ratio, α is the Gilbert damping constant. Heff is the effective field acting on the processing
spins, which can be derived from the energy functional according to:

He f f = −
1

µ0

∂Etot

∂m
(2)

Therefore, it consists of different contributions, reflecting the energy terms recalled above:

He f f = H0 + Hexch + Hani + Hms + HDMI =
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∂y

)
ez

] (3)

where H0 is the external applied field, A is the exchange stiffness constant, Ku is the uniaxial
perpendicular anisotropy constant, and D the DMI constant. ex, ey and ez are the unitary
vectors of the reference frame, chosen such that the z axis is perpendicular to the sample
plane, as in Figure 1. The magnetostatic dipolar field Hms would be uniform in the case of an
ellipsoidal body, only, so that for planar nanostructures it is usually calculated numerically,
accounting for its non-uniformity and non-locality. The most general method to solve
the LLG equation above are based on proper numerical techniques where it is spatially
discretized using finite differences or finite elements methods. As a result, a discretized
version of the effective field is obtained and the corresponding system of differential
equations are solved within suitable time-stepping schemes.
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Figure 1. Sketch of the isolated nanoelements and of the reference frame considered in the present 
study: long wires and elliptical dots magnetized in-plane along the easy direction, coincident with 
the x-axis. The z-axis is perpendicular to the plane. 

The Micromagnetic simulations were performed by the GPU-accelerated software 
Mumax3 [27]. For the isolated stripe of width w = 100 nm and thickness t = 1.5 nm, the 
simulated area was divided in 8 × 20 × 1 cells with a dimension of 5 × 5 × 1.5 nm3. The 
periodic boundary conditions were applied in the x-direction, which represent the easy 
axis along which it is magnetized, to reproduce the infinite length of the stripe, taking into 
account that we are looking for stationary eigenmodes, with a uniform profile along the 
stripe length. (Please note that use of the periodic boundary conditions in the x-direction 
insures that the static internal field is uniform, avoiding the inhomogeneity that would 
originate by edges orthogonal to the magnetization. In second place, this is important to 
reduce the number of cells in the simulation, reducing the computation power and the 
time of the simulations.) For the elliptical magnetic dots, we kept a thickness t =1.5 nm, 
but considered three different lateral sizes a × b, namely 100 × 50 nm2, 200 × 100 nm2 and 
300 × 150 nm2, as sketched in Figure 1. Moreover, in order to better mimic the round shape 
of the dot borders, the size of the discrete cells was reduced to 2 × 2 × 1.5 nm3. Both stripes 
and dots were saturated along their long axis (coincident with the x-direction) by an 
external field B0 = μ0H0 = 0.1 T. Then, spin waves were excited using a spatially uniform 
sinc-shaped field pulse, with an amplitude bz = 10 mT directed along the z axis, able to 
activate modes up 50 GHz. The fast Fourier-transform (FFT) of the temporal evolution of 
the out of plane average magnetization of the discrete cells was then performed to obtain 
the spectrum of the dynamic eigenmodes. In a second step of our simulations, a spatially 
uniform external field, oscillating at the frequency of each mode of the spectrum, was 
applied to visualize the spatial profile of each eigenmode. Please note that using this 
procedure, the observed modes are those whose average dynamical magnetization is 
different from zero, i.e., those that would be revealed in either a ferromagnetic resonance 
or a Brillouin light scattering experiment, while odd modes, having a negligible average 
value of the dynamical magnetization, are not included in our results. For both stripes and 
dots, magnetic parameters typical of CoB were assumed, i.e., saturation magnetization Ms 

= 1.2 MA/m, exchange stiffness A = 10 pJ/m, which lead to a value of the exchange 
correlation length of about 3.3 nm. The Gilbert damping was fixed to α = 0.001, to obtain 
a narrow linewidth of the peaks in the eigenmodes spectra. 

  

Figure 1. Sketch of the isolated nanoelements and of the reference frame considered in the present
study: long wires and elliptical dots magnetized in-plane along the easy direction, coincident with
the x-axis. The z-axis is perpendicular to the plane.

