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Abstract

In this paper, a new model for joint dynamic friction of industrial robot manipulators is presented. In partic-

ular, the effects of the temperature in the joints are considered. A polynomial-based model is proposed and

the parameter estimation is performed without the need of a joint temperature sensor. The use of an observer

is then proposed to compensate for the uncertainty in the initial estimation of the temperature value. A large

experimental campaign show that the model, in spite of the simplifying assumptions made, is effective in esti-

mating the joint temperature and therefore the friction torque during the robot operations, even for values of

velocities that have not been previously employed.
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1 Introduction

It is well known that friction is one of the major problems that has to be faced in the design of motion control

systems. Actually, the compensation of this effect is crucial to improve the performance for industrial robot

manipulators, not only when they are employed in free motion tasks (for example by including a suitable feed-

forward term in the control law), but also for more advanced applications like those involving force control or

manual guidance (for example for lead-through programming) [7, 17, 29]. In fact, an accurate knowledge of

friction effects allows the designer to obtain a more precise estimation of the external forces. In addition, the

knowledge of the complete dynamic model of the robot, including friction, allows the user to predict the energy

consumption of the manipulator and therefore to optimize tasks in this context. Finally, the accurate knowledge

of the complete dynamic model can be used in long-term maintenance activities by analyzing the trend of the

model prediction error. However, in general, friction model uncertainties and variations reduce the estimation

reliability.

Friction is a complex phenomenon that arises when there is a relative motion between two bodies in contact,

or when a body moves inside a fluid. A complete model of friction is very difficult to obtain because friction

depends on many factors such as the relative velocity between the bodies in contact, the geometry and the

materials of the surfaces, the presence and the type of lubricants, the temperature and so on. For this reason,

many friction models have been already proposed in literature in order to capture and compensate for the main

components [30]. Indeed, it has been recognized until now that friction force mainly depends on the motion

speed. In general, friction models can be divided into static and dynamic ones [3, 10]. In static models the

relation between relative speed and friction force is, as the name explains, static, while in dynamic models the

friction force depends not only on the relative speed of motion, but also on a state variable that is able to take

into account the state of the system. Typical friction static models are, for example, the Coulomb model, the

viscous, the Stribeck and the polynomial ones [32,35], while the most famous friction dynamic models are the

Dahl’s one [9, 36], the LuGre one [1, 2, 12, 23], the Leuven model [19, 31] and the Maxwell-slip model and its

extensions [11, 20, 24, 26].

Although these models have been effectively employed in the industrial practice, there is the need to improve

them to enhance the capabilities of the industrial robots. In fact, friction force varies with time and this moti-

vates the need of adaptive friction compensation techniques [13,15,27]. Indeed, it has to be recognized that the

temperature plays a key role in friction [21, 22, 25] as friction transforms mechanical energy into heat which

causes the temperature to increase [18] and, on the other side, the characteristics of the speed reducers change

with the temperature [37]. This issue has been recently investigated thoroughly. In particular, a temperature

dependent friction model has been proposed in [4–6], where, however, it is assumed that the joint temperature

is measured, which is rather inconvenient in practical cases where it is not normally possible to measure the

temperature inside gearboxes.

In this paper, which is an extended version of [28] (note that a similar approach has been presented at the

same time in [8]), after showing that friction changes significantly during the robot operations (because of the

temperature), we propose a model based on a polynomial function of the joint dynamic friction where the co-

efficients depends on the temperature estimation obtained by means of a thermal model. The identification of

the model parameters that does not employ any additional temperature sensor is described. Then, a standard
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observer is used to compensate for an initial error in the estimation of the environmental temperature. An ex-

tensive experimental campaign has been performed in order to verify the correctness of the proposed model and

to discuss its applicability in practical cases, when different robot tasks are considered. The main advantage of

the proposed method is that the friction function can be determined also for velocities that have not been previ-

ously employed in the robot operations. In fact, in this case the use of interpolation method might fail because

of the temperature variation. Note that, although static friction is also a significant element that is detrimental

for performance when the robot moves at very low velocities [14], in this paper we focus on dynamic friction

and therefore on relatively high speed tasks, as the polynomial model is very effective in this case.

The paper is structured as follows. The basic polynomial friction model is described in Section 2, while the

improved model that takes into account the temperature effects is proposed in Section 3. The robot used in the

experiments of this paper is presented in Section 4. The identification procedure is given in Section 5. The

observer based technique is proposed in Section 6 and experimental results are given in Section 7. Concluding

remarks are in Section 8.