The Micromagnetic simulations were performed by the GPU-accelerated software
Mumax3 [27]. For the isolated stripe of width w = 100 nm and thickness t = 1.5 nm, the
simulated area was divided in 8 × 20 × 1 cells with a dimension of 5 × 5 × 1.5 nm3. The
periodic boundary conditions were applied in the x-direction, which represent the easy
axis along which it is magnetized, to reproduce the infinite length of the stripe, taking into
account that we are looking for stationary eigenmodes, with a uniform profile along the
stripe length. (Please note that use of the periodic boundary conditions in the x-direction
insures that the static internal field is uniform, avoiding the inhomogeneity that would
originate by edges orthogonal to the magnetization. In second place, this is important to
reduce the number of cells in the simulation, reducing the computation power and the
time of the simulations.) For the elliptical magnetic dots, we kept a thickness t =1.5 nm,
but considered three different lateral sizes a × b, namely 100 × 50 nm2, 200 × 100 nm2

and 300 × 150 nm2, as sketched in Figure 1. Moreover, in order to better mimic the round
shape of the dot borders, the size of the discrete cells was reduced to 2 × 2 × 1.5 nm3. Both
stripes and dots were saturated along their long axis (coincident with the x-direction) by an
external field B0 = µ0H0 = 0.1 T. Then, spin waves were excited using a spatially uniform
sinc-shaped field pulse, with an amplitude bz = 10 mT directed along the z axis, able to
activate modes up 50 GHz. The fast Fourier-transform (FFT) of the temporal evolution
of the out of plane average magnetization of the discrete cells was then performed to
obtain the spectrum of the dynamic eigenmodes. In a second step of our simulations, a
spatially uniform external field, oscillating at the frequency of each mode of the spectrum,
was applied to visualize the spatial profile of each eigenmode. Please note that using
this procedure, the observed modes are those whose average dynamical magnetization is
different from zero, i.e., those that would be revealed in either a ferromagnetic resonance
or a Brillouin light scattering experiment, while odd modes, having a negligible average
value of the dynamical magnetization, are not included in our results. For both stripes and
dots, magnetic parameters typical of CoB were assumed, i.e., saturation magnetization
Ms = 1.2 MA/m, exchange stiffness A = 10 pJ/m, which lead to a value of the exchange
correlation length of about 3.3 nm. The Gilbert damping was fixed to α = 0.001, to obtain a
narrow linewidth of the peaks in the eigenmodes spectra.

3. Results
3.1. Eigenmodes of Isolated Stripes

In Figure 2 we show how the modes of the stripe decrease in frequency and modify
their intensity upon increasing the strength D of the DMI from 0 to 4 mJ/m2. On the left
side of the main panel, we show an intensity spectrum corresponding to D = 0, together
with insets that show the spatial profile of the amplitude of each mode across the stripe
width (y axis). The modes are labelled by an index ny that corresponds to the number of
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nodal lines parallel to the stripe axis (x-direction), so that one can estimate the quantized
transverse wavenumber of the discrete modes as ky =

nyπ
w (while in the x-direction the

modes are uniform, i.e., they correspond to kx = 0).
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Figure 2. Top panel: dependence of the frequencies of the spin wave eigenmodes on the 
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animations with the movies of the dynamics of the main modes for several values of D, 
corresponding to the red points in the central panel, are available in the supplemental material. On 
the left-hand side, the intensity spectra corresponding to D = 0 are reported, together with a 
snapshot of the spatial profile of the dynamical magnetization. Bottom panel: representation of the 
unitary vector of the magnetization of each discrete cell of the wire across the wire width. It is seen 
that the magnetization of the discretized cells is aligned along the x-direction (easy axis), but for D 
= 4 mJ/m2 the magnetization distribution exhibits a chiral state close to the left and right edges, 
where it is not anymore aligned along the x-direction, as it is in the central region of the wire. 

It can be seen that for D = 0 only the even modes have a finite cross section in the 
spectrum, while odd modes are absent, as anticipated in the previous section. However, 
as D is lifted from zero, also odd modes become visible, since they progressively lose their 
stationary character along the y direction, reflecting the fact that the DMI introduces an 
energy shift proportional to ±Dky for each of the two partial waves, travelling in opposite 
directions, whose superposition gives rise to the stationary mode at D = 0. The detailed 
time evolution of the spatial profile of all the modes and their evolution with the value of 

Figure 2. Top panel: dependence of the frequencies of the spin wave eigenmodes on the Dzyaloshinskii–Moriya interaction
(DMI) constant D for the wire of width w = 100 nm. The animations with the movies of the dynamics of the main modes for
several values of D, corresponding to the red points in the central panel, are available in the Supplemental Material. On the
left-hand side, the intensity spectra corresponding to D = 0 are reported, together with a snapshot of the spatial profile of
the dynamical magnetization. Bottom panel: representation of the unitary vector of the magnetization of each discrete cell
of the wire across the wire width. It is seen that the magnetization of the discretized cells is aligned along the x-direction
(easy axis), but for D = 4 mJ/m2 the magnetization distribution exhibits a chiral state close to the left and right edges, where
it is not anymore aligned along the x-direction, as it is in the central region of the wire.