2 Polynomial Friction Model

It is well known that the dynamic model of a robot manipulator can be expressed as

τ = F(θ, θ̇, θ̈) + τf (1)

where τ is the vector of the joint torques, θ is the vector of the joint positions, F is the function that includes

inertial, Coriolis and gravity terms and τf is the vector of the friction terms. It is worth stressing that if the

robot is characterized by elastic behaviors on links or joints, those effect can be added in function F, without

modifications on the mathematical formulation of the proposed friction model. As already mentioned in the

introduction, friction is a complex phenomenon that depends on many factors (including temperature, as it will

be shown in the next sections) but, most of all, on velocity. For this reason many models that depend only on

velocity have been proposed in the literature. Among them, the polynomial friction model has been selected

in this paper because it is the model that best fits the experimental friction torque data obtained with the robot

manipulator used as experimental setup (see Section 4). Indeed, in the examined cases, a polynomial function

of third order is capable to represent quite accurately the dynamic friction effects, without losing linearity in

the parameters. Further, it is also able to represent a viscous effect that is not necessarily linear (see Figure 2 in

Section 3).

By considering for simplicity a single joint, the friction torque function can be therefore represented as

τf =
[
c0 + c1 |ω|+ c2 |ω|2 + c3 |ω|3

]
sgn(ω) (2)

where ω = θ̇ is the measured joint velocity and it has to be noted that a symmetric function (w.r.t. the

velocity) is considered, that is, the coefficients c0, . . . , c3 are the same for positive and negative velocities. The

polynomial coefficients can be determined easily by moving only one joint of the robot at a time, so that a one

degree-of-freedom system can be considered for each joint (see Figure 1). In this case the dynamics equation

of the joint can be written as

τ − τf − τw = Jω̇ (3)
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Figure 1: Weight scheme of a single joint robot.

where J is the inertia seen by the motor, τ is the motor torque, τf is the friction torque and τw is the torque

related to the gravitational force. From (3) it is immediate to write

τ = Jω̇ + τf + τw (4)

Now, a standard least-squares method can be applied to estimate the friction torque coefficients collecting the

motor torques while performing suitable motion. In fact, (3) can be rewritten by expressing all the terms as:

τ = J ω̇ + τf + τw

= J ω̇ + c0 sgn(ω) + c1ω + c2ω
2 sgn(ω) + c3ω

3 + Px cos(θ)− Py sin(θ)
(5)

where the gravity compensation torque has been expressed as

τw = Px cos(θ)− Py sin(θ) (6)

with θ the joint (measured) position and

Px = mgl cos(γ) Py = mgl sin(γ), (7)

where m is the mass of the moving part of the robot, g is the gravity acceleration, l is the distance between

the joint axis of rotation and the centre of mass of the moving part of the manipulator and γ is the angle of the

centre of the mass position when θ = 0 (see Figure 1). Thus, (5) can be written in matrix form (where in each

row there are all the n samples collected at a given sampling time) as:

τ = MX (8)

where

τ =
[
τ1 τ2 . . . τn

]T
(9)
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is the vector of the measured motor torques,

M =


ω̇1 sign(ω1) ω1 ω2

1 sign(ω1) ω3
1 cos(θ1) − sin(θ1)

ω̇2 sign(ω2) ω2 ω2
2 sign(ω2) ω3

2 cos(θ2) − sin(θ2)

...
...

...
...

...
...

...

ω̇n sign(ωn) ωn ω2
n sign(ωn) ω3

n cos(θn) − sin(θn)

 (10)

is the matrix containing the other measured data and

X =
[
J c0 c1 c2 c3 Px Py

]T
(11)

is the vector of the coefficients to be determined.

Then, the coefficients can be estimated as

X = M+ τ (12)

when M+ denotes the Moore-Penrose pseudo-inverse of the matrix M.

It is obvious that, in order to provide a sensible result, the trajectory used in the experiments have to span all

the possible motor velocities for many times to effectively cope with measurement noise. In this paper, as a

standard industrial controller is employed, the performed trajectories are point-to-point motions (with S-curve

velocity profiles, as imposed by the controller) repeated many times. It has to be noted at this point that,

although the polynomial model is effective to model the influence of the joint velocity on the friction torque,

it does not take into account that the friction torque strongly depends also on the temperature of the joint, as it

will be explained in the next section.

3 Modelling Temperature Effect

An important issue, that can be noted in practice during the experiments performed with an industrial manip-

ulator (see Section 4), is that friction torque changes during robot operation. In particular, if, for example, a

series of point to point motions is performed after the robot has not been used for a long time, when the friction

function is determined after different time intervals, it appears that the friction term decreases, until a steady-

state value is obtained for a given velocity. An illustrative example related to the second joint of the industrial

robot manipulator described in Section 4 is shown in Figure 2, where the friction curves have been determined

each six minutes, and it appears that after the warm-up of the robot the friction torque decreases of about 33% at

high velocities. This behaviour can be associated with the temperature of the joint, which increases as the joint

is more and more employed. It is therefore necessary to take into account the temperature effect in the friction

model in order to compensate for the warm-up of the robot during its operations, especially if the operations

start after a time interval during which the robot is at rest.

For this purpose, a modification of the polynomial model of Section 2 is proposed hereafter, by assuming that

the gearbox temperature changes because the friction losses are converted into thermal power. The model is

derived by starting from the thermal balance of the joint, that is,

Wacc = Win −Wout (13)

where Wacc is the accumulated thermal power in the joint, that is,

Wacc = C
dT

dt
(14)
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Figure 2: Modification of the friction torque curve during robot warm-up (intervals of six minutes).

where T is the internal temperature of the joint and C is the thermal capacity of the joint; Wout is the dissipated

thermal power

Wout = K (T − Tenv) (15)

where K is the coefficient of thermal exchange between joint and air (we assume that this includes all the

conduction and convection terms) and Tenv is the environmental temperature (which is assumed it can be

measured and it is constant during a robot operation); Win is the thermal power injected to the joint, which is

assumed to be the product between the friction torque and the speed of motion, that is,

Win = τf ω ≥ 0 (16)

Thus, we can write
dT

dt
= [τfω −K(T − Tenv)]

1

C
. (17)

Then, the proposed model is based on the assumption that friction coefficients c0 . . . c3 change linearly with

temperature T as

ci = ci0 [α (T − T0) + β] (18)

where ci0 is the value of ci for T = T0, and α and β are the coefficients representing the assumed linear relation

between the friction torque and the temperature. Actually, the linear dependency of the friction parameters on

the temperature is not related to a rigorous physical analysis of the phenomenon, but, as it will be shown in

the next sections, this simple empirical solution is effective in the description of the temperature effects from
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a practical point of view. Further, rather than representing the exact temperature in a single point, variable T

is an equivalent average temperature that is practically related to various different causes of friction (bearings,

speed reducers, etc. . . ) that are present in the mechanical structure. It is worth stressing that, in case of perfect

modeling, it is β = 1; however, a slightly different value is expected because other possible friction causes

have not been considered and because of the unavoidable presence of noise in the identification phase.

If the task of the robot consists of short repetitive working cycles of duration ∆t, in which the temperature can

be assumed to be constant, the injected thermal power can be assumed to be constant as well, and equal to its

mean value. Thus, the model assumes a linear relation between joint internal temperature and friction torque

expressed as 
∆T

∆t
= [τf,RMSω̄ −K(T − Tenv)]

1

C
(19)

τf,RMS = τf0,RMS [α(T − T0) + β] (20)

where τf,RMS is the RMS value of the friction torque in a given robot operation cycle and τf0,RMS is the RMS

value of the friction torque obtained when a robot cycle is performed for the first time when the manipulator is

used after it has been stopped for a long period (T = T0 ∼= Tenv). Finally, ω̄ is the velocity that, by applying

the RMS torque, would give the mean friction power and can be called ‘equivalent thermal velocity’. Namely,

it is the ratio between the mean friction power and the RMS friction torque, that is,

ω̄ =
mean(τfω)

τf,RMS
. (21)

The friction torque at a given temperature is then expressed as

τf (T ) =
(
c0 + c1 |ω|+ c2 |ω|2 + c3 |ω|3

)
sgn(ω) [α(T − T0) + β] (22)

Thus, after the four model parameters α, β,K,C (in addition to c0, c1, c2, c3) are estimated once by performing

identification experiments (see Section 5) at a given environmental temperature Tenv = T0, the model can be

employed to obtain the friction torque for new robot operations (starting from an environmental temperature

Tenv).

In practice, at the beginning of a new robot operation (after the robot has been at rest), the friction torque is

given by (22) with T = Tenv . Then, at the end of the first cycle, the value of τf0,RMS is computed and the

value of τf,RMS is computed by means of (20). By also computing the value of ω̄ by means of (21), the change

of the temperature in the joint can be calculated by means of (19).