It can be seen that for D = 0 only the even modes have a finite cross section in the
spectrum, while odd modes are absent, as anticipated in the previous section. However, as
D is lifted from zero, also odd modes become visible, since they progressively lose their
stationary character along the y direction, reflecting the fact that the DMI introduces an
energy shift proportional to ±Dky for each of the two partial waves, travelling in opposite
directions, whose superposition gives rise to the stationary mode at D = 0. The detailed
time evolution of the spatial profile of all the modes and their evolution with the value of
D can be found in the animations (MP4 video files) that are available in the Supplementary
Material. These animations clearly show that for finite values of D the modes assume a
propagative character along the y-direction and the position of the nodes is not fixed at
specific positions anymore, but it shifts to the right with time. As a consequence, also
for those odd modes that were absent in the spectrum at D = 0 there is net magnetic
moment oscillating that can be resonantly coupled to the spatially uniform oscillating
magnetic field. This is the reason why, for instance, the intensity of the first two odd
modes (ny = 1 and ny = 3) is zero for D = 0 but becomes relatively large as D is lifted
to 1 or 2 mJ/m2, as seen in Figure 2. Another interesting point is that the frequency of



Appl. Sci. 2021, 11, 2929 5 of 10

all the modes decreases on increasing D, but the slope of the ny = 1 mode is larger than
that of the fundamental mode (ny = 0), so the two modes merge for D ≈ 2 mJ/m2 and
become soft for D = 3.25 mJ/m2, driving the transition from the uniform ground state to
a chiral one, similarly to what happens in magnetic dots when there is a transition in the
ground state [28,29]. To this respect, we verify also in the present case a characteristic that
was previously observed for magnetization reversal of magnetic dots: whenever there is
a change in the symmetry of the equilibrium state, which change is consistent with the
symmetry of the mode that becomes soft and that drives the transition to a new ground
state. The change of the ground state after the mode softening is illustrated in the bottom
panel of Figure 2, where we have plotted the static magnetization across the stripe for
D = 0 and for D = ±4 mJ/m2. One can easily see that for D = 0 the magnetization of all the
discrete cells is aligned along the x direction, while for D = ±4 mJ/m2 the magnetization of
the cells that are close the edges of the stripe deviate from the x direction and assumes a
chiral configuration, with opposite chirality for positive or negative D. Remarkably, one
sees that the z-component of the corresponding cells located at either the left or the right
side of the stripe is opposite, resembling the antisymmetric nature of the ny = 1 mode,
which is, in fact, the mode undergoing softening. Notice that if the magnetic system would
be made more rigid by a larger applied field, then the value of D for which the mode
softening occurs (D = 3.25 mJ/m2 in the present case) would be larger. For instance, it
would be lifted to D = 3.65 mJ/m2 by doubling the intensity of the external field (B0 = 0.2 T
rather than 0.1 T). Another interesting characteristic of the modes evolution with D is that
only the modes with indices ny larger than 1 do not soften, because the presence of more
than one node in their transverse profile implies a relatively large cost in terms of exchange
energy and this prevents their frequency to approach zero.

3.2. Eigenmode of Isolated Elliptical Nanodots

Let us now consider the more complicated case of elliptical nanodots, which, different
from the wires discussed above, are laterally confined in both in-plane directions. For such
case, we adopt the classification and the labelling scheme of the eigenmodes of magnetic
nanodots that have been described in a recent review paper [30]: each mode is labelled
with two integer indices (nx,ny) whose values correspond to the number of nodal lines
perpendicular or parallel to the direction of the magnetization (x axis), respectively. In
Figure 3 one can see the results of our simulations relative to the smallest dots considered in
this study, having lateral dimensions 100 × 50 nm2. The central panel shows the evolution
of the mode frequencies as a function of D, while in the left- and right-hand panels one
finds the intensity spectra where each peak corresponds to the mode whose bidimensial
spatial profile is shown in color scale. In this first approach we limit our analysis to the
range of D between 0 and 2 mJ/m2, i.e., a range of values that are easily accessible in real
samples [19].