Then, if the robot operations do not change, the value of the joint temperature can be obtained at the end

of a cycle by simply applying (20) and (19) iteratively (note that τf0,RMS is the RMS value obtained at the

first iteration). The friction torque can then be estimated by applying (22) with the updated value of the joint

temperature.

The differential equation (19) can be solved by considering T (0) = T0 as initial condition. It results:

T (t) =
βτf0,RMSω̄ +KTenv − ατf0,RMSTenvω̄

K − ατf0,RMSω̄
+ h e

ατf0,RMSω̄−K
C t (23)

where

h =
KT0 − ατf0,RMST0ω̄ − βτf0,RMSω̄ −KTenv + ατf0,RMST0ω̄

K − ατf0,RMSω̄
. (24)
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It appears that the time constant of the first order system is

tc =
C

K − ατf0,RMSω̄
(25)

and its knowledge can be employed to determine the maximum duration of the time interval after which the

joint temperature has to be updated. This time interval has to be significantly smaller than tc, therefore, a

sensible value for it has been chosen as tc/10.

4 Experimental Setup

The robot manipulator used to perform the experiments is described in this section so that the presented re-

sults can be better evaluated. The robot is a Comau SMART NS 16 1.65 ARC (see Figure 3), and it has been

designed to perform arc welding tasks. It is a serial manipulator built with an anthropomorphic kinematic

structure, with six degrees of freedom and a maximum payload of 16 kilograms. It is placed on the ground for

a standard working configuration.

Joints are actuated by means of six AC brushless servomotors with speed reducers. The maximum stall torque

for each motor is shown in Table 1, while the type and the reduction rate of the speed reducers are shown

in Table 2. The limits of the position and of the speed for each joint are represented in Table 3. Brakes are

mounted directly inside the servomotors. Lubrication is made by oil for the first four axes and by grease for the

last two joints.

It is worth stressing that the control architecture used for this work is the standard industrial one, called C4G,

so that the proposed friction models can be implemented with a typical industrial setup. The angular position

of the motors is measured by using encoders and the velocity and the acceleration of the joints are determined

from the position value by using an approach based on a Savitzky-Golay filter that uses a nth-order polynomial

interpolation. The joint torque is determined by multiplying the measured motor current by the torque con-

stant of the motor. The joint position controller consists of a cascade control structure where the current loop

sampling period is 50 [µs], the velocity control loop sampling period is 200 [µs] and the position control loop

sampling period is 400 [µs]. The reference position values of each joint are updated at a sampling rate of 2 ms.

An accurate dynamic model of this robot is available [33, 34].

Axis Stall Torque [Nm] Voltage [V] Power [kW]

1 3.3 325 1.41

2 9 325 2.50

3 3.3 325 1.41

4 0.75 325 0.33

5 0.75 325 0.33

6 0.75 325 0.33

Table 1: Characteristics of the motors.

8



Figure 3: The robot used in the experiments.

Axis Reduction rate Type

1 -181.5873 Gears

2 159.2609 Cycloidal

3 169.4737 Cycloidal

4 72.5860 Gears

5 78.7500 Harmonic Drive

6 -50.0000 Harmonic Drive

Table 2: Reduction rates of the speed reducers for each joint.

Joint Position limits [deg] Speed limits [deg/s]

1 ± 180 155

2 +155 / -60 155

3 +110 / -170 170

4 ± 2700 360

5 ± 120 350

6 ± 2700 550

Table 3: Position and speed joints limits.

5 Identification

As already mentioned, the polynomial friction function parameters (see (2)) can be estimated once, at the

known environmental temperature, by applying the simple least squares procedure described in Section 2. In
9



Figure 4: The different cycles robot operations for the identification of the model (Win = 25%, 50%, 75%,

100%).

this case the simple experiments have to be performed when the robot has been at rest for a long time so that

the temperature of the joint is virtually equal to the temperature of the environment.

Then, in order to estimate the parameter of the model (19)-(20) the robot has to be moved by spanning the

widest possible range of velocities and injected thermal power and by determining the corresponding friction

functions. A simple practical solution for this purpose has been developed by applying for each joint four

different kinds of robot operations, where for each operation the robot starts after a long period (one night) of

inactivity (T = T0 ∼= Tenv). In particular, cycle times of four minutes have been considered and each one has

been divided in subintervals of one minute. The four cases differ because the same movements of the robot

are performed in each subinterval, but the number of subintervals in which the robot is moved in each cycle

is different, as shown in Figure 4. In other words, it can be said that each case represents a robot operation

with a different duty cycle. In this way, the thermal power injected into the joints is different; for a given joint

temperature, the thermal power is proportional to the duty cycle. In each subinterval of the cycle time, point to

point motions from -45 deg to 70 deg and viceversa are performed, in the case of the first two joints, with six

different peak velocities, namely, 5%, 24%, 43%, 62%, 81%, and 100% of the maximum velocity allowed the

motor. The estimated temperature is updated at the end of each cycle, that is, each four minutes.