In absence of DMI, the (0,0) mode, characterized by the absence of any nodal line,
is by far the most intense one. Therefore, it is called the “fundamental” mode, although
magnetostatic effects appear in the fact that the mode amplitude is mainly localized at the
edges, where the demagnetizing field is relatively strong and the dynamic amplitude is
larger than elsewhere. Similar to the case of the stripes, the odd mode (0,1) is completely
absent in the spectra calculated for D = 0, but it starts to appear for finite values of D and
becomes very intense, i.e., comparable with the fundamental mode (0,0), for D = 2 mJ/m2.
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magnetization. Instead for D = 1 and 2 mJ/m2, it is visible a continuous shift of the profile 
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Figure 3. Top central panel: dependence of the frequencies of the spin wave eigenmodes on the DMI constant D for the elliptical
dot of lateral dimensions 100 × 50 nm2. On the left- and right-hand sides, the intensity spectra corresponding to D = 0 and
2 mJ/m2 are reported, respectively, together with the color insets that represent the spatial profile of the dynamical magnetization,
expressed as the product of the modulus of the dynamical magnetization by the sign of its phase. Bottom panel: spatial profile of
the mode (2,0) plotted at different times during the period T, for three different values of D. The animations with the movies of the
dynamics of all the modes for several values of D are available in the Supplemental Material.

Again, the reason for this marked modification of the intensity of different modes in
the spectra is the fact that the presence of DMI leads to a progressive loose of stationary
character along the y direction and the appearance of a finite net dynamical magnetic
moment for odd modes. This can be appreciated also in the bottom panel of Figure 3,
where we show the temporal evolution of the mode (2,0) at different times. For D = 0
it exhibits a clear stationary character, with two nodal lines perpendicular to the static
magnetization. Instead for D = 1 and 2 mJ/m2, it is visible a continuous shift of the profile
along the y direction, i.e., a propagative character along y. Animations where one can
follow in detail the evolution of the spatial profile of the various modes as a function of
time, for different intensity of the DMI, are available in the Supplemental Material. Please
note that, similarly to the case of the wires, in the case of elliptical dots, the antisymmetric
mode (0,1) also exhibits a larger slope than the fundamental mode (0,0), and further on, in
this same section, we will discuss its softening for large values of D.

Let us now consider how the characteristics of the mode spectrum change when the
lateral dimensions of the magnetic dot increase. In Figures 4 and 5 we report the results
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relative to dots of lateral dimensions 200 × 100 nm2 and 300 × 150 nm2, respectively. First
of all, one notices that the number of modes that appear in the range of frequencies up to
30 GHz rapidly increases with the lateral dimensions. For instance, for the 200 × 100 nm2

dots one finds more than ten eigenmodes, i.e., about twice the number of modes observed
in the smallest dots as well as in the 100 nm wide wires studied in the previous paragraph.
Moreover, in absence of DMI the lowest mode (0,0) tends to be much more localized at
the dot edges if compared to the case of the smallest dots, so that it loses its “fundamen-
tal” character, being replaced by the (2,0) mode. In fact, the latter is characterized by a
maximum amplitude in the central region of the dot and presents the largest average
dynamical magnetization, as seen in the calculated spectra plotted in the left-hand side of
Figures 4 and 5. However, also for the larger dots when the value of D is lifted from zero,
the frequencies of all the modes decrease and the odd (0,1) mode becomes visible. The
latter actually becomes the most intense peak in the spectrum, overcoming the (2,0) mode,
as D approaches the value of 2 mJ/m2, as shown in the spectra on the right-hand side of
Figures 4 and 5.
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dynamical magnetization, expressed as the product of the modulus of the dynamical magnetization by the sign of its
phase. The animations with the movies of the dynamics of all the modes for several values of D are available in the
Supplemental Material.

Finally, let us extend the analysis of the frequency evolution of the eigenfrequencies to
large values of D, in order to cross check also in the case of the elliptical dots the softening
associated to the transition to a chiral ground state. Figure 6 presents the calculated
frequencies for D ranging up to 5 mJ/m2 for the elliptical dots with different lateral
dimensions. One finds a behavior that is similar to what observed for the wires, although
in this case the mode softening occurs at relatively larger values of D. The slope of curve
corresponding to the first odd mode (1,0) is clearly steeper than that of the corresponding
curves of the low-frequency (0,0) and (0,2) modes. Therefore, mode-crossing is observed
around D = 3 mJ/m2 and then the frequency of the soft mode approaches zero for a value
of D just above 4 mJ/m2. Actually, this specific value of D is about 4.3 mJ/m2 in the
smallest dots and somehow smaller for the larger dots, reflecting the different effective
fields inside the dots related to their lateral dimensions. For larger values of D, the ground
state undergoes a transition to a chiral non-uniform state and the dynamics becomes very
complex, so the spectrum is completely changed.
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Figure 5. Central panel: dependence of the frequencies of the spin wave eigenmodes on the DMI constant D for the
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Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 5. Central panel: dependence of the frequencies of the spin wave eigenmodes on the DMI constant D for the 
elliptical dot of lateral dimensions 300 × 150 nm2. On the left- and right-hand sides, the intensity spectra corresponding to 
D = 0 and 2 mJ/m2 are reported, respectively, together with the color insets that represent the spatial profile of the 
dynamical magnetization, expressed as the product of the modulus of the dynamical magnetization by the sign of its 
phase. The animations with the movies of the dynamics of all the modes for several values of D are available in the 
supplemental material. 