It is worth stressing that the motion of the joints can be performed separately or at the same time. In the first

case the friction torque is calculated by means of the method described in Section 2, while in the latter case the

dynamic model (1) of the robot has to be employed in order to determine the friction torque for each joint.

The parameters of the model (19)-(20) are estimated by considering all the experiments and by minimizing

the sum of the square errors, that is the difference between the friction force estimated by the experimental

data and the one estimated by the model for all the different velocities. For this purpose, the Matlab function

fmincon has been used. Results related to the second joint of the robot are considered in this section as this
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joint is the most relevant for the gravitational force; the other joints have in any case a similar behaviour. The

obtained values of the parameters are α = −0.00937, β = 0.91708, K = 2.75614 [W/K], C = 18086.82

[J/K]. The obtained results are shown in Figure 5, where the four different duty cycles are considered and the

measured and the estimated friction torques are compared at different time intervals (in particular after 4 and

304 minutes). The temperature evolution determined for the four different duty cycles are plotted in Figure 6

where it can be seen that, as expected, the temperature increment is the more relevant the longer are the time

intervals in which the robot is in motion.
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Figure 5: Identification results. Friction torque obtained from experimental data (grey solid line) and identified

one (black dashed line) for joint 2 with different injected thermal power and after different time intervals.
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Figure 6: Estimated joint temperature for different robot operations, that is, for different input thermal powers

injected into the joint.

Note that the joint internal temperature, even if it is obviously greater than the environmental one, it is in the

same order of magnitude (note that in any case manipulators have, in general, a thermal protection in case of

overheating, which means that the robot stops if the temperature exceeds a given threshold). In such a range the

lubricant viscosity can be considered as linearly dependent on the temperature with a good approximation [25].

Furthermore, although by using (20) there is the theoretical possibility that the viscosity becomes zero or even

negative for high temperature, in practice this never happens. The determined values of the time constants are

tc = 101.38 min for robot cycles where the robot is moving for one minute and it is stopped for three minutes

(that is, Win = 25%), tc = 89.51 min for Win = 50%, tc = 81.58 min for Win = 75%, and tc = 73.96

min for Win = 100%, when the robot is always in motion (note that, as shown in (25), the time constant tc

depends on the injected thermal power Win = τf0,RMS ω̄). It is in any case evident that updating the value of

the temperature each 4 minutes is sufficient, taking into account the dynamics of the system.

From the identification results it appears that the proposed model is capable of describing very well the tem-

perature effect on the friction torque. Indeed, the friction torque decreases from the beginning of the operations

after a period of rest, until a given time when the temperature function becomes almost constant and therefore

the friction does not change significantly anymore. The obtained model has then been validated by applying

to the second joint point-to-point motions from -45 to +70 deg, starting virtually from the same temperature

T0 ∼= Tenv of the identification experiments. These have been repeated for many cycles of three minutes (by
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Figure 7: Validation results. Friction torque obtained from experimental data (grey solid line) and identified

one (black dashed line) after different time intervals.

Time With Temperature Without Temperature With Temperature Without Temperature

[min] std(err) [Nm] std(err) [Nm] var(err)/var(τf ) [%] var(err)/var(τf ) [%]

3 48.4991 49.4382 2.59 2.69

33 43.6194 106.0872 4.00 23.69

63 45.5116 128.5030 5.40 43.06

93 50.1176 140.2410 7.30 57.18

123 53.3136 147.8523 8.88 68.28

153 55.3255 152.3702 9.97 75.63

183 57.0318 154.7700 10.79 79.49

213 58.2405 156.4537 11.39 82.17

243 58.7912 157.6204 11.71 84.18

273 59.3544 158.1072 11.96 84.46

Table 4: Standard deviation of the torque error and percentage of unexplained variance for joint 2, both com-

puted on the validation trials with and without taking into account the temperature change. Data are computed

every 30 minutes of robot operations without filtering.

never stopping the robot) with velocities equal to 10%, 25%, 40%, 55%, 70%, 85% and 100% of the maximum

velocity in each cycle. The results obtained by calculating the friction torque with the method of Section 2 are

then compared with those obtained by applying the four parameters model estimated in the previous section.