Finally, let us extend the analysis of the frequency evolution of the eigenfrequencies 
to large values of D, in order to cross check also in the case of the elliptical dots the 
softening associated to the transition to a chiral ground state. Figure 6 presents the 
calculated frequencies for D ranging up to 5 mJ/m2 for the elliptical dots with different 
lateral dimensions. One finds a behavior that is similar to what observed for the wires, 
although in this case the mode softening occurs at relatively larger values of D. The slope 
of curve corresponding to the first odd mode (1,0) is clearly steeper than that of the 
corresponding curves of the low-frequency (0,0) and (0,2) modes. Therefore, mode-
crossing is observed around D = 3 mJ/m2 and then the frequency of the soft mode 
approaches zero for a value of D just above 4 mJ/m2. Actually, this specific value of D is 
about 4.3 mJ/m2 in the smallest dots and somehow smaller for the larger dots, reflecting 
the different effective fields inside the dots related to their lateral dimensions. For larger 
values of D, the ground state undergoes a transition to a chiral non-uniform state and the 
dynamics becomes very complex, so the spectrum is completely changed.  

 
Figure 6. Dependence of the frequencies of the spin wave eigenmodes on the DMI constant D for the elliptical dot of lateral
dimensions 100 × 50 nm2 (a), 200 × 100 nm2 (b), 300 × 150 nm2 (c). It is seen that the frequency of the (0,1) mode decreases
more rapidly that the two lower modes, so mode crossing is observed for D around 3 mJ/m2 and then the mode becomes
soft, driving the transition to a non-uniform chiral ground state.

To conclude, let us notice and interesting aspect connected with the eigenmodes
intensity at relatively large values of D, which is easily seen in Figure 6. As D overcomes
the values of about 2 mJ/m2, there is a clear evolution of the modes intensity. In particular,
one sees that the character of “fundamental mode”, i.e., the largest intensity, is not anymore
related to the (0,0) or (2,0) modes at lower frequencies. Rather, one finds that modes
with relatively high-order assume a considerable intensity, while the soft mode at low
frequency becomes less intense. For instance, for D between 3.5 and 4 mJ/m2 the spectrum
is dominated by modes between 15 and 20 GHz. Such a lift of the frequency of the modes
with the largest intensity under external excitation by a uniform field pulse for large
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values of D could be in principle exploited to achieve high-frequency operation in devices
exploiting ferromagnetic resonance or microwave-assisted switching of magnetic dots.

4. Conclusions

In conclusion, we have analyzed, by micromagnetic simulations based on the GPU-
accelerated software MuMax3, the effect of DMI on the characteristics of the spin waves
spectrum of magnetic nanoelements magnetized in-plane, 1.5 nm thick: isolated stripes
of width 100 nm and elliptical dots with lateral dimensions of 100 × 50, 200 × 100 and
300 × 150 nm2. The eigenmodes spectrum of the above-mentioned nanostructures is
appreciably modified by the DMI-induced non-reciprocity in spin-waves propagation: the
frequencies of the eigenmodes are red-shifted and their spatial profiles appreciably altered
due to the lack of stationary character in the direction orthogonal to the magnetization
direction. As a consequence, even for values of D between 1 and 2 mJ/m2, easily achievable
in real samples, one finds important modifications in the frequency position and in the cross-
section of the different modes of the spectra. For instance, the (0,1) antisymmetric mode of
elliptical dot would remain invisible without DMI, while it would be the most intense for D
as large as 2 mJ/m2. Moreover, we found that if one further increases the value of D above
3 mJ/m2, the low frequency antisymmetric mode becomes soft, reflecting the transition of
the ground state from uniform state to a chiral one with opposite chirality at the borders.
We are confident that the results of this theoretical study will stimulate the realization
of ferromagnetic resonance or Brillouin light scattering experiments on real samples,
which are still lacking in the literature, aimed at verifying our theoretical predictions and
achieving a quantitative comprehension of the effect of DMI on the dynamical properties
of nanostructured samples, paving the way to their exploitation in spintronic devices.

Supplementary Materials: The video animations of the eigenmodes for the stripes and the dots are
available online at this link: https://doi.org/10.5281/zenodo.4540983 (accessed on 15 February 2021).
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