Results are shown in Figure 7, where the plots are related to the comparison after 3 and 228 minutes.

In Table 4 it is possible to see the standard deviation of the estimated friction torque error computed by

considering the joint temperature change and without considering it for joint 2. The fraction of unexplained

variance it is also be shown. It appears that the standard deviation of the model error is significantly smaller

when the temperature is considered; furthermore, the percentage of the physical data not explained by the

model is smaller when the temperature is taken into account. These results confirm again the effectiveness of

the proposed model and of the adopted identification procedure.
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6 Temperature Observer

As already mentioned, the environmental temperature is assumed to be measured and the parameters α, β, K,

C (in addition to c0, c1, c2, c3) of the model can be estimated just once for a robot manipulator by means of

the identification procedure described in Section 5 (actually, the procedure should be performed again if the

physical properties of the lubricant change significantly over the time). Thus, the determination of the current

joint temperature (and therefore the estimation of the friction torque) depends on the use of the robot and on

the initial joint temperature. The latter is in general difficult to estimate (only if the robot has been at rest for

long time it can be assumed that the joint temperature is equal to the environmental temperature) and as already

mentioned, it is rather impractical to measure it directly. For this reason, a temperature observer is necessary to

compensate for a wrong estimation of the initial condition [21]. Further, the computation of ω̄ in (19) requires

the knowledge of τf and therefore the temperature has to be computed in an accurate way.

The temperature observer uses, as innovation, the difference between the friction torque τf and its estimation

τ̂f computed with current temperature estimation. It is important to note at this point that, in general, the

measured torque τ is the sum between the friction term τf and the term τd = F(θ, θ̇, θ̈) composed by the

inertial, Coriolis and gravitational torques, which can be estimated from experimental tests [16, 34]. Thus, the

friction torque can be computed as τf = τ − τd. The temperature estimation T̂ is suitably updated at each

sampling time as

T̂ (i+ 1) = T̂ (i) +

[[
τf,RMS(i)ω̄(i)−K(T̂ (i)− Tenv)

] 1

C
− η(τf,RMS(i)− τ̂f,RMS(i))

]
ts (26)

where i is the current sampling time instant, τf,RMS is the RMS friction torque value determined by considering

N previous samples of the measured friction torque, τ̂f,RMS is the RMS value of the previous N samples of

the estimated friction torque (obtained by applying (22)), ω̄ is the velocity computed using (21) for N previous

samples and ts is the sampling period. The proposed scheme is shown in Figure 8.

The parameters to set in order to apply the observer technique are the number N of previous samples to

use for the computation of the RMS torque values and the observer gain η. The former can be fixed in order to

consider a reasonably short time interval that gives at the same time a consistent result (note that the higher is

Figure 8: Scheme of the temperature observer used for friction estimation.
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the value of N the higher is the filtering effect). The latter can be selected by making the considerations typical

of observer schemes in the presence of noise, that is, a small value provides a small bandwidth of the observer

that implies a smoother but slower convergence to the correct temperature value. On the contrary a high value

provides a large bandwidth that implies a faster but also more oscillatory convergence (and a too high value

might lead the system to instability). In any case, it is worth stressing that the observed temperature allows

the prediction of the friction torque for new values of velocities that have not been previously used during the

robot operations, as it will be shown in the next section. In fact, the interpolation capabilities of the estimated

polynomial friction function can be exploited only with a correct estimation of the temperature (see Figure 2).

7 Experimental Results

7.1 Evaluation of the model

Two kinds of experiments have been performed in order to verify the effectiveness of the proposed model:

• a sequence of single joint repetitive point to point motions, performed in three different phases. For joint

2, in the first phase, of duration 4960 [s], the peak speed is fixed at 40% of the maximum joint speed.

Then, the peak speed is suddenly changed to 80% of the maximum joint speed and this is kept for 2790

[s]. Finally, the peak speed is changed again suddenly to 20% of the maximum one for other 4805 [s]

(see Figure 9). In the case of joint 1 times are different due to the fact that the maximum range of motion

is bigger. In that case time intervals are 7632 [s] for the motion at 40% of the maximum velocity, 4116

[s] for the motion at 80% of the maximum velocity and 7089 [s] for the last motion, that is for the one at

20% of the maximum joint velocity;

• a repetitive motion that simulates a pick and place task in which the robot end effector is moved by

following 6 different linear trajectories, three of them from left to right and three of them from right to

left, linking repetitively the following task space coordinates (the first three coordinates are the frame

position w.r.t. the base frame [mm], and the second ones are the ZYZ Euler angles [degree]): (1000,

-600, 600, 10, 180, 60), (1000, -600, 1200, 10, 180, 60), (1000, 600, 1200, 10, 180, 60) and (1000, 600,

600, 10, 180, 60). The end effector peak velocity during the hoisting and lowering phases are 30% of the

maximum end-effector, while the peak velocity during the lateral movement is the maximum allowable

end-effector velocity.

It is worth stressing that for single joint motions the complete dynamic model of the robot is not relevant while

its knowledge is essential for the pick and place motion. Results related to the first and to the second joint of the

robot are shown for both tasks. Note that data have not been filtered in any way. Starting from the single joint

motion results, the case where the robot starts working after a long rest period is first considered. In this way

the initial joint temperature is virtually the same of the environmental temperature. The case where the speed

changes after the first and second time intervals are highlighted in Figure 10. As it is possible to observe, the

estimated friction torque is quite similar to the measured one along the time and also after the speed changes.

This means that the friction model is capable of describing well the dependence of friction torque on the

temperature that increases during the robot operations. The influence of the temperature is evident by also
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Figure 9: The considered single joint repetitive motion used in experimental campaign.

comparing the left and right parts of Figure 10 or, alternatively, the left and right parts of Figure 11. In fact,

in these cases the speed of motion is fixed and after a lot of cycles during which temperature has changed, the

model fits well the real data. This fact is clearly understandable by taking into account the friction torque at

the end of the left part of Figure 11, which is about 300 Nm, and the one at the beginning of the right part of

Figure 11, which is about 240 Nm.
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Figure 10: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 during the first speed change (single joint motion experiment).
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Figure 11: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 2 during the first speed change (single joint motion experiment).

7.2 Evaluation of the observer-based strategy

The motion of joint 2 has been also employed to verify the effectiveness of the observer based strategy. In

particular, a series of experiments has been performed where the motion starts after the robot has worked for

30 minutes so that the joint temperature is higher then the environmental one. As the latter is assumed as initial

condition, this results in an error that has to be compensated. The measured and estimated friction torques for

N = 20 and for different values of η (that is, 5 · 10−3, 5 · 10−2 and 5 · 10−1) are shown in Figure 12 together

with the corresponding estimated joint temperature. It appears that the estimated temperature converges to the

correct value after an initial transient and as expected, decreasing the value of η yields an increment of the

convergence velocity but also an increment of oscillations as the system can be too aggressive and therefore

the effect of noise and disturbances could be detrimental. In order to evaluate the effect of the variation of the

design parameter N , other experimental results are shown in Figure 13 with the same values of η as before

but with N = 40. It can be observed that, as expected, decreasing the value of N yields an increment of the

sensitivity to measurement noise and disturbances. In any case, it turns out that both the design parameters have

predictable effects and can be therefore fixed quite simply for a given robot, in order to obtain a convergence

time of just a few tenths of seconds.

Regarding the results obtained by considering the pick and place repetitive motion, the estimated and mea-

sured friction torques for the joints 1 and 2 are shown in Figure 14 and 15 respectively for different time

intervals (after 3 and after 35 minutes from the beginning of the task). Also in this case it is possible to observe

that the proposed model is effective in estimating the role of the temperature on the friction term.

It is worth noting that in Figure 14 in certain time intervals the estimated friction torque is completely different

from the measured one. This happens because in these intervals the motor velocity is zero and, due to the static

friction phenomenon, the friction torque can assume any value between the static friction coefficients −c0 and

+c0. Thus, it has been chosen to show an estimated friction torque equal to its extremum.
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Figure 12: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 2, and related estimated joint internal temperature (blue line), starting from a wrong initial condition

with η = 5 · 10−3 (top), η = 5 · 10−2 (middle), η = 5 · 10−1 (bottom) and N = 20 (single joint motion

experiment).
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Figure 13: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 2, and related estimated joint internal temperature (blue line), starting from a wrong initial condition

with η = 5 · 10−3 (top), η = 5 · 10−2 (middle), η = 5 · 10−1 (bottom) and N = 40 (single joint motion

experiment).
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Figure 14: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 during the pick and place motion.
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Figure 15: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 2 during the pick and place motion.
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7.3 Discussion

Regarding the proposed modeling and identification technique, it has to be stressed that the observer is used

only for the estimation of the (initial) joint temperature and not for the complete friction model.

In any case, the use of an on line friction estimation technique (for example by means of a recursive least-

squares procedure or by means of a Kalman filter) has been recognized to be critical in industrial robotics

because, in general, the result strongly depends on an accurate dynamic model of the manipulator and the

presence of external forces (disturbances) might impair the accuracy of the estimation.

Regarding the first issue, the development of advanced techniques has made accurate robot dynamic models

available [16, 34] so that they can be safely exploited for the considered problem, as shown in the previous

subsection. Regarding the second issue, it is necessary to discuss better the role of the observer, which is

essential in order to overcome the lack of an additional temperature sensor. For this purpose, the following

experiment has been performed. The first joint of the robot has been cyclically moved between 0 and 120

degrees with different peak velocities. The observer has been applied only for the first 120 seconds (the time

interval that is necessary to estimate the intial joint temperature) and then has been disconnected.

The results plotted in Figure 16 show that, even after two hours of motion without applying the observer and

just updating the temperature value according to equations (19)-(20) the estimation of the friction torque is

still satisfactory (demonstrating the effectiveness of the model) while some decrement of the performance can

be detected after four hours. The relevance of the results can be understood better by comparing the previous

experiment with a similar one where, however, the temperature is not updated and the initially estimated friction

function is always considered in the overall time interval of the experiment (see Figure 17). It appears that it is

worth using the model that includes the temperature effect also in the cases when the observer cannot be used,

for example when external forces have been applied (for example in pick-and-place operations).

In any case, in order to avoid the decrement of performance that is unavoidable if the devised friction model

is applied in an open loop fashion, the observer can be inserted seldom for a short time interval when a free

motion without any additional load occurs. This solution has been applied in the experiment of Figure 18, in

which the same task of Figure 16 has been applied but the observer is connected for 120 seconds after 2 hours

and for other 120 seconds after 4 hours. It appears that a short time interval is sufficient to estimate again the

correct (lower) joint temperature and to recover the performance.

Finally, another interesting experiment has been performed by always using the observer in all the time interval

but a constant torque disturbance (which can be considered as the result of a force disturbance acting on the

end-effector) of 50 Nm, that is a value around 30% of the friction torque, has been added to joint 1 of the

robot for 120 seconds after two and for hours of robot operations. Results plotted in Figure 19 show that the

presence of a constant torque disturbance causes, as expected, an underestimation of the temperature, which

yields a decrement in the accuracy of the estimation of the friction term, namely, an estimation bias. However,

the estimation error is quickly reduced as soon as the external force stops its action.

From all the presented experiments, it can be deduced that the model is effective in describing the role of the

temperature in the friction variation and that the temperature sensor in the joint can be substituted with the

observer, provided an appropriate strategy is employed in order to connect the observer when the task does

not present external forces. Indeed, the time needed by the observer to estimate the joint temperature is much
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Figure 16: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 without the application of the observer after 2 (left) and 4 (right) hours, and related temperature.

smaller than the time interval when the model can be applied without the observer. This makes the application

of such a strategy fairly simple. For example, if a task constantly involves the presence of external forces, such

as a pick-and-place task, it is possible to turn on the observer every few hours adding, if not already present, a

short (less than a minute) free motion to re-estimate the joint temperature.
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Figure 17: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 without taking into account the temperature variation after 2 (left) and 4 (right) hours respectively.
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Figure 18: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 during the second and third application of the observer for 120 seconds after 2 (left) and 4 (right)

hours respectively, and related temperature.
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Figure 19: Friction torque obtained from experimental data (grey thin line) and estimated one (black thick line)

for joint 1 when a constant torque disturbance has been applied for 120 seconds after 2 (left) and 4 (right) hours

respectively, and related temperature.

8 Conclusions

In this paper a polynomial friction model for industrial robot manipulators that takes into account temperature

effects has been proposed. The model can be applied without a measurement of the joint internal temperature.

A simple identification procedure can be employed to estimate the model parameters and then an observer based

technique can be suitably applied to compensate for a wrong estimation of the initial conditions (that is, of the

initial joint temperature). Experimental results have been shown in order to demonstrate the effectiveness of

the method. Future works will consist of applying temperature extension to more complex friction phenomena

descriptions, such as Stribeck or LuGre models, that can be relevant for some kind of specific robot operations

where slow transitions through zero velocity are required. Furthermore, it will be investigated the use of the

proposed model for long term maintenance analyses.
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